JPH01268943A - Variable heat-permeable wall - Google Patents

Variable heat-permeable wall

Info

Publication number
JPH01268943A
JPH01268943A JP63094488A JP9448888A JPH01268943A JP H01268943 A JPH01268943 A JP H01268943A JP 63094488 A JP63094488 A JP 63094488A JP 9448888 A JP9448888 A JP 9448888A JP H01268943 A JPH01268943 A JP H01268943A
Authority
JP
Japan
Prior art keywords
unit
space
coil
wall
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63094488A
Other languages
Japanese (ja)
Other versions
JPH0696882B2 (en
Inventor
Takahiro Kondo
高弘 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63094488A priority Critical patent/JPH0696882B2/en
Publication of JPH01268943A publication Critical patent/JPH01268943A/en
Publication of JPH0696882B2 publication Critical patent/JPH0696882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Special Wing (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Building Environments (AREA)

Abstract

PURPOSE:To effectively utilize air-conditional energy by a method in which a window unit consisting of a double glass with a space is set adjacently to a wall unit in which a coil is buried and fluids of different heat conductivities and different light shielding properties are supplied to the space and the coil according to the indoor and outdoor environments. CONSTITUTION:A wall unit 2 having a coil 2a buried as a fluid path is set adjacently to a window unit 1 formed of water-tight double glasses 1b and 1c with a space 1a to make up an unit 3. A fluid source 4 packed with fluids having different heat conductivities and different light shielding properties is connected to the space 1a of the unit 1 and the coil 2a of the unit 2. The atmospheric temperature of indoor and outdoor of a building is detected by sensors 15a and 15b, insolation is detected by sensors 15c and 15d, and the fluids are supplied from the source 4 to the space 1a and the coil 2a through a controller 14 on the basis of the detected values. Since the heat percolation or permeation of heat inside and outside room can thus be easily prevented or accelerated, the air conditional energy can be effectively utilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は可変熱貫流壁に関し、特に建物外壁部の熱貫
流率を内外の温度と日射量とに基づき制御して冷暖房の
省エネルギを図る。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a variable heat transmission wall, and in particular, to control the heat transmission coefficient of the outer wall of a building based on the internal and external temperatures and the amount of solar radiation to save energy in heating and cooling. .

〔従来の技術〕[Conventional technology]

従来の建物は、その構造や大きさ等の条件から冷暖房の
需要エネルギを算出して冷暖房設備の規模を定めており
、また窓や壁の熱貫流率は固定的であってこれを積極的
に変化させる構造にはなっていない。
In conventional buildings, the scale of air-conditioning and heating equipment is determined by calculating the energy demand for air-conditioning and heating based on conditions such as the structure and size of the building.Also, the heat transmission coefficient of windows and walls is fixed, so it is necessary to actively improve this. It is not structured to change.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来の技術では窓や壁の熱貫流率が固定的であるた
めに、外気と室内の間での熱貫流を防止したい場合や、
積極的に熱貫流を促進したい場合に、窓や壁自体ではこ
れらの要請に応えることができず、従って窓にカーテン
やブラインド等の別途手段を講じなければ日射を遮蔽す
ることができないという問題点があった。なお、前記カ
ーテン等によっては日射を遮蔽するだけであって、窓や
壁における熱貫流率を積極的に変化させることはできな
いという問題点がある。
In the conventional technology, the heat transmission coefficient of windows and walls is fixed, so there are cases where it is desired to prevent heat transmission between the outside air and the room,
The problem is that when it is desired to actively promote heat flow, windows and walls themselves cannot meet these demands, and therefore solar radiation cannot be blocked unless separate measures are taken such as curtains or blinds on the windows. was there. Note that there is a problem in that the curtains and the like only block solar radiation and cannot actively change the coefficient of heat transmission in windows and walls.

この発明は、このような従来技術の問題点に着目してな
されたものであって、窓や壁自体の熱貫流率を建物内外
の気温や日射量に基づいて可変とすることを目的として
いる。
This invention was made by focusing on the problems of the conventional technology, and aims to make the heat transmission coefficient of windows and walls themselves variable based on the temperature inside and outside the building and the amount of solar radiation. .

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、空間を挟んだ二重ガラスで窓を水密に構成
した窓ユニットに、内部が流体の流路をなすコイルが壁
体内に埋設された壁ユニットを隣接させて前記両ユニッ
トにより単位ユニットを構成し、この単位ユニットによ
り建物の外壁部を構成するとともに、前記窓ユニットの
空間と壁ユニットのコイルに、熱伝導率及び遮光性の相
違する複数種類の流体源を連結し、建物内外の気温を検
出する気温検出器と、日射量を検出する日射量検出器と
からの検出値に基づいて前記空間とコイルに供給する流
体を制御する制御装置を、前記流体源の流体供給器に連
結して可変熱貫流壁を構成している。前記流体としては
液体及び気体のいずれも適用することができる。
In this invention, a window unit in which a window is made watertight with double glass with a space in between is adjacent to a wall unit in which a coil whose inside forms a fluid flow path is embedded in the wall body, and the two units are combined into a unit unit. This unit constitutes the outer wall of the building, and multiple types of fluid sources with different thermal conductivity and light shielding properties are connected to the space of the window unit and the coil of the wall unit, and the A control device that controls fluid supplied to the space and the coil based on detected values from an air temperature detector that detects the air temperature and a solar radiation amount detector that detects the amount of solar radiation is connected to the fluid supply device of the fluid source. This constitutes a variable heat flow wall. As the fluid, either liquid or gas can be used.

また、前記窓ユニットの二重ガラス内空間と、前記壁ユ
ニットのコイルとを開閉弁を介して水密に連通してもよ
い。
Further, the space within the double-glazed glass of the window unit and the coil of the wall unit may be watertightly communicated via an on-off valve.

〔作用〕[Effect]

冬季の暖房時には、単位ユニットの熱貫流率を小さくし
て室内の暖房効率を上げることにより空調機の負荷を軽
減する。そのために、内外の気温とその差との検出値に
基づいて制御装置が窓ユニットの空間と壁ユニットのコ
イルとに空気を送り込むと、空気は熱伝導率が低いため
に断熱性に優れるから、室内の暖気は外気に漏れること
が抑制される。このとき、暖房用の温風を窓ユニットの
空間に送り込むことによって、ガラスへの結露や霜の付
着を防止することもできる。
During heating in winter, the load on the air conditioner is reduced by reducing the heat transfer coefficient of each unit to increase indoor heating efficiency. For this purpose, when the control device sends air into the space of the window unit and the coil of the wall unit based on the detected value of the temperature inside and outside and the difference between them, air has low thermal conductivity and has excellent insulation properties. Warm air inside the room is prevented from leaking into the outside air. At this time, by sending warm air for heating into the space of the window unit, it is also possible to prevent dew condensation and frost from adhering to the glass.

夏季の冷房時には、内外の気温とその差との検出値に基
づいて制御装置が壁ユニットのコイルに空気を送り込ん
で屋外の熱を遮断し、また日射量が大であるときには窓
ユニットの空間には遮光性の高い液体、例えば着色され
た液体を送り込んで日射を抑制する。このとき、前記液
体の透過光による日射量と、液体による熱貫流率の上昇
との間で熱量収支を制御装置に計算させて、そのときの
最適流体を窓ユニットに送り込むこともできる。
During cooling in the summer, the control device sends air to the wall unit coil to block outdoor heat based on the detected value between the inside and outside temperatures and the difference between them, and when the amount of solar radiation is high, it sends air to the window unit space. Injects a highly light-blocking liquid, such as a colored liquid, to suppress solar radiation. At this time, it is also possible to have the control device calculate the heat balance between the amount of solar radiation due to the light transmitted through the liquid and the increase in heat transmission coefficient due to the liquid, and send the optimum fluid at that time to the window unit.

この場合には窓ユニットにも気体を送り込むこともある
In this case, gas may also be pumped into the window unit.

これら以外の場合にあっても、例えば夏季における夜間
の事務室のような非冷房時に、使用していない室内に篭
もる熱気を外気に放出する場合には、窓ユニットの空間
と壁ユニットのコイルに熱伝導率の高い液体を送り込む
ことによって、室内から外気に向けての熱貫流率を上昇
させることができる。
Even in cases other than these, when releasing hot air trapped in an unused room to the outside during non-cooling periods, such as in an office at night in the summer, it is necessary to By feeding a liquid with high thermal conductivity into the coil, it is possible to increase the coefficient of heat transmission from the room to the outside air.

このように、内外の温度、その差、日射量に応じ、季節
、天候、昼夜等の変化に合わせて熱貫流率を変化させる
ことにより空調機の負荷を低減させる。
In this way, the load on the air conditioner is reduced by changing the heat transfer coefficient in accordance with changes in season, weather, day and night, etc., depending on the inside and outside temperatures, their differences, and the amount of solar radiation.

かかる窓ユニットの空間及び壁ユニットのコイルへ送り
込む流体の選択は制御装置が行い、また選択された流体
の送り込みは制御装置が流体源の流体供給器、1例えば
制御弁や流体ポンプの動作を制御して行う。
The control device selects the fluid to be sent to the space of the window unit and the coil of the wall unit, and the control device controls the operation of the fluid supply device of the fluid source, such as a control valve or a fluid pump. and do it.

前記窓ユニットの二重ガラス内空間と、前記壁ユニット
のコイルとを開閉弁を介して水密に連通させれば、流体
源との間の配管を前記空間とコイルとのいずれかに連結
するだけで、空間とコイルとの一方を介してイΦ方に流
体を給排することができる。
If the space inside the double-glazed glass of the window unit and the coil of the wall unit are watertightly communicated via the on-off valve, simply connect the piping to the fluid source to either the space or the coil. Then, fluid can be supplied and discharged in the Φ direction via either the space or the coil.

〔実施例] 第1図は、この発明の第1実施例を示す説明図である。〔Example] FIG. 1 is an explanatory diagram showing a first embodiment of the present invention.

ここで、1が窓ユニットであって、空間1aを挟んだ二
重ガラスIb、ICで窓を水密に構成してなり、また2
が壁ユニットであって、内部が流体の流路をなすコイル
2aを壁体2b内に埋設してなる。これら両ユニット1
.2を隣接させて単位ユニット3を構成し、この単位ユ
ニット3により建物の外壁部を構成している。
Here, 1 is a window unit, and the window is configured watertight with double glass Ib and IC sandwiching a space 1a, and 2
is a wall unit in which a coil 2a whose interior forms a fluid flow path is embedded in a wall 2b. Both units 1
.. 2 are placed adjacent to each other to form a unit 3, and this unit 3 forms the outer wall of the building.

4は流体源であり、低熱伝導率で低遮光率の液体5が内
在する第1流体源4aと、高熱伝導率で低遮光率の液体
6が内在する第2流体源4bと、低熱伝導率で高遮光率
の液体7が内在する第3流体源4Cと、高熱伝導率で高
遮光率の液体8が内在する第4流体源4dと、大気を吸
引する第5流体源4eとからなる。かかる流体源4は供
給管路9を介して窓ユニットlの空間1aに連結され、
またこの空間1aは排出管路11を介して前記第1〜第
4流体源4a〜4dと大気開放口12とに連結される。
Reference numeral 4 denotes fluid sources, including a first fluid source 4a containing a liquid 5 with low thermal conductivity and low light shielding rate, a second fluid source 4b containing liquid 6 with high thermal conductivity and low light shielding rate, and a second fluid source 4b with low thermal conductivity and low light shielding rate. It consists of a third fluid source 4C containing a liquid 7 with a high light shielding rate, a fourth fluid source 4d containing a liquid 8 with high thermal conductivity and a high light shielding rate, and a fifth fluid source 4e which sucks atmospheric air. Such a fluid source 4 is connected to the space 1a of the window unit l via a supply line 9,
Further, this space 1a is connected to the first to fourth fluid sources 4a to 4d and an atmosphere opening 12 via a discharge pipe 11.

排出管路11と第1流体源4aとの間には直列にポンプ
P1と電磁開閉弁■1とが介在し、排出管路11と第2
流体源4bとの間には同様にポンプP2と電磁開閉弁■
2とが介在し、排出管路11と第3流体源4Cとの間に
は同様にポンプP3と電磁開閉弁V3とが介在し、排出
管路11と第4流体源4dとの間には同様にポンプP4
と電磁開閉弁■4とが介在する。また排出管路11と大
気開放口12との間にはポンプP5と電磁開閉弁■5と
が直列に介在する。
A pump P1 and an electromagnetic on-off valve 1 are interposed in series between the discharge pipe 11 and the first fluid source 4a, and
Similarly, a pump P2 and an electromagnetic on-off valve ■ are connected between the fluid source 4b.
2 are interposed between the discharge pipe line 11 and the third fluid source 4C, a pump P3 and an electromagnetic on-off valve V3 are similarly interposed between the discharge pipe line 11 and the fourth fluid source 4d, and a Similarly pump P4
and an electromagnetic on-off valve ■4 are interposed. Further, a pump P5 and an electromagnetic on-off valve 5 are interposed in series between the discharge pipe 11 and the atmosphere opening port 12.

また供給管路9と第5流体源4eとの間にはポンプP6
と電磁開閉弁■6とが直列に介在し、さらに供給管路9
と各第1〜4流体源4a〜4dとの間には電磁開閉弁v
7〜VIOが個別に介在する。
Further, a pump P6 is provided between the supply pipe line 9 and the fifth fluid source 4e.
and an electromagnetic on-off valve ■6 are interposed in series, and a supply pipe line 9
and each of the first to fourth fluid sources 4a to 4d is an electromagnetic on-off valve v.
7 to VIO intervene individually.

窓ユニット1の空間1aと壁ユニット2のコイル2aと
は、電磁開閉弁Vll、V12を介して水密に連結され
、供給管路9及び排出管路11とコイル2aとは前記空
間1a及び電磁開閉弁v11、V12を介して連通して
いる。さらにこの空間1aとドレン口13との間には電
磁開閉弁■13が介在する。
The space 1a of the window unit 1 and the coil 2a of the wall unit 2 are watertightly connected via electromagnetic switching valves Vll and V12, and the supply pipe 9, the discharge pipe 11, and the coil 2a are connected to the space 1a and the electromagnetic switching valve. They communicate via valves v11 and V12. Furthermore, an electromagnetic on-off valve 13 is interposed between the space 1a and the drain port 13.

電磁開閉弁v6〜VIOとポンプP6とにより、窓ユニ
ット1及び(又は)壁ユニット2への流体供給器を構成
している。
The electromagnetic on-off valves v6 to VIO and the pump P6 constitute a fluid supplier to the window unit 1 and/or wall unit 2.

また、前記各電磁開閉弁Vl−V13と各ポンプP1〜
P6とは制御装置14により開閉又は運転が制御される
。制御装置14には、室内気温検出器15aと、室外気
温検出器15bと、室内照度検出器15cと、室外照度
検出器15dとの各検出値が入力され、且つ空調機16
の設定温度等の値が入力され、制御装置14はこれらの
入力値に基づいて後述する作用を生じるように前記各電
磁開閉弁及びポンプを制御すべく設定されるものである
。かかる制御信号を出力するための回路は、第1図にお
いては、制御装置14と、電磁開閉弁V6及びポンプP
6との間にだけ鎖線で示して他の電磁開閉弁及びポンプ
については図示を省略した。なお、前記室内照度検出器
15cと室外照度検出器15dとにより日射量検出器を
構成している。
In addition, each of the electromagnetic on-off valves Vl-V13 and each of the pumps P1 to
The opening/closing or operation of P6 is controlled by the control device 14. The control device 14 receives the detected values of the indoor temperature detector 15a, the outdoor temperature detector 15b, the indoor illuminance detector 15c, and the outdoor illuminance detector 15d, and also inputs the detected values of the air conditioner 16.
Values such as the set temperature are input, and the control device 14 is set to control each of the electromagnetic on-off valves and pumps so as to produce the effects described later based on these input values. In FIG. 1, a circuit for outputting such a control signal includes a control device 14, an electromagnetic on-off valve V6, and a pump P.
6 is shown by a chain line, and other electromagnetic on-off valves and pumps are not shown. The indoor illuminance detector 15c and the outdoor illuminance detector 15d constitute a solar radiation detector.

次に、この実施例の動作の例について説明する。Next, an example of the operation of this embodiment will be explained.

初めに、夏季の冷房時であって窓ユニットlから強い直
射日光が室内に入り込む場合である。この場合には、室
内冷房で空調機の負荷を軽減させるためには、外部から
の熱量の入射を抑制することが必要であり、建物外壁の
機能としては断熱効果を高くするために、壁ユニット2
のコイル2aに空気を充填する。そのためには、電磁開
閉弁V6、Vll、V12を開き、ポンプP6を起動す
ることにより、第5流体源4eがら空気を取り入れ、供
給管路9と窓ユニットlの空間1aとを介してコイル2
aに空気を充填する。これにより壁ユニット2の熱貫流
率が低下して空調機の負荷が軽減される。この空気充填
が修了したときには、前記電磁開閉弁V6.Vll、V
12を閉じ、ポンプP6を停止させる。
First, there is a case in which strong direct sunlight enters the room from the window unit 1 during cooling in the summer. In this case, in order to reduce the load on the air conditioner by cooling the room, it is necessary to suppress the amount of heat entering from the outside. 2
The coil 2a is filled with air. To do this, by opening the electromagnetic on-off valves V6, Vll, and V12 and starting the pump P6, air is taken in from the fifth fluid source 4e and passed through the supply pipe 9 and the space 1a of the window unit l to the coil 2.
Fill a with air. This reduces the heat transfer coefficient of the wall unit 2 and reduces the load on the air conditioner. When this air filling is completed, the electromagnetic on-off valve V6. Vll, V
12 and stop the pump P6.

また、窓ユニット1のガラスlb、lcからの入射光の
日射量を検出器15c、15dからの入力値により制御
装置14で計測したうえ、入射光により増加する室内熱
量と、遮光のために空間1aに液体を充填することによ
り生じる屋外から室内への熱貫流率の上昇との収支を制
御装置14により計算して、空11機の負荷を最適に軽
減する流体を第1流体源4a〜第5流体源4eの中から
選択することにより、その選択された流体を窓ユニット
lの空間1aに導入する。ここで空間1aに空気を導入
する場合には、コイル2aへの前記空気供給時に空間1
aにも空気が供給されているからそのままにすればよい
が、液体を導入する場合には、第1〜第4の流体源4a
〜4dの電磁開閉弁■7〜VIOのうちの選択された何
れかを開き、且つ電磁開閉弁■5を開いてポンプP5を
起動する。ポンプP5の起動により空間la内の空気は
大気開放口12から排気されるとともに、選択された前
流体源から液体が供給管路9を介して空間la内に供給
され充填される。この液体の充填が終了したときには電
磁開閉弁V5を閉じ且つポンプ1〕5を停止する。なお
、前記液体が空間1aに自重により流下する形態であれ
ば、ポンプP5は不要となる。空間1aに充填された液
体のもつ遮光性及び伝熱性に基づいて窓ユニメトlを介
しての最適な熱貫流率が設定される。
In addition, the control device 14 measures the amount of solar radiation of the incident light from the glasses lb and lc of the window unit 1 based on the input values from the detectors 15c and 15d. The control device 14 calculates the balance with the increase in heat transfer coefficient from the outdoors to the room caused by filling the liquid in the tank 1a, and selects the fluid that optimally reduces the load on the 11 aircraft from the first fluid source 4a to the first fluid source 4a. By selecting one of the five fluid sources 4e, the selected fluid is introduced into the space 1a of the window unit l. Here, when introducing air into the space 1a, when the air is supplied to the coil 2a, the space 1a is
Since air is also supplied to a, it can be left as is, but when introducing liquid, the first to fourth fluid sources 4a
-4d, the selected one of the electromagnetic on-off valves (7) to VIO is opened, and the electromagnetic on-off valve (5) is opened to start the pump P5. By starting the pump P5, the air in the space la is exhausted from the atmosphere opening port 12, and the space la is filled with liquid from the selected pre-fluid source via the supply pipe line 9. When this liquid filling is completed, the electromagnetic on-off valve V5 is closed and the pump 1]5 is stopped. Note that if the liquid flows down into the space 1a by its own weight, the pump P5 is not necessary. The optimum heat transfer rate through the window unit 1 is set based on the light blocking properties and heat transfer properties of the liquid filled in the space 1a.

次に、夏季の夜間の事務室のような非冷房時であって窓
ユニットlから直射日光が室内に入り込まない場合は、
室内の潜熱を屋外に貫流させる。
Next, when there is no air conditioning, such as in an office at night in the summer, and direct sunlight does not enter the room through the window unit l,
The latent heat inside the room flows through to the outside.

この場合には、日中の日射、事務機器等から発生する室
内?PI熱を、空調機を使用することなく屋外に放出す
る。このときは、熱伝導率の高い液体6゜8のいずれか
をコイル2a及び空間1aに供給すればよい。そのため
に、電6i1開閉弁■6又は■8のいずれかと、電磁開
閉弁Vll、V12とを開き、またコイル2a及び空間
la内の流体を排除するためにポンプP1〜P5のいず
れかと、これに直列をなす電磁開閉弁VlヘーV5の何
れかを起動する。なお、流体源4の液体が自重により流
下ず場合等には、いずれかのポンプP1〜P5は不要の
場合もある。前記液体によって単位ユニット3からなる
壁体の熱伝導率が高くなるから、室内の潜熱は放出され
、翌朝の空調機の起動時には室温が低下状態になってい
て空調機の負荷が小さくなる。
In this case, what about indoor sunlight generated from daytime sunlight, office equipment, etc.? To release PI heat outdoors without using an air conditioner. At this time, any one of the liquids 6.8 having high thermal conductivity may be supplied to the coil 2a and the space 1a. To do this, open either the electromagnetic on-off valves Vll and V12 and the electromagnetic on-off valves Vll and V12, and also open any of the pumps P1 to P5 to remove the fluid in the coil 2a and space la. Start any of the electromagnetic on-off valves Vl to V5 in series. Note that in some cases, such as when the liquid in the fluid source 4 does not flow down due to its own weight, any of the pumps P1 to P5 may be unnecessary. Since the liquid increases the thermal conductivity of the wall made up of the unit 3, the latent heat in the room is released, and when the air conditioner is started the next morning, the room temperature is in a low state and the load on the air conditioner is reduced.

また、冬季の暖房時に壁ユニット2の断熱効果ヲ高め、
且つ窓ユニットlのガラスICへの霜の付着や結露を防
止する場合は、電磁開閉弁V6゜Vll、V12を開い
て、ポンプP6により第5流体源4eから供給管路9を
介して空気を空間1a及びコイル2aに供給する。この
とき、空間1aとコイル2aに予め流体が存在する場合
には、電磁開閉弁■1〜■5とポンプP1〜P5との中
の対応するものを動作させて前流体を抜き取り、これに
置換して前記空気を供給する。この供給する空気は、室
内暖房に用いている空気を第5流体源4eから供給する
ことによって、窓ユニット1及び壁ユニット2における
熱貫流率を低下させるとともにガラス1cの霜の付着や
結露等を防止する。
In addition, the insulation effect of wall unit 2 is increased during heating in winter,
In addition, in order to prevent frost from adhering to the glass IC of the window unit l and dew condensation, the electromagnetic on-off valves V6, Vll and V12 are opened and air is pumped from the fifth fluid source 4e via the supply pipe line 9 by the pump P6. It is supplied to the space 1a and the coil 2a. At this time, if fluid already exists in the space 1a and the coil 2a, the corresponding one of the electromagnetic on-off valves ■1 to ■5 and pumps P1 to P5 is operated to extract the previous fluid and replace it with this. and supply the air. By supplying the air used for indoor heating from the fifth fluid source 4e, this supplied air reduces the heat transmission coefficient in the window unit 1 and wall unit 2, and prevents frost from adhering to the glass 1c, dew condensation, etc. To prevent.

さらに、春季、秋季等のような主として季節的中間期に
おいて、日中は暖かく且つ夜間は冷える場合には、制御
装置14で検出器15a〜15dからの値により、屋外
から室内への貫流熱と室内から屋外への貫流熱との差を
演算して、日中のように屋外から室内への貫流熱が多い
ときには、窓ユニット1と壁ユニット2との熱貫流率が
高くなるように各電磁開閉弁及びポンプを選択して作動
させることにより制御し、以て室内に蓄熱する。
Furthermore, when the temperature is warm during the day and cold at night, mainly during intermediate seasons such as spring and autumn, the control device 14 determines whether the heat flows from the outdoors to the room or not, based on the values from the detectors 15a to 15d. By calculating the difference between the heat passing through from indoors to outdoors, and when there is a lot of heat passing from outdoors to indoors, such as during the day, each electromagnetic It is controlled by selectively operating on-off valves and pumps, thereby storing heat in the room.

また、夜間のように熱が室内から屋外に放出される状態
になったときには、窓ユニット1と壁ユニット2との熱
貫流率を低くするように各電磁開閉弁及びポンプを選択
して制御して、屋外への熱放出を抑制することにより、
空調器の負荷を小さくする。
In addition, when heat is released from indoors to outdoors, such as at night, each electromagnetic on-off valve and pump are selected and controlled to reduce the heat transfer coefficient between window unit 1 and wall unit 2. By suppressing heat release to the outdoors,
Reduce the load on the air conditioner.

なお、この実施例における各液体5〜8としては建物に
使用して安全性の高い公知の液体を各種使用することが
できるし、これらを任意の濃度に着色して日射の透過率
を調節することもできる。
In addition, as each of the liquids 5 to 8 in this example, various known liquids that are highly safe for use in buildings can be used, and these can be colored to an arbitrary concentration to adjust the transmittance of solar radiation. You can also do that.

また第5流体源4eから取り入れる空気としては、大気
の他に炭酸ガスその他の安全性の高い公知の気体を採用
することができる。また、流体源4としてこの実施例で
は第1流体源4a〜第5流体源4eまでの5種類として
いるが、その種類は適宜増減できることは勿論である。
Further, as the air taken in from the fifth fluid source 4e, in addition to the atmosphere, carbon dioxide gas or other known highly safe gases can be used. Further, in this embodiment, there are five types of fluid sources 4, from the first fluid source 4a to the fifth fluid source 4e, but it goes without saying that the types can be increased or decreased as appropriate.

さらに、窓ユニット1の空間1a及び壁ユニット2のコ
イル2aに供給される流体は、滞留させることなく流体
源4との間で循環させることにより、単位ユニット3の
熱貫流率を向上又は低減させることも可能である。
Furthermore, the fluid supplied to the space 1a of the window unit 1 and the coil 2a of the wall unit 2 is circulated between the fluid source 4 without being retained, thereby improving or reducing the heat transfer coefficient of the unit unit 3. It is also possible.

第2図は第2実施例を示しており、nif記第1実施例
の供給管路9に電磁三方弁V14を設けて、これとコイ
ル2a上端との間をバイパス管路9aにより接続し、こ
のバイパス管路9aに電6イ1開閉弁V16を設ける一
方、第1実施例の排出管路1■に電磁三方弁V15を設
けて、これとコイル2a下端との間をバイパス管路11
aにより接続し、このバイパス管路11aに電磁開閉弁
V17を設けたものである。これらの弁V14〜V17
も制御装置14により制御される。
FIG. 2 shows a second embodiment, in which an electromagnetic three-way valve V14 is provided in the supply pipe line 9 of the first embodiment, and this and the upper end of the coil 2a are connected by a bypass pipe line 9a. This bypass pipe line 9a is provided with an electric 6-1 on-off valve V16, while an electromagnetic three-way valve V15 is provided in the discharge pipe line 1 of the first embodiment, and the bypass pipe line 11 is provided between this and the lower end of the coil 2a.
a, and an electromagnetic on-off valve V17 is provided in this bypass conduit 11a. These valves V14 to V17
is also controlled by the control device 14.

而してこの実施例においては、供給管路9から供給され
る流体を壁ユニット2のコイル2aに供給するために、
窓ユニット1の空間1aを介して行う方法と、バイパス
管路9aを介して行う方法とを任意に選択できる。この
ため、空間1aとコイル2aに同一の流体を供給する場
合や別の流体を供給する場合等に、経路を選択すること
が可能である。コイル2a内の流体の排出の場合も空間
1aを介して行う方法と、バイパス管路11aを介して
行う方法とを同様に選択することができる。
In this embodiment, in order to supply the fluid supplied from the supply pipe line 9 to the coil 2a of the wall unit 2,
It is possible to arbitrarily select a method of performing the process through the space 1a of the window unit 1 or a method of performing the process through the bypass pipe line 9a. Therefore, it is possible to select a route when supplying the same fluid to the space 1a and the coil 2a or when supplying different fluids. In the case of discharging the fluid in the coil 2a, the method of discharging the fluid through the space 1a and the method of discharging the fluid through the bypass conduit 11a can be similarly selected.

他の構成及び作用は、第1実施例についての前記説明と
同様である。
Other configurations and operations are similar to the above description of the first embodiment.

第3図は第3実施例を示しており、前記第1実施例の供
給管路9に電磁三方弁V14を設けて、これとコイル2
a上端との間をバイパス管路9aにより接続し、このバ
イパス管路9aに電磁開閉弁V16を設ける一方、第1
実施例の排出管路11に電磁三方弁V15を設けて、こ
れとコイル2a下端との間をバイパス管路11aにより
接続し、このバイパス管路11aに電磁開閉弁V17を
設けたものである。これらの弁VI4〜V17も制御装
置14により制御される。また、空間1aとコイル2a
とは、この実施例では連結されず、従って両者間の電磁
開閉弁Vll、V12は存在しない。
FIG. 3 shows a third embodiment, in which an electromagnetic three-way valve V14 is provided in the supply pipe line 9 of the first embodiment, and a coil 2
A is connected to the upper end by a bypass pipe 9a, and an electromagnetic on-off valve V16 is provided in this bypass pipe 9a.
The discharge pipe 11 of the embodiment is provided with an electromagnetic three-way valve V15, this and the lower end of the coil 2a are connected by a bypass pipe 11a, and the bypass pipe 11a is provided with an electromagnetic on-off valve V17. These valves VI4 to V17 are also controlled by the control device 14. In addition, space 1a and coil 2a
are not connected in this embodiment, and therefore there are no electromagnetic on-off valves Vll and V12 between them.

而してこの実施例においては、供給管路9から供給され
る流体は、電磁三方弁V14より下流においては窓ユニ
ット1の空間1aと壁ユニット2のコイル2aに個別に
供給される。同様に、空間1aとコイル2a内の流体の
排出の場合も、電磁三方弁V15までは個別の経路をと
る。他の構成及び作用は、第1. 2実施例についての
前記説明と同様である。
In this embodiment, the fluid supplied from the supply pipe 9 is separately supplied to the space 1a of the window unit 1 and the coil 2a of the wall unit 2 downstream of the electromagnetic three-way valve V14. Similarly, when discharging the fluid in the space 1a and the coil 2a, separate routes are taken up to the electromagnetic three-way valve V15. Other configurations and functions are as described in 1. This is similar to the above description for the second embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明においては、窓や壁自体
の熱貫流率を建物内外の気温や日射量等に基づいて可変
とする構成としたため、外気と室内の間での熱貫流を防
止したい場合や、積極的に熱貫流を促進したい場合に、
夫々対応した熱貫流率とすることができる。このため、
建物の空調機の負荷を小さくすることができるから、空
調エネルギを低減することができるという効果がある。
As explained above, in this invention, the heat transfer coefficient of the windows and walls themselves can be varied based on the temperature inside and outside the building, the amount of solar radiation, etc., so it is possible to prevent heat transfer between the outside air and the indoor room. or when you want to actively promote heat flow.
The heat transmission coefficients can be set to correspond to each other. For this reason,
Since the load on the building's air conditioner can be reduced, the effect is that air conditioning energy can be reduced.

また、窓ユニットの二重ガラス内空間と、壁ユニットの
コイルとを開閉弁を介して水密に連通ずることによって
、前記空間とコイルとの間で直接流体を往復することが
できるから、流体供給を円滑ならしめる効果がある。
In addition, by watertightly communicating the space inside the double-glazed glass of the window unit and the coil of the wall unit via the on-off valve, fluid can be directly reciprocated between the space and the coil, so fluid can be supplied. It has the effect of smoothing out the process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1実施例の説明図、第2図は同第
2実施例の説明図、第3図は同第3実施例の説明図であ
る。 1・・・窓ユニット、1a・・・空間、lb。 IC・・・ガラス、2・・・壁ユニット、2a・・・コ
イル、2b・・・壁体、3・・・単位ユニット、4・・
・流体源、5,6,7.8・・・液体、14・・・制御
装置 特許出願人 工業技術院長飯塚幸三 第1図 第2図 !4
FIG. 1 is an explanatory diagram of a first embodiment of the invention, FIG. 2 is an explanatory diagram of a second embodiment, and FIG. 3 is an explanatory diagram of a third embodiment. 1... Window unit, 1a... Space, lb. IC...Glass, 2...Wall unit, 2a...Coil, 2b...Wall body, 3...Unit unit, 4...
・Fluid source, 5, 6, 7.8...Liquid, 14...Control device Patent applicant Kozo Iizuka, Director of the Agency of Industrial Science and Technology Figure 1 Figure 2! 4

Claims (2)

【特許請求の範囲】[Claims] (1)空間を挟んだ二重ガラスで窓を水密に構成した窓
ユニットに、内部が流体の流路をなすコイルが壁体内に
埋設された壁ユニットを隣接させて前記両ユニットによ
り単位ユニットを構成し、この単位ユニットにより建物
の外壁部を構成するとともに、前記窓ユニットの空間と
壁ユニットのコイルに、熱伝導率及び遮光性の相違する
複数種類の流体源を連結し、建物内外の気温を検出する
気温検出器と、日射量を検出する日射量検出器とからの
検出値に基づいて前記空間とコイルに供給する流体を制
御する制御装置を、前記流体源の流体供給器に連結した
ことを特徴とする可変熱貫流壁。
(1) A unit unit is constructed by adjoining a window unit in which the window is made watertight with double glass with a space in between, and a wall unit in which a coil whose inside forms a fluid flow path is embedded in the wall. This unit constitutes the outer wall of the building, and multiple types of fluid sources with different thermal conductivity and light shielding properties are connected to the space of the window unit and the coil of the wall unit, and the temperature inside and outside the building is adjusted. A control device that controls fluid supplied to the space and the coil based on detected values from an air temperature detector that detects the temperature and a solar radiation detector that detects the amount of solar radiation is connected to the fluid supply device of the fluid source. A variable thermal flow wall characterized by:
(2)前記窓ユニットの二重ガラス内空間と、前記壁ユ
ニットのコイルとを開閉弁を介して水密に連通したこと
を特徴とする請求項第1項記載の可変熱貫流壁。
(2) The variable heat transmission wall according to claim 1, characterized in that the space within the double-glazed glass of the window unit and the coil of the wall unit are watertightly communicated via an on-off valve.
JP63094488A 1988-04-19 1988-04-19 Variable heat transmission wall Expired - Lifetime JPH0696882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63094488A JPH0696882B2 (en) 1988-04-19 1988-04-19 Variable heat transmission wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63094488A JPH0696882B2 (en) 1988-04-19 1988-04-19 Variable heat transmission wall

Publications (2)

Publication Number Publication Date
JPH01268943A true JPH01268943A (en) 1989-10-26
JPH0696882B2 JPH0696882B2 (en) 1994-11-30

Family

ID=14111679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63094488A Expired - Lifetime JPH0696882B2 (en) 1988-04-19 1988-04-19 Variable heat transmission wall

Country Status (1)

Country Link
JP (1) JPH0696882B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030063879A (en) * 2002-01-24 2003-07-31 주식회사 한국하우톤 Double grass system
KR101240103B1 (en) * 2010-10-18 2013-03-06 류철하 The separation which uses the liquid cut, [thing] system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030063879A (en) * 2002-01-24 2003-07-31 주식회사 한국하우톤 Double grass system
KR101240103B1 (en) * 2010-10-18 2013-03-06 류철하 The separation which uses the liquid cut, [thing] system

Also Published As

Publication number Publication date
JPH0696882B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US9631846B2 (en) Seasonal thermal energy storage system
US6129141A (en) Air conditioning/providing system directly through natural heat preserving main body
GB2247072A (en) Heating or cooling system
CN101074792A (en) Passive cooling technology combined with earth heat source and heat pump
CN107143948A (en) Energy storage can the temperature difference greatly step cold and heat source system
CN107687707A (en) A kind of hot-water heating system and its control method using air-source
US4993235A (en) Window, facade and wall system
CN109737486B (en) Combined heating system of heat collection and storage wall and air water heat collector
JPH01268943A (en) Variable heat-permeable wall
CN1888637A (en) Hot pump type air conditioner set with water heater
CN106152348A (en) A kind of air conditioning system for the underground space
CN211850150U (en) Constant-temperature damp-proof building outer wall
CN207633962U (en) A kind of heat preservation moisture film window
CN109736477A (en) A kind of MULTIPLE COMPOSITE environment friendly wall
CN110864572A (en) Renewable energy utilization system based on energy storage type heat pipe bundle and control method thereof
CN113216375B (en) Assembled energy-saving building
FI83132C (en) Systems for satisfying the energy requirements for lighting and heating in a building
GB2374921A (en) A system for heating and ventilating a building
CN213044398U (en) Temperature-adjusting type sunlight greenhouse
CN211261895U (en) Renewable energy source utilization device based on energy storage type heat pipe bundle
FR2800157A1 (en) Method for heating or air-conditioning system involves central exchanger unit with circulator placed in contact with exterior of building, with hydraulic network feeding technical boxed of each house/office
CN202328585U (en) Dry-type air conditioning system
CN201680487U (en) Wall body type solar-energy cooling and warming device
CN208251307U (en) A kind of ecotecture room
RU2303109C1 (en) Construction heat- or cold-accumulation block and wall erected of above blocks

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term