JPH01269084A - Manufacture of fuel coating pipe - Google Patents

Manufacture of fuel coating pipe

Info

Publication number
JPH01269084A
JPH01269084A JP63096929A JP9692988A JPH01269084A JP H01269084 A JPH01269084 A JP H01269084A JP 63096929 A JP63096929 A JP 63096929A JP 9692988 A JP9692988 A JP 9692988A JP H01269084 A JPH01269084 A JP H01269084A
Authority
JP
Japan
Prior art keywords
ingot
center hole
crucible
zircaloy
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63096929A
Other languages
Japanese (ja)
Inventor
Toshio Kubo
久保 利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP63096929A priority Critical patent/JPH01269084A/en
Publication of JPH01269084A publication Critical patent/JPH01269084A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To reduce the nodular corrosion of a fuel coating pipe and, at the same time, to improve the economical efficiency of the pipe by providing a melting plate from which a doughnut-like ingot provided with a center hole in the axial direction can be manufactured and solidifying the ingot toward the outer peripheral section from the center hole section. CONSTITUTION:Firstly, a prescribed quantity of zircaloy 2 is put in a crucible 5 and the crucible 5 is sealed up with a crucible lid 4. Then a prescribed electric current is made to flow to a consumable arc electrode 3 and the zircaloy 2 is melted after the crucible 5 is evacuated to a vacuum state. After melting, the power supply is immediately disconnected and the zircaloy 2 is cooled. A cooling gas, such as gaseous He, etc., is forcibly made to flow through a cooling pipe 3 and the ingot is cooled in such a way that the solidification of the ingot can progress toward the outer peripheral section from the center hole section. Therefore, an alloy element redistributed state where the alloy element concentration at the outer peripheral section is higher than that at the center hole section is formed and nodular corrosion can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、軽水炉用燃料被覆管の製造方法に係り、特に
、ジルコニウム基合金被覆管の耐ノジユラー腐食性を強
化するのに好適な製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a fuel cladding tube for a light water reactor, and in particular, a manufacturing method suitable for enhancing the nodular corrosion resistance of a zirconium-based alloy cladding tube. It is related to.

[従来の技術] 原子炉の炉心材料の中で、燃料被覆管はその役割が最も
重要である。それは放射性核燃料物IR(ウラン酸化物
、プルトニウム酸化物など)を被覆することにより、こ
れらの物質から放射される放射能を完全にしゃ断する第
1次の防護壁の役割を果たす部材のためである。
[Prior Art] Among the core materials of a nuclear reactor, the role of the fuel cladding tube is the most important. This is because the material serves as a primary protective wall that completely blocks out the radioactivity emitted from radioactive nuclear fuel materials (uranium oxide, plutonium oxide, etc.) by coating them. .

ジルコニウム基合金の燃料被覆管の有効な特性は、中性
子吸収断面積が小さいため、中性子経済性にすぐれてい
るが、その反面、耐食性および機械的強度、延性などを
強化するために、微量のFe、Cr、NiおよびSnな
どを添加するようにしている、特に、従来の原子炉運転
経験から、いわゆる、ノジュラー腐食と呼ばれる局部腐
食が、被覆管の表面に発生し、これを抑制するために、
長期間にわたり、多数の研究が実施されている。
An effective characteristic of fuel cladding made of zirconium-based alloys is that it has a small neutron absorption cross section, so it is excellent in neutron economy. , Cr, Ni, Sn, etc. have been added. In particular, from experience in conventional nuclear reactor operation, local corrosion called so-called nodular corrosion occurs on the surface of the cladding tube, and in order to suppress this,
Numerous studies have been conducted over a long period of time.

例えば、1公開例として、特開昭58−165082号
公報が提示されている。
For example, Japanese Unexamined Patent Publication No. 165082/1982 has been disclosed as one example.

[発明が解決しようとする課題] 前記公開例では、最終製品なる燃料被覆管毎に逐一、特
殊な熱処理、たとえば管外周表層部のみにβ処理を施こ
すことになり、所要数の耐ノジユラー腐食処理済みの燃
料被覆管を短期間内に準備することは真穴な人工費を要
し、不経済な方法であった。
[Problems to be Solved by the Invention] In the disclosed example, a special heat treatment is applied to each fuel cladding tube as a final product, for example, β treatment is applied only to the outer peripheral surface layer of the tube, and the required number of nodular corrosion-resistant Preparing treated fuel cladding within a short period of time requires significant labor costs and is an uneconomical method.

本発明の目的は、上記した従来技術の問題点を解決して
、燃料被覆管のノジュラー腐食を軽減すると共に、経済
効果を向上させようとするものである。
An object of the present invention is to solve the problems of the prior art described above, to reduce nodular corrosion of fuel cladding tubes, and to improve economic effects.

軽水炉では、発電コストを低減させるために、使用する
燃料要素の高燃焼度化、高寿命化が要請され、被覆管の
ノジュラー腐食抑制への期待は益益大きくなってくる。
In order to reduce power generation costs in light water reactors, the fuel elements used are required to have higher burn-up and longer life, and expectations for suppressing nodular corrosion of cladding tubes are increasing.

[課題を解決するための手段] 上記課題を解決するために、本発明では、合金元素を含
有するジルコニウム基合金を融解槽内へ装荷し、これを
溶解したのち、冷却過程を経てインゴットを製作し、こ
のインゴットを軸方向へ伸延して円筒状の燃料被覆管を
製造する方法において、融解槽を、軸方向に中心孔を有
するドーナツ状のインゴットを製作することができる形
状の融解槽にし、冷却過程を、中心孔部から外周部へ向
って凝固を進行させる冷却過程にしたことである。
[Means for Solving the Problems] In order to solve the above problems, in the present invention, a zirconium-based alloy containing alloying elements is loaded into a melting tank, and after melting, an ingot is produced through a cooling process. In the method of manufacturing a cylindrical fuel cladding tube by stretching this ingot in the axial direction, the melting tank is formed into a shape capable of manufacturing a donut-shaped ingot having a center hole in the axial direction, The cooling process is such that solidification progresses from the center hole toward the outer periphery.

[作用] 燃料被覆管の素材であるジルコニウム基合金には、耐食
性および耐強度性を考慮して微量のFe。
[Function] The zirconium-based alloy that is the material of the fuel cladding tube contains a trace amount of Fe in consideration of corrosion resistance and strength resistance.

Cr、Niなどの合金元素が添加されている。(例えば
、ジルカロイ−2には、Fe:0.07〜0.20.C
r : 0.05〜0.15.Ni : 0゜03〜0
.08 (wt%)などが添加されている)ノジュラー
腐食を抑制するためには、これら合金元素の添加量を増
やせばよいが、その場合には中性子経済性および被覆管
の延性が低下するという問題を生ずる。
Alloying elements such as Cr and Ni are added. (For example, Zircaloy-2 has Fe: 0.07-0.20.C
r: 0.05-0.15. Ni: 0°03~0
.. 08 (wt%) etc.) In order to suppress nodular corrosion, it is possible to increase the amount of these alloying elements added, but in that case, there is a problem that neutron economy and ductility of the cladding decrease. will occur.

本発明では、合金元素の添加量は従来のままとして(増
量しないで)、溶解し、凝固の際に合金元素の濃度分布
を外表面側を高くし、中心部側を低くすることによって
、被覆管外表面に発生するノジュラー腐食を低減させる
ようにしたものである。
In the present invention, the amount of alloying elements added remains the same as before (does not increase), and the concentration distribution of alloying elements during melting and solidification is made higher on the outer surface side and lower on the center side. This is designed to reduce nodular corrosion that occurs on the outer surface of the pipe.

いま、Zrスポンジからジルカロイ−2被覆管を製造す
る工程において、ジルカロイ−2融解後の冷却時のイン
ゴット内外部における温度勾配と、ジルカロイ−2中の
添加合金元素の濃度変化との関係を模式的に示せば、以
下の第2図および第3図のようになる。すなわち、第3
図は従来技術で、溶融ジルカロイ−2を冷却し・た場合
である。通常実施されているように、第3図においては
、インゴット外周部の方が、中心部よりも冷却速度が速
いため、初めに外周部が凝固し始め、その後除々に凝固
相が中心部へと移行していくことは明らかである。この
場合、合金元素濃度は凝固相で低く、液相で高くなるよ
うな合金元素の再分布を生じ。
Now, in the process of manufacturing Zircaloy-2 cladding tubes from Zr sponge, we will schematically show the relationship between the temperature gradient inside and outside the ingot during cooling after melting Zircaloy-2 and the concentration change of added alloying elements in Zircaloy-2. , the results will be as shown in FIGS. 2 and 3 below. That is, the third
The figure shows a conventional technique in which molten Zircaloy-2 is cooled. As is usually practiced, in Figure 3, the outer periphery of the ingot cools faster than the center, so the outer periphery begins to solidify first, and then the solidified phase gradually moves toward the center. It is clear that there will be a transition. In this case, a redistribution of alloying elements occurs such that the concentration of alloying elements is low in the solidified phase and high in the liquid phase.

冷却後には、インゴット外周部の方が中心部よりも合金
元素濃度が低くなる。
After cooling, the concentration of alloying elements is lower at the outer periphery of the ingot than at the center.

第2図は、本発明による場合であり、上記第3図とは逆
に、インゴット中心孔部の冷却速度を、外周部の冷却速
度よりも速くした。この場合は、従来技術とは逆に合金
元素濃度はインゴット外周部で高く、中心孔部で低くな
るため、外周部の合金元素濃度が高くなり、被覆管とし
て完成した折には外表面に発生するノジュラー腐食を軽
減することができる。
FIG. 2 shows a case according to the present invention, in which, contrary to FIG. 3, the cooling rate at the center hole of the ingot was faster than the cooling rate at the outer circumference. In this case, contrary to the conventional technology, the concentration of alloying elements is high at the outer periphery of the ingot and lower at the center hole. Nodular corrosion can be reduced.

[実施例] 以下、本発明の一実施例を、第1図を用いて説明する。[Example] An embodiment of the present invention will be described below with reference to FIG.

第1図は1本実施例に係るインゴット融解槽(以下、ル
ツボという)の説明用の模式図である。
FIG. 1 is a schematic diagram for explaining an ingot melting tank (hereinafter referred to as crucible) according to one embodiment.

第1図の構成は、1は、溶融状のジルカロイ−2,2は
、ジルカロイ−2,1を溶融するために用いられる消耗
型アーク電極棒、3は、ルツボの中心部を貫通したタン
グステン製冷却用直管で。
The configuration in Fig. 1 is as follows: 1 is a consumable arc electrode rod used to melt Zircaloy-2, 2 is a molten Zircaloy-2, 1 is a tungsten electrode that penetrates through the center of the crucible. With straight pipe for cooling.

内部へ冷却媒体を通過させるための流路、4は、耐熱性
のルツボの上蓋、5は、溶融状ジルカロイ−2を収納し
、融解するためのに耐熱性ルツボである。
A flow path for passing a cooling medium into the interior, 4 is a heat-resistant crucible upper lid, and 5 is a heat-resistant crucible for storing and melting molten Zircaloy-2.

つぎに、本実施例のルツボを使ってジルカロイ−2の融
解の動作について説明する。
Next, the operation of melting Zircaloy-2 using the crucible of this example will be explained.

所定量のジルカロイ−2を、ルツボ5内に装荷し、ルツ
ボ上蓋4で密閉し、ルツボ内は真空とし。
A predetermined amount of Zircaloy-2 is loaded into the crucible 5, and the crucible is sealed with the crucible top lid 4, and the inside of the crucible is evacuated.

消耗型アーク電極に所定の電流を流して融解を開始する
。アーク電極による融解開始後、数分間でジルカロイ−
2は完全に融解する。融解完了後は、直ちに電源を切っ
て、冷却工程に移る。ジルカロイ−2の融点は約180
0℃なので、冷却用管3は、タングステン合金等の高融
点の耐熱材料で造られている。冷却用管3内をHeガス
等冷却用ガスを強制的に流過させることによって、冷却
用管3の表面温度をルツボ5の外周部温度より低温化す
ることができる。すなわち、冷却過程においてインゴッ
ト中心孔部が最初に凝固し、その後次第に中心孔部から
外周部へと凝固相が移行するために、前記のように外周
部の合金元素濃度が中心孔部より高くなるような合金元
素の再分布状況が形成されることになる。
A predetermined current is passed through the consumable arc electrode to start melting. Zircaloy melts within a few minutes after the arc electrode starts melting.
2 completely melts. Once melting is complete, turn off the power immediately and proceed to the cooling process. The melting point of Zircaloy-2 is approximately 180
Since the temperature is 0° C., the cooling tube 3 is made of a heat-resistant material with a high melting point, such as a tungsten alloy. By forcing a cooling gas such as He gas to flow through the cooling tube 3, the surface temperature of the cooling tube 3 can be made lower than the temperature of the outer circumference of the crucible 5. That is, in the cooling process, the center hole of the ingot solidifies first, and then the solidified phase gradually moves from the center hole to the outer periphery, so that the concentration of alloying elements in the outer periphery becomes higher than that in the center hole, as described above. Such a redistribution situation of alloying elements will be formed.

冷却工程を終了した後1本実施例の製造方法により製造
された中心部に小孔のあいたドーナツ状のインゴットは
、ルツボ5から取出され、次の鍛造、圧延等の諸工程を
経て加工され、遂には、最終完成品なるジルカロイ−2
被覆管が製造される。
After completing the cooling process, the donut-shaped ingot with a small hole in the center produced by the production method of this example is taken out from the crucible 5 and processed through the following various processes such as forging and rolling. Finally, the final finished product, Zircaloy-2
A cladding tube is manufactured.

本実施例の効果は、ジルカロイ−2被覆管を製造するに
当り、ノジュラー腐食を抑制するための方法として、製
造工程の上流側で、簡便な装置を用いることにより、凝
固時の冷却速度による合金元素濃度の変化を利用して、
所期の目的を達成することができた。
The effect of this example is that when manufacturing Zircaloy-2 cladding tubes, as a method for suppressing nodular corrosion, by using a simple device on the upstream side of the manufacturing process, alloying by cooling rate during solidification is achieved. Using changes in element concentration,
We were able to achieve our intended purpose.

また、本実施例の場合には、インゴットの直径は約20
0 m 、冷却用管3の直径は約40+mとした。
In addition, in the case of this example, the diameter of the ingot is approximately 20
0 m, and the diameter of the cooling tube 3 was approximately 40+ m.

なお、インゴット融解から被覆管完成までの全工程中の
初期の上流側工程で中心部の孔あけ作業が終了するので
、従来例よりも作業工数は節約できることになる。
In addition, since the center hole drilling work is completed in the initial upstream process of the entire process from melting the ingot to completing the cladding, the number of man-hours can be saved compared to the conventional example.

[発明の効果] 本発明の製造工程においては、従来工程よりも上流側で
、有効成分の濃度勾配を変えることにより、耐ノジユラ
ー腐食性を改善できたので、人工費を節減できた。
[Effects of the Invention] In the manufacturing process of the present invention, nodular corrosion resistance could be improved by changing the concentration gradient of the active ingredient on the upstream side compared to the conventional process, and thus labor costs could be reduced.

以上要するに、本発明では、燃料被覆管の製造工程中、
ジルコニウム基合金製のインゴット凝固段階で、外周部
の合金元素濃度を高めるようにして、ノジュラー腐食を
軽減すると共に、経済効果を向上できる燃料被覆管の製
造方法を提供するものである。
In summary, in the present invention, during the manufacturing process of the fuel cladding tube,
The present invention provides a method for manufacturing a fuel cladding tube that reduces nodular corrosion and improves economic efficiency by increasing the concentration of alloying elements in the outer periphery during the solidification stage of an ingot made of a zirconium-based alloy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本実施例に係るインゴット融解槽(ルツボ)
の説明用模式図、第2図は、本実施例のインゴット内試
料冷却時の中心孔部と外周部の温度分布および合金元素
濃度分布説明図、第3図は。 従来例のインゴット内試料冷却時の中心部と外周部の温
度分布および合金元素濃度分布説明図である。 〈符号の説明〉
Figure 1 shows an ingot melting tank (crucible) according to this example.
FIG. 2 is an explanatory schematic diagram of the temperature distribution and alloying element concentration distribution in the central hole and the outer circumference during cooling of the sample in the ingot of this example, and FIG. FIG. 7 is an explanatory diagram of temperature distribution and alloying element concentration distribution in the center and outer circumference during cooling of a sample in an ingot in a conventional example. <Explanation of symbols>

Claims (1)

【特許請求の範囲】 1、合金元素を含有するジルコニウム基合金を融解槽内
へ装荷し、これを溶解したのち、冷却過程を経てインゴ
ットを製作し、このインゴットを軸方向へ伸延して円筒
状の燃料被覆管を製造する方法において、融解槽を、軸
方向に中心孔を有するドーナツ状のインゴットを製作す
ることができる形状の融解槽にし、冷却過程を、中心孔
部から外周部へ向って凝固を進行させる冷却過程にした
ことを特徴とする燃料被覆管の製造方法。 2、中心孔部の冷却速度を外周部の冷却速度よりも速く
することにより、中心孔部から外周部へ向って凝固を進
行させるようにしたものである請求項1記載の燃料被覆
管の製造方法。 3、中心孔部を強制冷却することにより、中心孔部から
外周部へ向って凝固を進行させるようにしたものである
請求項1記載の燃料被覆管の製造方法。
[Claims] 1. A zirconium-based alloy containing alloying elements is loaded into a melting tank, melted, and then cooled to produce an ingot. This ingot is stretched in the axial direction to form a cylindrical shape. In this method of manufacturing a fuel cladding tube, the melting tank is shaped so that a donut-shaped ingot having a center hole in the axial direction can be manufactured, and the cooling process is performed from the center hole toward the outer periphery. A method for manufacturing a fuel cladding tube, characterized by using a cooling process that advances solidification. 2. Manufacturing the fuel cladding tube according to claim 1, wherein the cooling rate of the central hole is made faster than the cooling rate of the outer peripheral part, so that solidification progresses from the central hole to the outer peripheral part. Method. 3. The method of manufacturing a fuel cladding tube according to claim 1, wherein the solidification proceeds from the center hole toward the outer circumference by forcing the center hole to cool.
JP63096929A 1988-04-21 1988-04-21 Manufacture of fuel coating pipe Pending JPH01269084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63096929A JPH01269084A (en) 1988-04-21 1988-04-21 Manufacture of fuel coating pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63096929A JPH01269084A (en) 1988-04-21 1988-04-21 Manufacture of fuel coating pipe

Publications (1)

Publication Number Publication Date
JPH01269084A true JPH01269084A (en) 1989-10-26

Family

ID=14178037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63096929A Pending JPH01269084A (en) 1988-04-21 1988-04-21 Manufacture of fuel coating pipe

Country Status (1)

Country Link
JP (1) JPH01269084A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735858U (en) * 1980-08-04 1982-02-25
JPS57140860U (en) * 1981-02-25 1982-09-03

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735858U (en) * 1980-08-04 1982-02-25
JPS57140860U (en) * 1981-02-25 1982-09-03

Similar Documents

Publication Publication Date Title
JP3614885B2 (en) Zircaloy tube with excellent crack growth resistance
US9099205B2 (en) Zirconium alloys for a nuclear fuel cladding having a superior oxidation resistance in a reactor accident condition, zirconium alloy nuclear fuel claddings prepared by using thereof and methods of preparing the same
JPH0364427A (en) Corrosion resistant zirconium alloy containing copper, nickel and iron
CN104054134A (en) Method for producing nuclear fuel products with high loading of low enriched uranium and corresponding nuclear kernbrennstoff
US9202597B2 (en) Zirconium alloys for a nuclear fuel cladding having a superior corrosion resistance by reducing an amount of alloying elements and methods of preparing a zirconium alloy nuclear fuel cladding using thereof
JP2002540437A (en) Fuel element for pressurized water reactor and method for producing clad tube
JP2009513821A (en) Zirconium alloy and structural member for core of light water cooled reactor
JPH01269084A (en) Manufacture of fuel coating pipe
Ogata et al. Engineering-scale development of injection casting technology for metal fuel cycle
JP2006077326A (en) Non-heat treated zirconium alloy fuel cladding and method of manufacturing the same
NO133808B (en)
JP3076067B2 (en) Metal beryllium pebbles for fusion reactors
JPS6024494A (en) Manufacture of metal zirconium for composite type fuel coated pipe
JPS6214085A (en) Manufacture of composite type nuclear fuel coated tube
JP2814981B2 (en) Fuel assembly
US3567581A (en) Uranium-silicon fuel elements for a nuclear reactor
KR102588735B1 (en) Casting method of zircalloy-4 bar for 3D printing powder
JPH01147028A (en) Production of zirconium alloy for liner of fuel element
KR20130098621A (en) Zirconium alloys for nuclear fuel cladding, having a superior oxidation resistance in a severe reactor operation conditions, and the preparation method of zirconium alloys nuclear fuel claddings using thereof
JP3501106B2 (en) Fuel assembly for light water reactor, parts and alloys used therefor, and manufacturing method
JPH06228675A (en) Production of electrode for production of metallic beryllium pebble
KR20220167886A (en) Re-casting process of Zircaloy applied induction skull melt method
JP2500165B2 (en) Method for manufacturing fuel cladding tube
RU2145739C1 (en) Tubular can for nuclear fuel rods and its manufacturing process
JPS6318030A (en) Zirconium and zirconium alloy and its production