JPH01269057A - Continuous analyzer for unburned component - Google Patents

Continuous analyzer for unburned component

Info

Publication number
JPH01269057A
JPH01269057A JP63095664A JP9566488A JPH01269057A JP H01269057 A JPH01269057 A JP H01269057A JP 63095664 A JP63095664 A JP 63095664A JP 9566488 A JP9566488 A JP 9566488A JP H01269057 A JPH01269057 A JP H01269057A
Authority
JP
Japan
Prior art keywords
sample
unburned component
combustion
duct
unburned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63095664A
Other languages
Japanese (ja)
Inventor
Shohei Noda
野田 松平
Kimiyo Tokuda
君代 徳田
Yasunori Miyazaki
康則 宮崎
Nobuya Watanabe
渡辺 暢弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63095664A priority Critical patent/JPH01269057A/en
Publication of JPH01269057A publication Critical patent/JPH01269057A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To time-serially and easily measure the unburned component in a duct by capturing the combustion ashes in the duct, burning the unburned component of the combustion ashes in a heating furnace and detecting generated CO2. CONSTITUTION:The combustion ashes 21 in the exhaust combustion gas in the duct 20 are separated by a cyclone 24 and accumulate in the lower part of the cyclone 24 when said exhaust gas is sucked by a suction fan 29. Solenoid valves 26, 27 are then opened and closed by the signal from a control device 54 and the combustion ashes 21 are supplied onto a sample tray 31 and are weighed by a weighing device 33. The device 33 and the tray 31 are then tilted by a tilting mechanism 32 to drop the sample 34 into a hopper 35. The solenoid valve 37 is opened by the signal from the device 54 to supply the sample in the hopper 35 to an electric furnace 9. The sample is heated at the time of passage in a ceramics pipe 38 and the unburned component in the sample is converted to CO2 which is introduced through a branch pipe 45 into an IR gas detector 46, by which the CO2 is detected. The unburned component is thus time-serially and continuously measured by converting the unburned component to the CO2 and determining the quantity of the unburned component from the IR absorption quantity of the CO2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は石炭焚きボイラ等における燃焼灰中の未燃分量
の測定に適用される連続分析計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a continuous analyzer that is applied to measuring the amount of unburned matter in combustion ash in coal-fired boilers and the like.

〔従来の技術〕[Conventional technology]

石炭焚きボイラにおいては、その燃焼状態を把握するた
めに灰中の未燃分の測定が重要である。
In coal-fired boilers, it is important to measure the unburned content in the ash in order to understand the combustion state.

このため現在は1日本工業規格JIS M 8815に
準じ、電気炉を用いて815℃に加熱したときの減量ノ
ーセントより未燃分を求めている。
For this reason, currently, in accordance with Japanese Industrial Standards JIS M 8815, unburned content is determined from the weight loss no cent when heated to 815° C. using an electric furnace.

また、このような分析を行なうために、第2図に示すよ
うな熱天秤を用いることもある。すなわち、支持台1の
上に配置された天秤のビーム2の一方にはシャッター3
がもう一方には内部に熱電対4を有する試料容器支持管
5が取り付けられている。シャッター3の横には、天秤
ビーム2の偏位を検出するための光電センサー6が配置
されている。試料容器支持管5の上部には試料容器7が
載置され、その試料容器7の中に燃焼灰をサンプリング
した試料8が入れられている。試料容器支持管5の下部
には電磁石9が、更にその下には。
Further, in order to perform such analysis, a thermobalance as shown in FIG. 2 may be used. That is, a shutter 3 is installed on one side of the beam 2 of the balance placed on the support stand 1.
However, a sample container support tube 5 having a thermocouple 4 inside is attached to the other end. A photoelectric sensor 6 for detecting the deflection of the balance beam 2 is arranged next to the shutter 3. A sample container 7 is placed on the upper part of the sample container support tube 5, and a sample 8 obtained by sampling combustion ash is placed in the sample container 7. At the bottom of the sample container support tube 5 is an electromagnet 9, further below.

分銅加除機構10が取り付けられ、電磁石9の横には制
御コイル11が配置されている。光電センサー6と制御
コイル11は秤量回路12に接続され、試料容器支持管
5の内部を通した熱電対4はプログラム温度制御ユニッ
ト13と記録ユニット14に接続されている。支持台1
.天秤ビーム2゜シャッター3.光電センサー6、電磁
石91分銅加除機構10.制御コイル11および試料容
器支持管5下部は天秤部15として容器中に格納されて
いる。試料容器7および試料容器支持管5の上部はガス
の出入口16を有する保護管17を被せられている。更
にその外側にタングステンランプ18を有する赤外線加
熱炉19が配置され、タングステンランプ18はプログ
ラム温度制御ユニット13に接続されている。
A weight adjustment mechanism 10 is attached, and a control coil 11 is placed next to the electromagnet 9. The photoelectric sensor 6 and the control coil 11 are connected to a weighing circuit 12, and the thermocouple 4 passed through the sample container support tube 5 is connected to a program temperature control unit 13 and a recording unit 14. Support stand 1
.. Balance beam 2° shutter 3. Photoelectric sensor 6, electromagnet 91, weight adjustment mechanism 10. The control coil 11 and the lower part of the sample container support tube 5 are housed in the container as a balance section 15. The upper parts of the sample container 7 and the sample container support tube 5 are covered with a protective tube 17 having a gas inlet/outlet 16. Furthermore, an infrared heating furnace 19 with a tungsten lamp 18 is arranged outside, which is connected to the program temperature control unit 13 .

この熱天秤の測定原理は次の通りである。試料8はビー
ム2上でバランスされており、加熱により試料80重量
が変化するとビーム2が傾いて光電センサー6で光学的
に検出され、更にその偏位出力は増幅され、制御コイル
11の電流が変化しビーム2は再び平衡に保たれる。こ
のようKして。
The measurement principle of this thermobalance is as follows. The sample 8 is balanced on the beam 2, and when the weight of the sample 80 changes due to heating, the beam 2 tilts and is optically detected by the photoelectric sensor 6. Furthermore, the deflection output is amplified and the current of the control coil 11 is The beam 2 is then balanced again. K like this.

試料80重量変化は制御コイル11の電流の変化で示さ
れ、秤量回路12に接続された記録ユニット14により
試料温度と試料の重量変化曲線が記録される。
A change in the weight of the sample 80 is indicated by a change in the current of the control coil 11, and a recording unit 14 connected to the weighing circuit 12 records the sample temperature and sample weight change curve.

このため、熱天秤を用いて未燃分を測定するときは、試
料8として燃焼灰を試料容器7に入れ加熱炉19に通電
して試料8を815℃に加熱した際の減量パーセントよ
り未燃分を求めた。
For this reason, when measuring the unburned content using a thermobalance, it is necessary to measure the unburned content based on the weight loss percentage when the combustion ash as sample 8 is placed in the sample container 7 and the heating furnace 19 is energized to heat the sample 8 to 815°C. I asked for a minute.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上述べた従来のJIS法や熱天秤による方法は、いず
れもダクト中の燃焼灰をサンプリングしてきて未燃分量
を測定するものである。このため。
The conventional JIS method and the method using a thermobalance described above both sample the combustion ash in the duct and measure the amount of unburned matter. For this reason.

未燃分量を求めるのに長時間を要し、ボイラの燃焼状態
に対応させて未燃分量をモニタリングしていくような作
業には不適格であった。
It took a long time to determine the amount of unburned matter, making it unsuitable for monitoring the amount of unburned matter in response to the combustion status of the boiler.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記課題を解決するため次の手段を講する。 The present invention takes the following measures to solve the above problems.

すなわち、ダクト内の燃焼灰を捕集する捕集手段と、秤
量装置と、捕集した該燃焼灰を該秤量装置上に供給する
手段と、加熱炉と、秤量後の該燃焼灰を該加熱炉内へ供
給する手段と、該加熱炉内で該燃焼灰の未燃分の燃焼に
よって発生した二酸化炭素(CO□)を検出する赤外線
ガス検出器を有する検出手段とを設ける。
That is, a collection means for collecting combustion ash in the duct, a weighing device, a means for supplying the collected combustion ash onto the weighing device, a heating furnace, and a heating furnace for heating the combustion ash after weighing. A means for supplying into the furnace, and a detection means having an infrared gas detector for detecting carbon dioxide (CO□) generated by combustion of unburned components of the combustion ash in the heating furnace are provided.

〔作用〕[Effect]

本発明は上記手段により、ダクト内の燃焼灰が捕集され
て秤量後、所定の温度に加熱されて、完全に燃焼し、燃
焼灰中の未燃分が二酸化炭素(COz)および−酸化炭
素(GO)に変換されて、それらのガスの赤外線吸収量
より未燃分量が求められる。
According to the present invention, the combustion ash in the duct is collected and weighed, and then heated to a predetermined temperature and completely combusted, and the unburned content in the combustion ash is converted into carbon dioxide (COz) and -carbon oxide. (GO), and the amount of unburned gas is determined from the amount of infrared absorption of those gases.

このようにしてダクト中の燃焼灰の未燃分が時系列的に
連続して容易に計測できる装置かえられる。
In this way, a device that can easily measure the unburned content of combustion ash in the duct continuously in time series can be replaced.

〔実施例〕〔Example〕

本発明による灰中未燃分連続分析計の一実施例を第1図
に示す。ここで20はダクトであり、該ダクト20の中
を燃焼灰21が矢印aの方向に搬送されているものとす
る。試料採取管23の一端23aは燃焼灰21の流れに
対向して配設され。
An embodiment of a continuous analyzer for unburned matter in ash according to the present invention is shown in FIG. Here, 20 is a duct, and combustion ash 21 is conveyed in the duct 20 in the direction of arrow a. One end 23a of the sample sampling tube 23 is arranged to face the flow of the combustion ash 21.

他端231)はサイクロン24に接続されている。The other end 231) is connected to the cyclone 24.

サイクロン24の下部枝管25には電磁弁26および電
磁弁27が順次配設されており、サイクロン24の上部
には矢印すの方向にガスを吸引する吸引ファン29を有
するガス返送管30が接続されている。通常、ガス返送
管30の他端30aはダクト20に接続されている。
A solenoid valve 26 and a solenoid valve 27 are sequentially arranged in a lower branch pipe 25 of the cyclone 24, and a gas return pipe 30 having a suction fan 29 that sucks gas in the direction of the arrow is connected to the upper part of the cyclone 24. has been done. Usually, the other end 30a of the gas return pipe 30 is connected to the duct 20.

サイクロン24の下部枝管25の下方には、上面に試料
皿31が固設され下部に傾fP+m構32を有する秤量
装置33が設置されており、更に該秤量装置t33の側
部下方、すなわち傾斜機構33を傾けた時、試料皿31
上の試料34が格下してくるような位置にホッパー35
が配設されている。
A weighing device 33 is installed below the lower branch pipe 25 of the cyclone 24, and has a sample dish 31 fixed on its upper surface and an inclined fP+m structure 32 at its lower part. When the mechanism 33 is tilted, the sample plate 31
Place the hopper 35 in a position where the upper sample 34 is lowered.
is installed.

該ホッパー35の下部排出管36の途中には電磁弁37
が取り付けられ、下部排出管36の下端36aは磁製管
38が接続されている。該磁製管38は管の中心線が鉛
直方向になるように設置されており、更に該磁製管38
を囲繞するように管状電気炉39が配設されている。下
部排出管36に取り付けられた電磁弁37と下部排出管
36の下端36aの間には電磁弁40を有する枝管41
が取り付けられている。磁製管38の下端38aは電磁
弁42を有する試料排出管43が接続されており、更に
該試料排出管43の電磁弁42上部には電磁弁44を有
する枝管45が配設されている。該枝管45は赤外線吸
収セル(図示せず)を有する赤外線ガス検出器46に接
続されている。
A solenoid valve 37 is installed in the middle of the lower discharge pipe 36 of the hopper 35.
is attached, and a porcelain pipe 38 is connected to the lower end 36a of the lower discharge pipe 36. The porcelain tube 38 is installed so that the center line of the tube is in the vertical direction, and the porcelain tube 38
A tubular electric furnace 39 is arranged so as to surround the. A branch pipe 41 having a solenoid valve 40 between the solenoid valve 37 attached to the lower discharge pipe 36 and the lower end 36a of the lower discharge pipe 36
is installed. A sample discharge pipe 43 having a solenoid valve 42 is connected to the lower end 38a of the porcelain tube 38, and a branch pipe 45 having a solenoid valve 44 is disposed above the solenoid valve 42 of the sample discharge pipe 43. . The branch pipe 45 is connected to an infrared gas detector 46 having an infrared absorption cell (not shown).

上記磁製管38の内側には熱電対47が挿入され。A thermocouple 47 is inserted inside the porcelain tube 38.

該熱電対47は温度制御装[48に接続され、更に該温
度制御装置48は管状電気炉内に配設された発熱体49
に接続されている。秤量装置33および赤外線ガス検出
器46はそれぞれ記憶装置50および記憶装置51に接
続され、各記憶装置50および51は更に演算装+15
2を介して出力表示装置53に接続されている。制御装
置]1t54は電磁弁26.27,37.40.42,
44.傾斜機構32および演算装置52に接続されこれ
をコントロールする。
The thermocouple 47 is connected to a temperature control device [48], and the temperature control device 48 is connected to a heating element 49 disposed in the tubular electric furnace.
It is connected to the. Weighing device 33 and infrared gas detector 46 are connected to storage device 50 and storage device 51, respectively, and each storage device 50 and 51 is further connected to arithmetic unit +15.
2 to an output display device 53. Control device] 1t54 is a solenoid valve 26.27, 37.40.42,
44. It is connected to the tilting mechanism 32 and the arithmetic unit 52 to control them.

このような灰中未燃分連続分析計による未燃分の定量は
1次のようにして行なう。まず、吸引7アン29を作動
させてダクト20中の燃焼排ガスを吸引する。この際、
燃焼排ガス中の燃焼灰21はサイクロン24で分離され
てサイクロン24下部に貯まる。次に制御装置54から
信号を送って電磁弁26および27の開閉操作を行なう
ことにより試料皿31上に燃焼灰を供給する。これによ
り秤量装置33上に加えられた荷重は記憶装置50によ
り記憶される。制御装置54からの信号により、電磁弁
37.42を閉として電磁弁40゜44を開とした後、
枝管41から、ボンベ等によ制御装ff54からの信号
により、傾斜機構32を駆動して秤量装置1t33およ
びその上に固設された試料皿31を傾け、試料34をホ
ッパー35内に格下させる。これらの構成における秤量
装置33としては電子式上皿天秤やロードセル等が用い
られ、傾斜機構としては例えば一部に支点を有し。
Quantification of unburned content using such a continuous analyzer for unburned content in ash is carried out in the following manner. First, the suction unit 29 is operated to suck the combustion exhaust gas in the duct 20. On this occasion,
Combustion ash 21 in the combustion exhaust gas is separated by the cyclone 24 and stored in the lower part of the cyclone 24. Next, a signal is sent from the control device 54 to open and close the electromagnetic valves 26 and 27, thereby supplying combustion ash onto the sample tray 31. The load thus applied on the weighing device 33 is stored in the storage device 50. After closing the solenoid valves 37 and 42 and opening the solenoid valves 40 and 44 by a signal from the control device 54,
From the branch pipe 41, a cylinder or the like is driven by a signal from the control device ff54 to drive the tilting mechanism 32 to tilt the weighing device 1t33 and the sample plate 31 fixed thereon, and lower the sample 34 into the hopper 35. . As the weighing device 33 in these configurations, an electronic top balance, a load cell, or the like is used, and the tilting mechanism has, for example, a fulcrum in a part thereof.

他の一部に橢円状のカムを配設して該カムを回転させる
等して達成させられる。
This can be achieved by, for example, disposing a circular cam in the other part and rotating the cam.

次に制御装(t54からの信号により電磁弁37を開と
し、ホッパー35内の試料を管状電気炉38内に供給す
る。この際、管状電気炉39の炉内温度は温度制御装置
48により所定の温度(例えば815℃)K制御してお
くものとする。試料が磁製管38内を通過する際、試料
中の未燃分は酸化されて二酸化炭素(CO2)となり、
枝管45を通って赤外線ガス検出器46に導かれる。こ
の際。
Next, the solenoid valve 37 is opened by a signal from the control device (t54), and the sample in the hopper 35 is fed into the tubular electric furnace 38. temperature (for example, 815°C) shall be controlled by K. When the sample passes through the porcelain tube 38, unburned matter in the sample is oxidized and becomes carbon dioxide (CO2).
The gas is guided through a branch pipe 45 to an infrared gas detector 46 . On this occasion.

磁製管38内のガス雰囲気によっては一酸化炭素(CO
)の発生も考えられるが1発生量は非常に微量であり1
通常は二酸化炭素(COz)の検出のみで充分な精度が
得られる。より高精度なデータ(未燃分量)を得るため
Kは繭記赤外線ガス検出器で一酸化炭素(CO)量も求
めるのが望ましい。秤量装置133で得られた試料重量
と、赤外線ガス検出器46で得られた二酸化炭素(CO
2)濃度はそれぞれ記憶装置50および51に記憶され
た後、演算装置tt52で未燃分量(%)が計算された
後、出力表示装[53により表示される。ここで赤外線
ガス検出器46で得られるのは通常ガス(サンプルガス
士キャリアガス)中の体積パーセントであるから演算装
置j152では積分することにより、試料から発生した
二酸化炭素(CO□)量を求めて計算する必要がある。
Depending on the gas atmosphere inside the porcelain tube 38, carbon monoxide (CO
) may occur, but the amount of 1 generated is extremely small, and 1
Usually, sufficient accuracy can be obtained by only detecting carbon dioxide (COz). In order to obtain more accurate data (unburnt amount), it is desirable that K also determines the amount of carbon monoxide (CO) using a Mayuki infrared gas detector. The sample weight obtained by the weighing device 133 and the carbon dioxide (CO
2) After the concentrations are stored in the storage devices 50 and 51, the amount of unburned matter (%) is calculated by the calculation device tt52, and then displayed by the output display device [53]. Here, what is obtained by the infrared gas detector 46 is the volume percent of the normal gas (sample gas carrier gas), so the arithmetic unit j152 calculates the amount of carbon dioxide (CO□) generated from the sample by integrating it. It is necessary to calculate

更に、電磁弁26.27.37゜40.42,44.傾
斜機構32および演算装置52は上述した一連の工程に
基づいて制御装置54によりコントロールされる。以上
の操作を繰り返すことKより1時系列的に灰中の未燃分
を計測することができる。
Furthermore, solenoid valves 26.27.37°40.42,44. The tilt mechanism 32 and the calculation device 52 are controlled by the control device 54 based on the series of steps described above. By repeating the above operation, the unburned content in the ash can be measured in one time series.

このようにしてダクト中の燃焼灰の未燃分を時系列的に
連続して容易に計測する装置かえられる。
In this way, a device that continuously measures the unburned content of combustion ash in the duct in a time-series manner can be easily replaced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明の灰中未・発停連続分析計
は、燃焼灰を捕集する手段と、未燃分を燃焼させる手段
と、燃焼によって発生した二酸化炭素(CO2)を定量
する手段を効果的に組み合せたものであり、ダクト中の
未燃分を時系列的に連続して計測することができる。ま
た秤量装置としては初期試料量を秤るために必要な一台
のみにとどめ。
As explained above, 1. The in-ash ash continuous on/off analyzer of the present invention has a means for collecting combustion ash, a means for burning unburned matter, and a means for quantifying carbon dioxide (CO2) generated by combustion. It is an effective combination of means, and it is possible to continuously measure the unburned content in the duct in chronological order. Also, only one weighing device is required to weigh the initial sample amount.

燃焼により発生した二酸化炭素cco2)**#外線ガ
ス検出器により検出する方式としたため、振動の激しい
苛酷な場所にも設置が容易である。更には上述のような
赤外線吸収方式としたため、加熱前後のサンプル重量か
ら、未燃分量を求めるような重量検知方式に比べ、試料
中に存在する水分(結晶水など)やSO2ガス(硫酸塩
等の分解によって生じるもの)等の影響を受けにくい。
The carbon dioxide generated by combustion is detected using an external gas detector, making it easy to install even in harsh locations with strong vibrations. Furthermore, since the infrared absorption method described above is used, compared to a weight detection method that calculates the amount of unburned matter from the sample weight before and after heating, it is possible to detect moisture (crystalline water, etc.) and SO2 gas (sulfate, etc.) present in the sample. (produced by the decomposition of) etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による灰中未燃分連続分析計の一実施例
を示す構成図、第2図は従来から未燃分の測定に利用さ
れてきた熱天秤の構成図である。 a・・・燃焼灰の流れ方向を示す矢印。 b・・・吸引ガスの流れ方向を示す矢印。 20・・・ダクト、     21・・・燃焼灰。 23・・・試料採取管、   24・・・サイクロン。 25・・・枝管。 26.27,37,40,42.44・・・電磁弁。 29・・・吸引ファン、   30・・・ガス返送管。 31・・・試料皿、     32・・・傾斜機構。 33・・・秤量装置、34・・・試料。 35・・・ホッパー、36・・・排出管。 38・・・磁製管、39・・・管状電気炉。 41・・・枝管、      43・・・試料排出管。 45・・・枝管、      46・・・赤外線ガス検
出器。 47・・・熱電対、48・・・温度制御装置。 49・・・発熱体、      50.51・・・記憶
装置。 52・・・演算装置、53・・・出力表示装置。 54・・・制御装置。 代理人 弁理士 坂 間   暁  外2名第2囲
FIG. 1 is a block diagram showing an embodiment of a continuous unburned content analyzer in ash according to the present invention, and FIG. 2 is a block diagram of a thermobalance conventionally used for measuring unburned content. a...Arrow indicating the flow direction of combustion ash. b...Arrow indicating the flow direction of suction gas. 20...Duct, 21...Combustion ash. 23... Sample collection tube, 24... Cyclone. 25... Branch pipe. 26.27, 37, 40, 42.44... Solenoid valve. 29... Suction fan, 30... Gas return pipe. 31... Sample dish, 32... Tilt mechanism. 33... Weighing device, 34... Sample. 35...Hopper, 36...Discharge pipe. 38... Porcelain tube, 39... Tubular electric furnace. 41... Branch pipe, 43... Sample discharge pipe. 45... Branch pipe, 46... Infrared gas detector. 47...Thermocouple, 48...Temperature control device. 49...Heating element, 50.51...Storage device. 52... Arithmetic device, 53... Output display device. 54...Control device. Agent: Patent attorney Akira Sakama (2nd group)

Claims (1)

【特許請求の範囲】[Claims]  ダクト内の燃焼灰を捕集する捕集手段と、秤量装置と
、捕集した該燃焼灰を該秤量装置上に供給する手段と、
加熱炉と、秤量後の該燃焼灰を該加熱炉内へ供給する手
段と、該加熱炉内で該燃焼灰の未燃分の燃焼によって発
生した二酸化炭素(CO_2)を検出する赤外線ガス検
出器を有する検出手段とを備えてなることを特徴とする
灰中未燃分連続分析計。
A collection means for collecting combustion ash in the duct, a weighing device, and a means for supplying the collected combustion ash onto the weighing device;
A heating furnace, a means for supplying the weighed combustion ash into the heating furnace, and an infrared gas detector for detecting carbon dioxide (CO_2) generated by combustion of unburned portions of the combustion ash in the heating furnace. 1. A continuous analyzer for unburned matter in ash, comprising: a detection means having the following.
JP63095664A 1988-04-20 1988-04-20 Continuous analyzer for unburned component Pending JPH01269057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63095664A JPH01269057A (en) 1988-04-20 1988-04-20 Continuous analyzer for unburned component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63095664A JPH01269057A (en) 1988-04-20 1988-04-20 Continuous analyzer for unburned component

Publications (1)

Publication Number Publication Date
JPH01269057A true JPH01269057A (en) 1989-10-26

Family

ID=14143762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63095664A Pending JPH01269057A (en) 1988-04-20 1988-04-20 Continuous analyzer for unburned component

Country Status (1)

Country Link
JP (1) JPH01269057A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030053883A (en) * 2001-12-24 2003-07-02 한국남동발전 주식회사 Methode and Apparatus for Gathering Fly Ash by Using a Cyclone for Unburned Carbon Analysis in a Power Plant
JP2010107379A (en) * 2008-10-30 2010-05-13 Horiba Ltd Introduction system used for sample analyzing apparatus
CN106596835A (en) * 2016-10-26 2017-04-26 中国矿业大学 Combustible tilting burning characteristic experiment device capable of controlling temperatures, humidity and oxygen concentration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030053883A (en) * 2001-12-24 2003-07-02 한국남동발전 주식회사 Methode and Apparatus for Gathering Fly Ash by Using a Cyclone for Unburned Carbon Analysis in a Power Plant
JP2010107379A (en) * 2008-10-30 2010-05-13 Horiba Ltd Introduction system used for sample analyzing apparatus
CN106596835A (en) * 2016-10-26 2017-04-26 中国矿业大学 Combustible tilting burning characteristic experiment device capable of controlling temperatures, humidity and oxygen concentration

Similar Documents

Publication Publication Date Title
Janssens et al. Oxygen consumption calorimetry
US6439027B1 (en) Particulate mass measurement apparatus with real-time moisture monitor
JPH01269057A (en) Continuous analyzer for unburned component
CN205538534U (en) Unburned carbon in flue dust on -line measuring system based on gaseous firing method of CO2
Dunham et al. Mercury capture by an activated carbon in a fixed‐bed bench‐scale system
CN108613896B (en) Coal-fired electric generation furnace flying marking quantity measuring method
US5363199A (en) Smoke opacity detector
CN108593853A (en) Coal-fired electric generation furnace flying marking amount detecting device
JP4365036B2 (en) Method and apparatus for determining soot load in combustion chamber
CN208270510U (en) A kind of unburned carbon in flue dust on-line measurement system based on infrared absorption method
CN2738239Y (en) Apparatus for on-line metering materiality of matter utilizing heating weightlessness
JPH02501088A (en) Method and device for determining the soot content of smoke gases
JPH04158246A (en) Continuous analyzing apparatus of unburnt component in ash
US4835108A (en) Method for measuring free oxygen in a combustible atmosphere
JPH05272732A (en) Method of controlling combustion in waste incinerator
SU821845A1 (en) Method of automatic monitoring of combustible element content in air-borne ash of the boiler unir
JPS61274259A (en) Analyzer for trace of carbon in sample
JPH04158242A (en) Continuous analyzing apparatus of unburnt component in ash
CN109813854A (en) A kind of exhaust gas determination of moisture device
CN213364686U (en) Detection system for NOx release characteristic and conversion rate of solid fuel
CN214952824U (en) On-line burning detection system for fly ash carbon content of coal-fired unit
CS259105B1 (en) Device for oxygen content measuring in combustion products
CN1641337A (en) Method and device for on-line determining material physical property using heating agravity
JPH06289003A (en) Method and device for analyzing unburned content in ash
Anghelescu et al. Flue gases content measurement after electrostatic precipitators