JPH01268646A - Antitumor agent - Google Patents

Antitumor agent

Info

Publication number
JPH01268646A
JPH01268646A JP63095724A JP9572488A JPH01268646A JP H01268646 A JPH01268646 A JP H01268646A JP 63095724 A JP63095724 A JP 63095724A JP 9572488 A JP9572488 A JP 9572488A JP H01268646 A JPH01268646 A JP H01268646A
Authority
JP
Japan
Prior art keywords
cell
monoclonal antibody
mice
antibody
mouse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63095724A
Other languages
Japanese (ja)
Inventor
Nobuhiko Tada
多田 伸彦
Munehiro Oda
宗宏 小田
Takahiro Kurotsu
黒津 隆宏
Hideji Ikegami
秀二 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd filed Critical Meiji Milk Products Co Ltd
Priority to JP63095724A priority Critical patent/JPH01268646A/en
Publication of JPH01268646A publication Critical patent/JPH01268646A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an antitumor agent containing a specific monoclonal antibody produced by a hybridoma prepared from an antibody-producing cell of a mouse sensitized with a mouse lymphoma cell, as an active component. CONSTITUTION:An antibody-producing cell obtained by immunizing a type-A mouse with a T-cell leukemia cell strain EL4 originated from C57BL/6 mouse is fused with a myeloma cell strain NS1 originated from a Balb/C mouse. The obtained hybridoma is screened, the screened cell capable of producing an antibody having cytotoxic activity is cloned by limiting dilution analysis and the cloning process is repeated to obtain hybridomas A1.267, A1.410 and A1.425, from which monoclonal antibodies A1.410 and A1.425 having the following properties are prepared. Immunoglobulin class, (IgG3,x); strength of the recognition specificity to cell surface ganglioside, GD2>GD3, GD1b, GD1a, GQ1b>GT1; recognition of monoclonal antibody, exclusively recognizing monoclonal antiboty A1.267 and GD2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規なモノクローナル抗体A1.267、AI
Detailed Description of the Invention (Industrial Field of Application) The present invention provides novel monoclonal antibody A1.267, AI
.

410またはA1.425を有効成分とする抗腫瘍剤に
関するものである。
The present invention relates to an antitumor agent containing A1.410 or A1.425 as an active ingredient.

更に詳しくは本発明は、C57旧、/6マウス由来のT
細胞白血病細胞株[EL4でA系マウスを免疫すること
により得られる抗体産生細胞とBa1b/c系マウス骨
髄腫細胞NSIとを融合させることにより得られるハイ
ブリドーマが産生し、免疫グロブリンクラスが(IgG
3、x)であって、マウス及びヒトの腫瘍細胞の細胞表
面の種間共通の腫瘍関連抗原であるカングリオシトをG
D2>GD3(NeuAc、 NeuAc)。
More specifically, the present invention provides T
Hybridomas are produced by fusing antibody-producing cells obtained by immunizing A-lineage mice with cell leukemia cell line [EL4 and Ba1b/c-lineage mouse myeloma cells NSI, and the immunoglobulin class is (IgG).
3.
D2>GD3 (NeuAc, NeuAc).

GD3(NeuGc、 NeuAc)、 GDlb、 
GTla、 GQlb)GTIの順に強く認識するモノ
クロナール抗体A1.267を有効成分とする抗腫瘍剤
に関する。
GD3 (NeuGc, NeuAc), GDlb,
The present invention relates to an antitumor agent containing a monoclonal antibody A1.267 that strongly recognizes GTI (GTla, GQlb) GTI as an active ingredient.

また、本発明は、  C57BL/6マウス由来のT細
胞白血病細胞株EL4でA系マウスを免疫することによ
り得られる抗体産生細胞とBa1b/c系マウス由来の
骨髄腫細胞株NSIとを融合させることにより得られる
ハイブリドーマが産生し、免疫グロブリンクラスが(I
gG3、x)であって、細胞表面ガングリオシドGD2
を認識するモノクローナル抗体Al。
Furthermore, the present invention involves fusing antibody-producing cells obtained by immunizing an A mouse with the T cell leukemia cell line EL4 derived from a C57BL/6 mouse and myeloma cell line NSI derived from a Ba1b/c mouse. A hybridoma obtained by is produced, and the immunoglobulin class is (I
gG3, x), which is a cell surface ganglioside GD2
Monoclonal antibody Al that recognizes.

410を有効成分とする抗腫瘍剤に関する。The present invention relates to an antitumor agent containing 410 as an active ingredient.

更に1本発明は、C57BL/6マウス由来のT細胞白
血病細胞株EL4でA系マウスを免疫することにより得
られる抗体産生細胞とBa1b/c系マウス由来の骨髄
腫細胞株NSIとを融合させることにより得られるハイ
ブリドーマが産生し、免疫グロブリンクラスが(IgG
3、x)であって、細胞表面ガングリオシドGD2を認
識するモノクローナル抗体AI。
Furthermore, one aspect of the present invention is to fuse antibody-producing cells obtained by immunizing A lineage mice with the T cell leukemia cell line EL4 derived from C57BL/6 mice and myeloma cell line NSI derived from Ba1b/c lineage mice. The hybridoma obtained by
3, x) monoclonal antibody AI that recognizes cell surface ganglioside GD2.

425を有効威容とする抗腫瘍剤に関する。The present invention relates to an antitumor agent having an effective dose of 425.

なお、本発明においてガングリオシドの名前(GD2、
GD3など)は5vennerhol Lllの命名法
(Svennerholm、 L、 J、 Lipid
 Res、 5.145−155(1964))による
二また、GD3のシアル酸誘導体は括弧の中に記した。
In addition, in the present invention, the names of gangliosides (GD2,
GD3, etc.) are based on the nomenclature of 5vennerhol Lll (Svennerholm, L, J, Lipid
Res, 5.145-155 (1964)), and sialic acid derivatives of GD3 are listed in parentheses.

すなわち、GD3(NeuAc、 NeuAc)。That is, GD3 (NeuAc, NeuAc).

GD3(NeuAc、 NeuGc)、GD3(Neu
Gc、 NeuAc)、およびGD3(NeuGc、 
Neu、Gc)はそれぞれ、■’ (NeuAc)。
GD3 (NeuAc, NeuGc), GD3 (Neu
Gc, NeuAc), and GD3 (NeuGc,
Neu, Gc) are respectively ■' (NeuAc).

−LacCer 、■’ (NeuAc a 2→8N
euGc)−LacCer、 II’(NauGc a
 2→8NeuAc)−LacCer、 I’I 3(
NauGc)2−LacCerを意味する。そのほかの
物質の名称はIUPAC−IUB会!i (IUPAC
−IUB Comm1ssion on Bioche
micalNomanclature、 Lipids
 12.455−463(1977))による。
-LacCer, ■' (NeuAc a 2→8N
euGc)-LacCer, II'(NauGc a
2→8NeuAc)-LacCer, I'I 3(
NauGc)2-LacCer. The names of other substances are from the IUPAC-IUB Association! i (IUPAC
-IUB Comm1ssion on Bioche
mical Nomanclature, Lipids
12.455-463 (1977)).

(従来の技術) にoehlerとMilsteinが抗体産生細胞と腫
瘍細胞との融合細胞(ハイブリドーマ)を用いてモノク
ローナル抗体の作成する方法(Nature、μi6.
495(1975) )を確立して以来、腫瘍細胞表面
に存在する腫瘍特異抗原に対するモノクロナール抗体を
獲得しようとする試みがなされてきたa (Kopro
wski、 tl、 at al、 Proc、Nat
l、 Acad、 Sci、 USA。
(Prior Art) Oehler and Milstein described a method for producing monoclonal antibodies using fused cells (hybridomas) of antibody-producing cells and tumor cells (Nature, μi6.
495 (1975)), attempts have been made to obtain monoclonal antibodies against tumor-specific antigens present on the surface of tumor cells.
wski, tl, at al, Proc, Nat
l, Acad, Sci, USA.

75、3405(197g)、Herlyn、 M、 
et al、 Proc、 Natl。
75, 3405 (197g), Herlyn, M.
et al., Proc., Natl.

Acad、 Sci、 USA、 76、1438(1
979))  これはモノクローナル抗体の抗原に対す
る高い特異性・鋭敏性を利用して、基礎医学においては
腫瘍特異抗原の解析を飛躍的に発展させること、臨床分
野においては癌の的確な診断や癌を狙い打ちにする治療
への応用が期待されたからである。
Acad, Sci, USA, 76, 1438 (1
979)) Utilizing the high specificity and sensitivity of monoclonal antibodies to antigens, this will dramatically advance the analysis of tumor-specific antigens in basic medicine, and in the clinical field, it will lead to accurate cancer diagnosis and cancer prevention. This is because it was expected to be applied to targeted treatments.

当初こうした研究は腫瘍抗原の抗原決定基として腫瘍細
胞蛋白質を対象として研究された。ところがこれらの抗
原に対するモノクローナル抗体は正常細胞とも反応し、
腫瘍細胞に対する特異性という観点からみると期待を裏
切るものであったのである。
Initially, these studies focused on tumor cell proteins as antigenic determinants of tumor antigens. However, monoclonal antibodies against these antigens also react with normal cells;
From the viewpoint of specificity for tumor cells, the results were disappointing.

しかしながらこのようなモノクローナル抗体の中に数は
少ないながらも比較的腫瘍細胞に対する特異性の高いも
のがみられた。そこでこれら特異性の高いモノクローナ
ル抗体の認識している抗原を調べたところ、腫瘍細胞表
面の糖脂質、糖蛋白質の如き複合糖質の糖鎖部分を認識
していることが判明した。この中でもとりわけガングリ
オシド即ちシアル酸を有する糖脂質が特異性が高いこと
が判った。(llakomori、 S、 Cance
r ries、 45.2405−2414(1985
))。キして、ガングリオシドを認識するモノクローナ
ル抗体の中には、既にモノシアロガングリオシドCA]
、9−9を認識する1、116Ns19−9(Kopr
owskj、、  tL  et  al、  Som
atic  Ce1l  Genetics。
However, among these monoclonal antibodies, although the number was small, some were found to have relatively high specificity for tumor cells. When we investigated the antigens recognized by these highly specific monoclonal antibodies, we found that they recognized sugar chain moieties of complex carbohydrates such as glycolipids and glycoproteins on the surface of tumor cells. Among these, gangliosides, that is, glycolipids containing sialic acid, were found to have particularly high specificity. (llakomori, S, Cance
r ries, 45.2405-2414 (1985
)). Among the monoclonal antibodies that recognize gangliosides, monosialoganglioside CA]
, 9-9 1, 116Ns19-9 (Kopr
owskj,, tL et al, Som
atic Ce1l Genetics.

5.957(1979)、 Magnani、 J、 
et al、 5cience、 212.。
5.957 (1979), Magnani, J.
et al., 5science, 212. .

55(1981)))のように癌の診断に使用されてい
るものもある。
55 (1981))) are used for cancer diagnosis.

ガングリオシドに対するモノクローナル抗体には以上の
ほか、GD3に対しては[’ukel C,S、 et
 al。
In addition to the above monoclonal antibodies against gangliosides, there are also monoclonal antibodies against GD3 ['ukel C, S, et al.
al.

J、 Exp、 Mad、月55−.1133−114
7(1982)やNudelman。
J, Exp, Mad, May 55-. 1133-114
7 (1982) and Nudelman.

ε、 et al、  J、 [3io1. Chew
、 257.12752−12756(1982)、G
D2に対してはCahan、 L、 D、 et al
ε, et al, J, [3io1. Chew
, 257.12752-12756 (1982), G.
For D2, Cahan, L., D., et al.
.

Proc、 Natl、 Acad、 Sci、 US
A 79.7629−7633(1982)、Cher
esh、D、A、et al、  Proc、Natl
Proc, Natl, Acad, Sci, US
A 79.7629-7633 (1982), Cher.
esh, D, A, et al, Proc, Natl
.

Acad、 Sci、 USA 8]、 5767−5
771(1984)、Chaung +N、 K、 e
t al、 Cancer Res、 45. 264
2−2649゜および5aito M、 et al、
 Biochem、 Biophys、Res。
Acad, Sci, USA 8], 5767-5
771 (1984), Chaung +N, K, e
tal, Cancer Res, 45. 264
2-2649° and 5aito M, et al.
Biochem, Biophys, Res.

Commun、 uZ、 1−7(1985)、 0M
2に対してはTai、 T。
Commun, uZ, 1-7 (1985), 0M
Tai, T for 2.

et al、  Proc、 Natl、  Acad
、  Sci、  USA 80. 5392−539
6 (1983)やNaLoli、 E、J、 et 
al、 Cancer Rss。
et al, Proc, Natl, Acad
, Sci, USA 80. 5392-539
6 (1983) and NaLoli, E. J., et al.
al, Cancer Rss.

4万、 4166−4120(+986)、0M3に対
しては11jrabayashj、  Y、  et 
 al、   J、  ロio1.  Chew、  
260゜13328−13333 (1985)のよう
な研究がある。しかしながら現在までガングリシドに対
するモノクローナル抗体はそれほど数多く作られていな
いのが現状である。
40,000, 4166-4120 (+986), 11jrabayashj, Y, et for 0M3
al, J, Roio1. Chew,
There are studies such as 260°13328-13333 (1985). However, to date, not many monoclonal antibodies against ganglyside have been produced.

これまで腫瘍細胞表面ガングリオシドに対するモノクロ
ーナル抗体が作られてこなかった大きな要因として、モ
ノクローナル抗体を産生ずるハイブリドーマを得るに際
し、ヒト腫瘍細胞で感作させたマウスの抗体産生細胞と
マウス骨髄腫細胞を融合する異種免疫の方法を用いてき
たことが挙げられる。即ち、抗〃xとして投与される腫
瘍細胞が異種であるヒト由来のものであるため、ヒトの
主要組織適応抗原系(Major Histocomp
atibilityComplex)である)ILAを
認識するモノクローナル抗体を産生ずるハイブリドーマ
ばかりが得られ、目的とするハイブリドーマを得る確率
が非常に小さかった。
A major reason why monoclonal antibodies against tumor cell surface gangliosides have not been produced so far is that when obtaining hybridomas that produce monoclonal antibodies, mouse antibody-producing cells sensitized with human tumor cells are fused with mouse myeloma cells. One example is the use of heterologous immunization methods. That is, since the tumor cells administered as anti-
Only hybridomas that produced monoclonal antibodies that recognized ILA (Ability Complex) were obtained, and the probability of obtaining the desired hybridoma was extremely small.

このような状況下で本発明者らは上記の方法に代えて、
マウスリンパ系腫瘍細胞で感作されたマウスの抗体産生
細胞とマウス骨髄腫細胞とを融合させる同種免疫の方法
を採ることにより、  IILAを認識する七ツクロー
ナル抗体を産生ずる不要なハイブリドーマの生成が排除
され、マウスおよびヒトの腫瘍細胞の細胞表面の種間共
通の腫瘍関連抗原であるガングリオシド、特にGD2を
特異的に認識するモノクローナル抗体を産生ずるハイブ
リドーマを極めて能率良く得ることができることを発見
した。そして本発明者らはこの発見に基づいて創製され
るモノクローナル抗体とそれを産生するハイブリドーマ
に関する発明について先に特許出願した(PCT/JP
87100690) 。
Under such circumstances, the present inventors replaced the above method,
By adopting a homologous immunization method in which mouse antibody-producing cells sensitized with mouse lymphoid tumor cells are fused with mouse myeloma cells, the generation of unnecessary hybridomas that produce seven clonal antibodies that recognize IILA is eliminated. They discovered that it is possible to very efficiently obtain hybridomas that produce monoclonal antibodies that specifically recognize gangliosides, particularly GD2, which are tumor-associated antigens common across species on the cell surface of mouse and human tumor cells. The present inventors previously filed a patent application for an invention related to a monoclonal antibody created based on this discovery and a hybridoma that produces it (PCT/JP
87100690).

一方、モノクローナル抗体の抗原に対する強い特異性を
利用して悪性腫瘍の治療に役立てようとする試みも精力
的になされてきた。その結果ガングリオシ ドを抗原す
るモノクローナル抗体が腫瘍の治療に有用であることが
知られ始めた(I(ak。
On the other hand, efforts have also been made to make use of the strong antigen specificity of monoclonal antibodies to help treat malignant tumors. As a result, it has become known that monoclonal antibodies that antigen gangliosides are useful for tumor treatment (I(ak)).

mori、 S、 Cancer Res、 45.2
405−2414(1985))。
mori, S, Cancer Res, 45.2
405-2414 (1985)).

そしてこのようなガングリオシドを抗原とするモノクロ
ーナル抗体の一部は既に臨床応用の段階にまで進んで来
ている。例えば、Dippoldらがヒトメラノーマ細
胞株SK−MEL28をマウスに免疫することにより作
り出しくDippold W、 G、 et al、 
Proc。
Some monoclonal antibodies that use gangliosides as antigens have already reached the stage of clinical application. For example, Dippold et al. created by immunizing mice with the human melanoma cell line SK-MEL28.
Proc.

Nat、]、  Acad、  Sci、  USA 
 77、 6114−6118(1980)  )、P
ukelらがGD3を認識することを示した(Puke
l、 C。
Nat, ], Acad, Sci, USA
77, 6114-6118 (1980)), P.
showed that GD3 is recognized by Puke et al.
l, C.

S、 et al、 J、 Exp、 Med、 15
5.1133−1147(1982))、抗GD3モノ
クローナル抗体R24を、Houghtonらが転移性
腫瘍を持つメラノーマ患者12例に2週間にわたり約8
回全身投与したところ、3例に顕著な腫瘍の縮小を認め
た(lloughton、 A、 N、 at al、
 Proc。
S. et al., J. Exp. Med, 15
5.1133-1147 (1982)), Houghton et al. administered the anti-GD3 monoclonal antibody R24 to 12 melanoma patients with metastatic tumors at approximately
After systemic administration, significant tumor shrinkage was observed in 3 cases (Loughton, A, N, at al.
Proc.

Natl、 Acad、 Sci、 USA 82.1
242−1246 (1985))。
Natl, Acad, Sci, USA 82.1
242-1246 (1985)).

R24については、これを使用してヒトの神経外胚葉性
悪性腫瘍と上皮性ガンの治療する方法に関する発明が、
特開昭62−289524として出願されている。また
、Cheungがヒト神経芽細胞腫LAN−1をマウス
に免疫して得られた抗GD2モノクローナル抗体3F8
を12例の転移性腫瘍患者(メラノーマ6例、神経芽細
胞腫4例、骨肉腫2例)に全身投与して、3例に顕著な
効果が認められたと報告している(Cheung、 N
、に、 at al、 Proc、 Ava、 As5
oc。
Regarding R24, the invention relates to a method for treating human neuroectodermal malignant tumors and epithelial cancer using R24.
It has been filed as Japanese Patent Application Laid-Open No. 62-289524. In addition, Cheung used anti-GD2 monoclonal antibody 3F8, which was obtained by immunizing mice with human neuroblastoma LAN-1.
reported that it was administered systemically to 12 patients with metastatic tumors (6 melanoma cases, 4 neuroblastoma cases, and 2 osteosarcoma cases), and remarkable effects were observed in 3 cases (Cheung, N.
, to, at al, Proc, Ava, As5
oc.

Cancer Res、 27.318(1986))
、1更にはIr1eらはメラノーマ患者の末梢血リンパ
球をEBウィルスで株化することにより得られた細胞が
生産する抗GD2モノクローナル抗体L72を8人の患
者の合計21箇所の転移性メラノーマに補体と共に投与
したところ、16箇所で退縮が認められ、このうち10
箇所では完全に消退したと報告している(Iris、 
R,F。
Cancer Res, 27.318 (1986))
1Furthermore, Ir1e et al. used the anti-GD2 monoclonal antibody L72, produced by cells obtained by cultivating peripheral blood lymphocytes of melanoma patients with EB virus, to metastatic melanoma in a total of 21 sites in 8 patients. When administered together with the body, regression was observed in 16 locations, of which 10
In some places, it has been reported that it has completely disappeared (Iris,
R,F.

at al、 Proc、 Natl、 Acad、 
Sci、 USA 83.8694−8608(198
6))。
at al, Proc, Natl, Acad,
Sci, USA 83.8694-8608 (198
6)).

そして本発明者らは上に記した特許出11’[(PCT
/Jl”87100690)の実施例に記載したモノク
ローナル抗体の中の一つにそれ自身で強い抗腫瘍性を持
つものを見い出し、用途発明(抗腫瘍剤)として特許出
願を行なった(特願昭63−21317)。
The present inventors and the above-mentioned Patent No. 11' [(PCT
We discovered that one of the monoclonal antibodies described in the examples of ``/Jl'' 87100690) had strong antitumor properties by itself, and filed a patent application as a use invention (antitumor agent) (Patent application No. 63). -21317).

(発明が解決しようとする問題点) 本発明者らの先の出願(特願昭63−21317)は、
それまでのモノクローナル抗体を有効成分とする抗腫瘍
剤の殆どがメラノーマに対する効果であり、一部が神経
芽腫を退縮させるものであって、適用範囲はごく限られ
たものであったのに対し、白血病の如き悪性リンパ腫の
モノクローナル抗体による治療効果を見いだした点に大
きな意味がある。
(Problems to be solved by the invention) The previous application by the present inventors (Japanese Patent Application No. 63-21317)
Until then, most of the antitumor drugs that had monoclonal antibodies as active ingredients were effective against melanoma, and some were effective for regression of neuroblastoma, so the range of application was extremely limited. The discovery of the therapeutic effect of monoclonal antibodies on malignant lymphomas such as leukemia is of great significance.

しかしながら同一の名称で呼ばれる腫瘍であっても腫瘍
の多様性は大きく、一つの抗腫瘍剤があらゆる症例に対
して著効を示すとは限らず、又腫瘍自体が抗腫瘍剤の投
与を継続するうちに薬剤に対して抵抗性を示すようにな
る場合が多い。そのために、癌の治療に際して治療開始
から完癒まで単一の抗腫瘍剤で事足りることは少なく、
複数の薬剤が求められている。
However, even if tumors are called by the same name, there is a great diversity of tumors, and one anti-tumor drug may not be effective in all cases, and the tumor itself may require continued administration of anti-tumor drugs. In many cases, they develop resistance to drugs. For this reason, when treating cancer, a single antitumor agent is rarely sufficient from the start of treatment to complete recovery.
Multiple drugs are needed.

(問題点を解決するための手段) そこで本発明者らは更に続けて先に出願した方法と同じ
でハイブリドーマを創製して、ハイブリドーマが産生ず
るモノクローナル抗体のうち抗腫瘍効果のあるものを探
索してきたところ、上述のモノクローナル抗体A1.2
67、A1.410及びA1.425が強い抗腫瘍効果
を持つことを発見し1本発明を完成した。
(Means for Solving the Problems) Therefore, the present inventors further created hybridomas using the same method as previously applied, and searched for monoclonal antibodies produced by the hybridomas that have antitumor effects. However, the above-mentioned monoclonal antibody A1.2
67, A1.410 and A1.425 have strong antitumor effects, and have completed the present invention.

即ち本発明者らはマウスT細胞白血病細胞株を移植され
たマウスにモノクローナル抗体A1.267、A1.4
10又はA1.425を投与したところ、これらモノク
ローナル抗体がこの担癌マウスの寿命を著量に延長し、
或は腫瘍を完全に拒絶させることを認めたのである。
That is, the present inventors administered monoclonal antibodies A1.267 and A1.4 to mice transplanted with mouse T-cell leukemia cell lines.
10 or A1.425, these monoclonal antibodies significantly extended the lifespan of these tumor-bearing mice.
Or they allowed the tumor to be completely rejected.

本発明はモノクローナル抗体A1.267、 AI、4
10又はA1.425を有効成分とする新規な抗腫瘍剤
である。
The present invention provides the monoclonal antibody A1.267, AI, 4
It is a novel antitumor agent containing A1.10 or A1.425 as an active ingredient.

そして、本発明に係るモノクローナル抗体AI。And monoclonal antibody AI according to the present invention.

267を産生ずるハイブリドーマA 1 、267は微
工研にFEPM P−9992として寄託され、モノク
ローナル抗体A1.410を産生ずるハイブリドーマ^
1.410は微工研にFEPM P−9993として寄
託され、そして、モノクローナル抗体A1.425を産
生ずるハイブリドーマA1.425は微工研にFEPM
 P−9994として寄託されている。
The hybridoma A 1 that produces 267, 267, has been deposited at FIKEN as FEPM P-9992, and is a hybridoma that produces monoclonal antibody A1.410.
1.410 has been deposited as FEPM P-9993 at FEPM, and the hybridoma A1.425 producing monoclonal antibody A1.425 has been deposited with FEPM P-9993 at FEPM.
It has been deposited as P-9994.

本発明の抗腫瘍剤を上記モノクローナル抗体を有効成分
として製剤化するには公知の方法を適用すればよい。投
与方法としては悪性リンパ腫の治療に用いる関係上、点
滴注射による投与が好ましい。
Known methods may be applied to formulate the antitumor agent of the present invention using the above monoclonal antibody as an active ingredient. As for the administration method, administration by drip injection is preferable because it is used for the treatment of malignant lymphoma.

注射薬の製剤には、生理的食塩水、滅菌水リンゲル液等
の水溶性溶剤、非水性溶剤、等張化剤、烈痛化剤、溶解
補助剤、安定化剤、防腐剤、懸濁化剤、緩衝剤、乳化剤
等を任意に使用し得る。
Injectable drug formulations include physiological saline, water-soluble solvents such as sterile water Ringer's solution, non-aqueous solvents, isotonic agents, sharpening agents, solubilizing agents, stabilizers, preservatives, and suspending agents. , buffers, emulsifiers, etc. may optionally be used.

−例として、生理的食塩水(塩濃度約0.9%)にヒト
血清アルブミンを5%にモノクローナル抗体を適量含む
ものを調製して注射剤とする。
- As an example, an injection is prepared by preparing a physiological saline solution (salt concentration of approximately 0.9%) containing 5% human serum albumin and an appropriate amount of a monoclonal antibody.

モノクローナル抗体は点滴注射製剤中o、iμg〜10
0@g/@Q、好ましくは1μg〜1 mg/社含有さ
れる。
The monoclonal antibody is in the infusion injection formulation, iμg ~ 10
The content is 0@g/@Q, preferably 1 μg to 1 mg/sha.

点滴投与量は症状、腫瘍の進行1年齢、性別等に応じて
50〜1,000WIQであり、毎日或は適当に日をお
いて与える。
The intravenous dose is 50 to 1,000 WIQ depending on the symptoms, age of tumor progression, gender, etc., and is given daily or at appropriate intervals.

以下に本発明を実施例により具体的に説明する。The present invention will be specifically explained below using examples.

失施涜〔Lはヅブリドーでや作製) C57BLマウス由来のT細胞腫瘍株EL4を10’細
胞/マウス、1回/週、4週間に亙りA系マウスの腹腟
内に接種し、最終接種後3日日に肺臓を摘出してこれを
常法により組織培養液RPM11640(G、IBCO
社製)中の細胞浮遊液として調製した。
Inoculation of T cell tumor line EL4 derived from C57BL mice into the abdomen and vagina of strain A mice at 10' cells/mouse once/week for 4 weeks, and after the final inoculation. On the 3rd day, the lungs were removed and cultured in tissue culture medium RPM11640 (G, IBCO) using a conventional method.
The cell suspension was prepared as a cell suspension in (manufactured by Sekisui Chemical Co., Ltd.).

一方融合の親細胞として13alb/c系マウス由来の
骨髄腫細胞株NSIを培養して107細胞用意した。
On the other hand, 107 cells were prepared by culturing the myeloma cell line NSI derived from 13alb/c mouse as the parent cells for fusion.

これらの細胞の融合はにoeh lerとMilste
jnの方法(Nature、 256.495(197
5))に従い、以下のように行なった。
The fusion of these cells occurs in oehler and milste
jn method (Nature, 256.495 (197
5)), the following procedure was carried out.

前述のようにして調製した肺臓の浮遊細胞と骨髄腫細胞
を細胞数で5=1となるように遠心チューブ内で混合し
、500r、p、m、で5分遠心した後上清を捨て、R
PMI1640で濃度40%(v/v)に調製したポリ
エチレングリコール(メルク社爬;平均分子2着/1,
000)を0.2+nQ加えて2分間よく撹拌混合した
The floating lung cells and myeloma cells prepared as described above were mixed in a centrifuge tube so that the number of cells was 5 = 1, and after centrifugation at 500 r, p, m for 5 minutes, the supernatant was discarded. R
Polyethylene glycol prepared with PMI 1640 to a concentration of 40% (v/v) (Merck Co., Ltd.; average molecular weight 2/1,
000) was added for 0.2+nQ and stirred and mixed well for 2 minutes.

その後これに5mflのl’lPMI1640を1滴づ
つ3分間かけて添加して希釈し、 500r、p、m、
で5分遠心した後上清を捨てた。次いで細胞をl+AT
培地(RPM11640培地に10%(ν/v)ウシ胎
児血清を加え、最終濃度でヒボキサンチン10−4M、
アミノプテリン4×10−7M、チミジン1.6 X 
10−’Mを加えたもの)に浮遊させて100μQ/穴
の割合で96穴マイクロプレートに分注した。
After that, 5 mfl of l'lPMI 1640 was added drop by drop over 3 minutes to dilute it, and 500 r, p, m,
After centrifugation for 5 minutes, the supernatant was discarded. The cells were then exposed to l+AT
Medium (RPM11640 medium with 10% (v/v) fetal bovine serum, final concentration of hyboxanthin 10-4M,
Aminopterin 4 x 10-7M, Thymidine 1.6X
10-'M) and dispensed into a 96-well microplate at a rate of 100 μQ/well.

温度37°C,Co2:空気=5:95の気相でこれを
培養し、培養3[]目および6日日にIIAT培養で培
地交換を行なった。それ以後は3日毎にIIT培地(l
lAT椿地からアミノプテリンのみを除いた培地)で培
地交換を行なった。
This was cultured at a temperature of 37°C in a gas phase of Co2:air = 5:95, and the medium was replaced with IIAT culture on the 3rd and 6th day of culture. Thereafter, every 3 days IIT medium (l
The medium was replaced with a medium obtained by removing only aminopterin from lAT Tsubakiji.

培養を続け、細胞のコロニーの形成が認められるように
なった時点(約10−14日1)で培養上清中の抗体活
性を測定してスクリーニングを行なった。
The culture was continued, and at the time when cell colony formation was observed (approximately 10 to 14 days 1), screening was performed by measuring the antibody activity in the culture supernatant.

スクリーニングはウサギ血清補体を併用する細胞障害試
験法を用いた。具体的には、標的となるC571比マウ
ス由来のT細胞腫瘍株EL4の細胞浮遊液(、!I+胞
濃度5XIO’個/+nu)20μQ、ウサギ血清補体
20μQおよび培養上清20μQを混合して時々撹拌し
つつ37℃で45分間反応させた。反応終了後水冷して
トリパンブルー水溶液50μQを加えた後、顕微鏡で観
察してトリパンブルーを取り込んだ細胞の有無により培
養上清の細胞障害活性を判断した。
A cytotoxicity test method using rabbit serum complement was used for screening. Specifically, 20 μQ of a cell suspension of the target C571 mouse-derived T cell tumor line EL4 (!I + cell concentration of 5XIO' cells/+nu), 20 μQ of rabbit serum complement, and 20 μQ of culture supernatant were mixed. The reaction was carried out at 37° C. for 45 minutes with occasional stirring. After the reaction was completed, the culture supernatant was cooled with water and 50 μQ of trypan blue aqueous solution was added thereto, followed by observation under a microscope to determine the cytotoxic activity of the culture supernatant based on the presence or absence of cells that had taken up trypan blue.

スクリーニングを行なったハイブリドーマ486株のう
ち、細胞障害活性をもつ抗体を産生ずるものが14個得
られ、そのうち1株のハイブリドーマについて、限界希
釈法によりクローン化した。更にクローニングを繰り返
して安定で単一の細胞由来のハイブリドーマA1.26
7を得た。
Of the 486 hybridoma strains screened, 14 were obtained that produced antibodies with cytotoxic activity, and one hybridoma among them was cloned by the limiting dilution method. Further cloning was repeated to create a stable, single cell-derived hybridoma A1.26.
I got a 7.

同様にして、ハイブリドーマA1..410を得た。Similarly, hybridoma A1. .. I got 410.

また、同様にして、ハイブリドーマA1..425を得
た。
Similarly, hybridoma A1. .. I got 425.

なお、オフタロニー法により各ハイブリドーマが産生ず
る各モノクローナル抗体の免疫グロブリンのクラスを調
べたところ、いずれも(IgG:+、に)であった。
In addition, when the immunoglobulin class of each monoclonal antibody produced by each hybridoma was investigated by the Ophthalony method, all of them were (IgG: +, 2).

失に性影はノ!−旦二土四五生旦、 267Δ情ス)−
Ba1b/c系のヌードマウスの腹腔にブリステン0.
5fflfl投与し、7日後に実施例1により得られた
ハイブリドーマA1゜267(FERM P−9992
)約5〜1OXIO’細胞を腹腔的接種して腹水化を行
なった。
What a shame! - 267Δjosu) -
Blisten 0.0.
After 7 days, hybridoma A1゜267 (FERM P-9992) obtained according to Example 1 was administered.
) Approximately 5-1 OXIO' cells were inoculated intraperitoneally to perform asciticization.

1〜2週間後に腹水を採取し、3.00Or、p、m、
、15分間の遠心により上清−ヒ層部分のブリステンと
沈澱物である細胞塊を取り除いたモノクローナル抗体が
含まれる中間層の部分を回収した。
After 1 to 2 weeks, ascites was collected and 3.00 Or, p, m,
Then, by centrifugation for 15 minutes, the supernatant and the intermediate layer containing the monoclonal antibody were recovered from which the blisters and precipitated cell clusters in the supernatant layer were removed.

上記により回収された溶液10mQに硫酸アンモニウム
を赫終濃度50%となるように加えて、塩析した。これ
を10,000r、p、m、、30分間の遠心にかけ、
沈澱した分画をPI(s(pH7,2の0,0]−M燐
酸緩衝液に0.15M NaC1を加えた燐酸緩衝塩溶
液) 10mQに溶かした。この溶液をPus 1,0
00mQに対して3回透析を繰り返し、免疫グロブリン
分画とした。
Ammonium sulfate was added to 10 mQ of the solution recovered above to a final concentration of 50% for salting out. This was centrifuged at 10,000 r, p, m, for 30 minutes,
The precipitated fraction was dissolved in 10 mQ of PI (a phosphate buffered salt solution prepared by adding 0.15 M NaCl to s (0,0 of pH 7,2)-M phosphate buffer). This solution was dissolved in Pus 1,0
Dialysis against 00mQ was repeated three times to obtain an immunoglobulin fraction.

次いで該免疫グロブリン分画を、0.03M NaCQ
を含むρ118 、0の燐酸緩衝液に対して十分に透析
した。
The immunoglobulin fraction was then treated with 0.03M NaCQ.
The sample was extensively dialyzed against a phosphate buffer containing ρ118,0.

別にこれと同じ緩衝液で平衡化しておいたイオン交換樹
脂DE52カラム(ワットマン社製)に該透析液をかけ
、DE52カラムに吸着されなかった両分を回収した。
Separately, the dialysate was applied to an ion exchange resin DE52 column (manufactured by Whatman) that had been equilibrated with the same buffer, and both fractions that were not adsorbed to the DE52 column were collected.

この回収された両分をPBSに対して透析を行なったも
のを精製IgG抗体とし、モノクローナル抗体A1.2
67を得た。
Both recovered fractions were dialyzed against PBS to obtain purified IgG antibody, and monoclonal antibody A1.2
I got 67.

実施例良」孟工仁久p−ナル抗体A1.267q狩濃」
ひモノクローナル抗体A 1 、267が認識している
ガングリオシドを決定するために、薄層クロマトグラフ
ィー(以下TLCと称す)上での酸素免疫染色法を行な
った。
Good example "Meng Ko Jinkyu p-nal antibody A1.267q Karino"
In order to determine the ganglioside recognized by monoclonal antibody A 1,267, oxygen immunostaining on thin layer chromatography (hereinafter referred to as TLC) was performed.

(1)ヒトメラノーマ細胞株M14のガングリオシド分
画、ガングリオシド純品および中性糖脂質純品の調製 ヒトメラノーマ細胞株UCLASO−M 14 (以下
M14という)はカルホルニア大学のR,Trie博士
より入手したもので、M’14のガングリオシド分画の
調製はrat。
(1) Preparation of ganglioside fraction, pure ganglioside product, and pure neutral glycolipid product of human melanoma cell line M14 Human melanoma cell line UCLASO-M 14 (hereinafter referred to as M14) was obtained from Dr. R. Trie of the University of California. The ganglioside fraction of M'14 was prepared using rat.

T、 at al、 Proc、 Natl、 Aca
d、 Sci、 USA 80.5392−5396(
1983)に従った。
T, at al, Proc, Natl, Aca
d, Sci, USA 80.5392-5396 (
(1983).

ガングリオシドGM1. GDla、 GDlb、 G
Tlbはウシの脳から調製し、Kanfer、 J、 
N、 Methods Enzymol。
Ganglioside GM1. GDla, GDlb, G
Tlb was prepared from bovine brain and was described by Kanfer, J.
N. Methods Enzymol.

1.4.660−664(1,969)に従って精製し
た。GQlbはヤトロン社から購入した。ヒト脳の0M
3はスウエーデンのGoteborg大学のり、 Sv
ennerho1m博士から入手した。0M2とCD2
はそれぞれ0M2とGDlbから、ウシ來丸β−ガラク
トシダーゼ(アメリカのミシガン大学のJ、 IJ、 
Jourdian博士から入手)を用いて調製した。ヒ
トミニリンの0M4とヒト脳のGTlaは東京都臨床医
学総合研究所の有賀博士から入手した。クマ赤血球のG
D3(NeuAc、 NeuAc)、GD3 (Neu
Ac 。
Purified according to 1.4.660-664 (1,969). GQlb was purchased from Yatron. 0M of human brain
3 is from Goteborg University in Sweden, Sv
Obtained from Dr. Ennerho1m. 0M2 and CD2
were obtained from 0M2 and GDlb, respectively, using Ushiraimaru β-galactosidase (J, IJ, University of Michigan, USA;
(obtained from Dr. Jourdian). Human minirin 0M4 and human brain GTla were obtained from Dr. Ariga of the Tokyo Metropolitan Institute of Clinical Medicine. bear red blood cell G
D3 (NeuAc, NeuAc), GD3 (Neu
Ac.

NeuGc)、CD3(NeuGc、 NeuAc)、
およびGD3(NauGc。
NeuGc), CD3 (NeuGc, NeuAc),
and GD3 (NauGc.

NeuGc)は東京都臨床医学総合研究所の橋本博士と
鈴木明身傅士から入手した。LacCar、 GgOs
、Car。
NeuGc) was obtained from Dr. Hashimoto and Fuji Suzuki of the Tokyo Metropolitan Institute of Clinical Medicine. LacCar, GgOs
, Car.

およびGg0s4Cerはそれぞれ0M3.0M2. 
GMIから弱酸で処理し、イアトロビーズカラムクロマ
トグラフィーで精製して調製した。GlcCerはTa
i、 T。
and Gg0s4Cer are 0M3.0M2.
It was prepared from GMI by treatment with a weak acid and purification by Iatrobead column chromatography. GlcCer is Ta
i, T.

at al、 Proc、 Natl、 Acad、 
Sci、 USA 80.5392−5396(+98
3)に従って調製した。GbO83CerとGbO84
Csrは5upelco社(アメリカ、ペンシルバニア
州、ベラフオンテ)から購入した。
at al, Proc, Natl, Acad,
Sci, USA 80.5392-5396 (+98
3). GbO83Cer and GbO84
Csr was purchased from 5upelco (Bellajuonte, Pennsylvania, USA).

(2) TLCの方法 メルク社製のシリカゲルを塗布済みのTLCプレート「
シリカゲル60」(厚さ200μI)と同じくメルク社
製のシリカゲルを塗布済みのTLCプラスチックシート
を使用した。クロマトグラムの展開溶媒はクロロフォル
ム/メタノール10.22%CaC1□水溶液を容積比
55/45/10としたものを用いた。なお。
(2) TLC method TLC plate coated with Merck's silica gel
A TLC plastic sheet coated with silica gel manufactured by Merck & Co., Ltd., as well as "Silica Gel 60" (thickness 200 μI), was used. The developing solvent for the chromatogram was a chloroform/methanol 10.22% CaCl□ aqueous solution with a volume ratio of 55/45/10. In addition.

TLCプレート上に展開されたガングリオシドを染色す
る場合にはレゾルシノール(resorcinol )
染色を、中性糖脂質の染色にはオルシノール(orci
nol)染色を用いた。
When staining gangliosides developed on TLC plates, resorcinol
For neutral glycolipid staining, orcinol (orci
nol) staining was used.

(3) TLCプレート上でのモノクローナル抗体 A
I、267による酵素免疫染色法 ガングリオシドのTLC終了後、TLCプレートをウシ
血清アルブミン1%とポリビニールピロリドン(pol
yvinylpyrolidone) 1%とを含有す
る燐酸緩衝塩溶液に浸した。空気中で乾燥させた後、プ
レートをモノクローナル抗体A1.267溶液(10μ
g1社)と2時間25℃で反応させた6次に燐酸緩衝塩
溶液(以下PBSと称す)を5回交換しつつその中でク
ロマトグラムを洗浄した。そして西洋ワサビペルオキシ
ダーゼを結合させたヤギ抗マウスIgGおよび工gM抗
体をこのクロマトグラムと25℃で2時間反応させた。
(3) Monoclonal antibody A on TLC plate
Enzyme immunostaining method according to I, 267 After TLC of gangliosides, the TLC plate was treated with 1% bovine serum albumin and polyvinyl pyrrolidone (pol
yvinylpyrolidone) in a phosphate buffered saline solution containing 1%. After drying in air, the plate was coated with monoclonal antibody A1.267 solution (10μ
Next, the chromatogram was washed in a phosphate buffered saline solution (hereinafter referred to as PBS) which was exchanged five times. Then, goat anti-mouse IgG and engineered gM antibodies conjugated with horseradish peroxidase were reacted with this chromatogram at 25° C. for 2 hours.

再びPBSを5回交換しつつその中でクロマトグラムを
洗浄した。染色に当たっては400μy;/mQの0−
フェニレンジアミンと0.12%の過酸化水素を含むク
エン酸−燐酸緩衝液(pH5,0,80a+M)を用い
、 15分間反応させて、発色させた。その抜水に浸し
て反応を停止させた。
The chromatogram was washed again in 5 changes of PBS. For staining, 400μy;/mQ of 0-
Using a citric acid-phosphate buffer (pH 5, 0, 80a+M) containing phenylene diamine and 0.12% hydrogen peroxide, the mixture was reacted for 15 minutes to develop color. The reaction was stopped by immersing it in the drained water.

(4)ガングリオシド純品混合物及びM14のガングリ
オシドのモノクローナル抗体A1.267と反応させた
TLCプレート上での酵素免疫染色法の結果第1図は左
のレーンから、ガングリオシド純品のm合物(GM3+
GM2+GMI+GD3+GD2)を几cにかけテレゾ
ルシノールで染色したもの、ヒトメラノーマ細胞株旧4
のガングリオシド分画をTCLにがけてレゾルシノール
で染色したもの、M14のガングリオシド分画をTCL
にかけた後A1.267で酵素免疫染色を行なったもの
である。(レーン番号3)この図のレーン番号3で示さ
れるように、モノクロナール抗体A1.267はガング
リオシドGD2とGD3とに反応している。
(4) Results of enzyme immunostaining on a TLC plate reacted with a pure ganglioside mixture and M14 ganglioside monoclonal antibody A1.267.
GM2+GMI+GD3+GD2) stained with telesorcinol, human melanoma cell line Old 4
The ganglioside fraction of M14 was applied to TCL and stained with resorcinol, and the ganglioside fraction of M14 was applied to TCL and stained with resorcinol.
After exposure to A1.267, enzyme immunostaining was performed. (Lane No. 3) As shown in lane No. 3 of this figure, monoclonal antibody A1.267 reacts with gangliosides GD2 and GD3.

その他のガングリオシド純品および中性糖脂質純品につ
いても各々TCLにかけた後モノクローナル抗体A1.
267で酵素免疫染色を行なった。これらの結果につい
ては図には示さず、第1図の内容と合わせて、A1.2
67との反応性を表1に示す。
Other pure ganglioside products and pure neutral glycolipids were also subjected to TCL, followed by monoclonal antibody A1.
Enzyme immunostaining was performed with 267. These results are not shown in the figure, but together with the contents of Figure 1, A1.2
Table 1 shows the reactivity with 67.

表  1 GD3  ++  0M3 − GD2  +++  0M2 − GDla  −GMI  − GDlb  ++  GlcCer  −GTla  
++  LacCer  −GTlb  +  Gg0
s3Cer −GQlb  ++  GgOs、Cer
 −−GT3    GbOs、Cer− GT2    GbOs、Cer − 0M4 − 表1から分かるように本発明のモノクローナル抗体は七
ノーシアロシルーガングリオシド(0M4.0M3.0
M2およびGMI)、および中性糖脂質(GlcCer
、LacCer、GgOs、Cer、 GgOs、Ce
r、 Gg0s3CerおよびGbOs4Car)とは
反応しない。
Table 1 GD3 ++ 0M3 - GD2 +++ 0M2 - GDla -GMI - GDlb ++ GlcCer -GTla
++ LacCer −GTlb + Gg0
s3Cer −GQlb ++ GgOs, Cer
--GT3 GbOs, Cer- GT2 GbOs, Cer-0M4- As can be seen from Table 1, the monoclonal antibody of the present invention contains heptanosialosyl ganglioside (0M4.0M3.0
M2 and GMI), and neutral glycolipids (GlcCer
, LacCer, GgOs, Cer, GgOs, Ce
r, Gg0s3Cer and GbOs4Car).

即ち、A1.267はNeuAc a 2 →8Nsu
Ac a 2−) 3Galという三糖構造を持つGD
3、GD2. GDlb、 GTla、 GTlbおよ
びGQlbと反応し、他のガングリオシドとは反応しな
い。最も強く反応するのがGD2であり逆に最も反応が
弱いのはGTlbである。GD2にガラスダース1個が
付加されたGDlbは反応性が弱くなり、GDIbに更
にシアル酸が末端ガラスドース残基に付加されたGTl
bはもっと反応性が落ちる。この知見からシアル酸が°
末端のガラクトース残基(GDlb)や末端のシアン酸
残基(GTlb)に付加することによって、抗原決定基
であるNeuAcα2→8NeuAcα2→3Galは
マスクされることが示唆される。一方、GTlbの末端
シアル酸残基にシアル酸が付加したGQlbはGDld
のレベルまで反応性が回復する。GTlaは反応性はG
Qlbと同程度であるから、GQlbの認識部位は末端
の三糖であるはずである。以上から、A1.267はガ
ラクトース残基(場所は内部、末端を問わない)に結合
したジシアロシル残基rNeuAcα2→8NauAc
α2→3」を認識していることが判明した。
That is, A1.267 is NeuAc a 2 →8Nsu
Ac a 2-) GD with a trisaccharide structure called 3Gal
3.GD2. Reacts with GDlb, GTla, GTlb and GQlb, but does not react with other gangliosides. GD2 reacts most strongly, and conversely, GTlb reacts the weakest. GDlb, in which one glass dose is added to GD2, has weaker reactivity, whereas GTl, in which sialic acid is further added to the terminal glass dose residue, is GDIb.
b is even less reactive. This finding suggests that sialic acid
It is suggested that the antigenic determinant NeuAcα2→8NeuAcα2→3Gal is masked by addition to the terminal galactose residue (GDlb) or the terminal cyanate residue (GTlb). On the other hand, GQlb, which has sialic acid added to the terminal sialic acid residue of GTlb, is GDld.
Reactivity is restored to the level of GTla has a reactivity of G
Since it is similar to Qlb, the recognition site of GQlb should be the terminal trisaccharide. From the above, A1.267 is a disialosyl residue rNeuAcα2→8NauAc bound to a galactose residue (the location does not matter whether it is internal or terminal).
It turned out that it recognized "α2→3".

次に4種類のGD3(GD3(NauAc、 NeuA
c)、GD3(NeuAc、 NauGc)、 GD3
(NauGc、 NeuAc)、およびGD3(Neu
Gc、 NeuGc))とモノクローナル抗体のTLC
プレート上で酵素免疫染色法の結果は第2図に示されて
いる。
Next, four types of GD3 (GD3 (NauAc, NeuA
c), GD3 (NeuAc, NauGc), GD3
(NauGc, NeuAc), and GD3 (Neu
Gc, NeuGc)) and TLC of monoclonal antibodies
The results of enzyme immunostaining on the plate are shown in FIG.

第2図(A)は4種類のGD3をTLCにかけ、レゾル
シノールで染色したものである。左からガングリオシド
純品の混合物(GM3+GM1+GD3)、レーン番号
1はGD3(NeuAc、 NeuAc)、レーン番号
2はGD3(NeuAc、 NeuGc)、レーン番号
3はGD3 (NeuGc 。
FIG. 2(A) shows four types of GD3 subjected to TLC and stained with resorcinol. From the left, a mixture of pure gangliosides (GM3+GM1+GD3), lane number 1 is GD3 (NeuAc, NeuAc), lane number 2 is GD3 (NeuAc, NeuGc), and lane number 3 is GD3 (NeuGc).

NeuAc)、レーン番号4はGD3(NeuGc、 
NeuGc)である。第2図(B)はA1.267によ
るTLCの酵素免疫染色の結果である。レーン番号とG
D3の種類は第2図(A)と同じである。
NeuAc), lane number 4 is GD3 (NeuGc,
NeuGc). FIG. 2(B) shows the results of TLC enzyme immunostaining with A1.267. Lane number and G
The type of D3 is the same as in FIG. 2(A).

A1.267が反応したのはGD3(NeuAc、 N
euAc)とGD3(NeuGc、 NeuAc)であ
る。この結果はA1.267のガングリオシドの認識に
は三糖の内部シアル酸が必須であり、かつ該シアル酸は
NeuAc残基でなければならないことを示している。
A1.267 reacted with GD3 (NeuAc, N
euAc) and GD3 (NeuGc, NeuAc). This result indicates that the internal sialic acid of the trisaccharide is essential for recognition of the ganglioside of A1.267, and that the sialic acid must be a NeuAc residue.

内部シアル酸がNauAcでなく、NeuGcの時は′
L2p識されていない。−方、末端シアル酸残基はNe
uGc、 NeuAcのいずれでも^1.267に認識
されている。すると、 A1.267の抗原決定基はS
ia a 2−+8NeuAc a 2−’)3Gal
残基となるはずである。
When the internal sialic acid is not NauAc but NeuGc'
Not aware of L2p. -, the terminal sialic acid residue is Ne
Both uGc and NeuAc are recognized by ^1.267. Then, the antigenic determinant of A1.267 is S
ia a 2-+8NeuAc a 2-')3Gal
It should be a residue.

以上の結果をまとめると、モノクローナル抗体A I 
、 267の細胞表面ガングリオシドに対する認識の特
異性は。
To summarize the above results, monoclonal antibody A I
, the specificity of recognition of 267 for cell surface gangliosides.

GD2>GD3(NeuAc、 NeuAc)+ GD
3(NeuGc、 NeuAc)。
GD2>GD3(NeuAc, NeuAc)+GD
3 (NeuGc, NeuAc).

GDlb、 GTla、 ’GQ1b>GTIであると
考えられる。
GDlb, GTla, 'GQ1b>GTI.

この特異性のパターンは本発明者が先に出願したPCT
/JP87100690の実施例に記載のモノクローナ
ル抗体MoA2と全く同じである。但しMoA2は免疫
グロブリンのクラスが(IgM、に)であって、A1.
267のクラス(IgG、に)とは異なっている。
This pattern of specificity is based on the PCT patent application previously filed by the present inventor.
It is exactly the same as the monoclonal antibody MoA2 described in the Example of /JP87100690. However, MoA2 belongs to the immunoglobulin class (IgM), and A1.
It is different from the 267 class (IgG, ni).

去傭#14 (% / ’y o :j」l買はA1.
410q81 N)Balb/c系のヌードマウスの腹
腔にブリステン0.5mQ投与し27日後に実施例1区
より得られたハイブリドーマA1..410(FERM
 P−9!193 )約5〜10XIO’細胞を腹腟内
接種して腹水化を行なった。
Leave #14 (% / 'y o :j'l purchase is A1.
410q81 N) 0.5 mQ of Blisten was administered into the peritoneal cavity of Balb/c nude mice, and 27 days later, hybridoma A1. .. 410 (FERM
P-9!193) Approximately 5 to 10XIO' cells were inoculated intraperitoneally to induce ascites.

1〜2週間後に腹水を採取し、3.00Or、p、+a
、、15分間の遠心により上清上層部分のブリステンと
沈澱物である細胞塊を取り除いたモノクローナル抗体が
含まれる中間層の部分を回収した。
1 to 2 weeks later, ascites was collected and 3.00 Or, p, +a
By centrifugation for 15 minutes, the upper layer of the supernatant and the cell aggregates as precipitates were removed, and the middle layer containing the monoclonal antibody was recovered.

に記により回収された溶液10@Qに硫酸アンモニウム
を最終濃度50%となるように加えて、塩析した。これ
を10,000r、p、’lf1..30分間の遠心に
かけ、沈澱した分画をPBS(p117.2の0.01
M燐Mi1衝液に0.15M NaCQを加えた燐酸緩
衝塩溶液) 10mMに溶かした。この溶液をPBS 
1,000m12に対して3回透析を繰り返し、免疫グ
ロブリン分画とした。
Ammonium sulfate was added to the solution 10@Q recovered as described above to give a final concentration of 50% for salting out. This is 10,000r, p, 'lf1. .. Centrifugation was performed for 30 minutes, and the precipitated fraction was dissolved in PBS (0.01 of p117.2).
(Phosphate buffered salt solution prepared by adding 0.15M NaCQ to M phosphorus Mi1 solution) Dissolved at 10mM. This solution was added to PBS.
Dialysis was repeated three times against 1,000 m12 to obtain an immunoglobulin fraction.

次いで該免疫グロブリン分画を、0,03M NaCQ
を含むpH8,0の燐酸H11B液に対して十分に透析
した。
The immunoglobulin fraction was then treated with 0.03M NaCQ.
The sample was thoroughly dialyzed against a phosphoric acid H11B solution containing pH 8.0.

別にこれと同じ緩衝液で平衡化しておいたイオン交換樹
脂DE52カラム(ワットマン社製)に該透析液をかけ
、DE52カラムに吸着されなかった両分を回収した。
Separately, the dialysate was applied to an ion exchange resin DE52 column (manufactured by Whatman) that had been equilibrated with the same buffer, and both fractions that were not adsorbed to the DE52 column were collected.

この回収された両分をPBSに対して透析を行なったも
のを精製IgG抗体とし、モノクローナル抗体をA1.
410を得た。
Both recovered fractions were dialyzed against PBS to obtain purified IgG antibodies, and monoclonal antibodies were obtained from A1.
I got 410.

実遣−夕L5(モノ先且二j)吃疲体岐、410の杵天
4yモノクローナル抗体A1.410が認識しているガ
ングリオシドを決定するために、薄層クロマトグラフィ
ー(以下TLCと称す)上での酵素免疫染色法を行なっ
た。
In order to determine the ganglioside recognized by the Kiten 4y monoclonal antibody A1.410 of 410, it was analyzed by thin layer chromatography (hereinafter referred to as TLC). Enzyme immunostaining was performed.

(1)ヒトメラノーマ株M14のガングリオシド分画と
糖脂質純品の調製 M14のガングリオシド分画の調製はTai、 T、 
etal、 Proc、 Natl、、 Acad、 
Sci、 USA 80.5392−5396(198
3)に従った。
(1) Preparation of ganglioside fraction and pure glycolipid of human melanoma strain M14 Ganglioside fraction of M14 was prepared by Tai, T.
etal, Proc, Natl, Acad,
Sci, USA 80.5392-5396 (198
3) was followed.

ガングリオシドGMI、 GDla、GDIb、 GT
lbはウシの脳から調製し、Kanfer、 J、 N
、 Methods Enzymol。
Gangliosides GMI, GDla, GDIb, GT
lb was prepared from bovine brain and Kanfer, J, N.
, Methods Enzymol.

旦、 660−664(1969)に従って精製した。660-664 (1969).

GOIbはヤトロン社から購入した。ヒト脳のGM3は
スウェーデンのGoteborg大学の14. Sve
nnerho1m博士から入手した。0M2とGD2は
それぞれ0M2とGDlbから、ウシ來丸β−ガラクト
シダーゼ(アメリカのミシガン大学のJ、 W、 Jo
urdian博士から入手)を用いて調製した。ヒトミ
ニリンの0M4とヒト脳のGTlaは東京都臨床医学総
合研究所の有賀博士から入手した。クマ赤血球のGD3
(NeuAc、 NeuAe)、GD3(NeuAc。
GOIb was purchased from Yatron. Human brain GM3 was developed by Goteborg University, Sweden, at 14. Sve
Obtained from Dr. nnerho1m. 0M2 and GD2 were obtained from 0M2 and GDlb, respectively, using Ushiraimaru β-galactosidase (J, W, Jo, University of Michigan, USA).
(obtained from Dr. Urdian). Human minirin 0M4 and human brain GTla were obtained from Dr. Ariga of the Tokyo Metropolitan Institute of Clinical Medicine. GD3 of bear red blood cells
(NeuAc, NeuAe), GD3 (NeuAc.

NeuGc)、GD3(NeuGc、 NeuAc)、
およびGD3 (NeuGc +NeuGc)は東京都
臨床医学総合研究所の橋本博士と鈴木明身博士から入手
した。LacCer、 GgOs、Cer。
NeuGc), GD3 (NeuGc, NeuAc),
and GD3 (NeuGc +NeuGc) were obtained from Dr. Hashimoto and Dr. Akimi Suzuki of the Tokyo Metropolitan Institute of Clinical Medicine. LacCer, GgOs, Cer.

およびGg0s4CerはそれぞれGM3.0M2. 
GMIから弱酸で処理し、イアトロビーズカラムクロマ
トグラフィーで精製して調製した* G]、cCerは
Tai、 T。
and Gg0s4Cer are GM3.0M2.
*G], cCer is Tai, T.

at al、 Proc、 Natl、 Acad、 
Sci、 IJsA 80.5392−5396(19
83)に従って調製した。 GbOs、CerとGbO
s、Cerは5upelco社(アメリカ、ペンシルバ
ニア州、ベラフオンテ)から購入した。
at al, Proc, Natl, Acad,
Sci, IJsA 80.5392-5396 (19
83). GbOs, Cer and GbO
S and Cer were purchased from 5upelco (Bellajuonte, Pennsylvania, USA).

(2) TLCの方法 メルク社製のシリカゲルを塗布済みのTLCプレート「
シリカゲル60」(厚さ200μm)と同じくメルク社
製のシリカゲルを塗布済みのTLCプラスチックシート
を使用した。クロマトグラムの展開溶媒はクロロフォル
ム/メタノール10.22%CaC1,水溶液を容積比
55/45/10としたものを用いた。  TLCプレ
ート上に展開されたガングリオシドの染色にはレゾルシ
ノール(resorcinol )染色を、中性糖脂質
の染色にはオルシノール(orcinol)染色を用い
た。
(2) TLC method TLC plate coated with Merck's silica gel
A TLC plastic sheet coated with silica gel manufactured by Merck and Co., Ltd., as well as "Silica Gel 60" (thickness 200 μm), was used. The developing solvent for the chromatogram was chloroform/methanol 10.22% CaCl, an aqueous solution with a volume ratio of 55/45/10. Resorcinol staining was used to stain gangliosides developed on the TLC plate, and orcinol staining was used to stain neutral glycolipids.

(3) TLCプレート上での酵素免疫染色法ガングリ
オシドのTLC終了後、TLCプレートをウシ血清アル
ブミン1%とポリビニールピロリドン(polyvin
ylpyrolidone) 1%とを含有する燐酸緩
衝塩溶液に浸した。空気中で乾燥させた後、プレートを
モノクローナル抗体溶液(10Mg/mQ)と2時間2
5℃で反応させた。次に燐酸緩衝塩溶液(以下PBSと
称す)を5回交換しつつその中でクロマトグラムを洗浄
した。そして西洋ワサビペルオキシダーゼを結合させた
ヤギ抗マウスIgGおよびIgM抗体をこのクロマ1−
グラムと25℃で2時間反応させた。
(3) Enzyme immunostaining method on TLC plate After TLC of gangliosides, the TLC plate was treated with 1% bovine serum albumin and polyvinyl pyrrolidone (polyvinyl pyrrolidone).
ylpyrolidone) in a phosphate buffered saline solution containing 1%. After drying in air, the plate was soaked with monoclonal antibody solution (10 Mg/mQ) for 2 hours.
The reaction was carried out at 5°C. Next, the chromatogram was washed in phosphate buffered saline solution (hereinafter referred to as PBS) with five changes. Then, horseradish peroxidase-conjugated goat anti-mouse IgG and IgM antibodies were added to this chroma1-
gram at 25° C. for 2 hours.

再びPBSを5回交換しつつその中でクロマトグラムを
洗浄した。染色に当たっては400μg/aQ(1)0
−フェニレンジアミンと0.12%の過酸化水素を含む
クエン酸−燐酸緩衝液(pH5,0,80mM)を用い
、15分間反応させた。その役、水に浸して反応を停止
させた。
The chromatogram was washed again in 5 changes of PBS. 400μg/aQ(1)0 for staining
A reaction was carried out for 15 minutes using a citric acid-phosphate buffer (pH 5, 0, 80 mM) containing -phenylenediamine and 0.12% hydrogen peroxide. For that purpose, the reaction was stopped by soaking it in water.

(4) M14のガングリオシドのモノクローナル抗体
とを反応させたTLCプレート上での酵素免疫染色法の
結果 第1図は左のレーンから、ガングリオシド純品の混合物
(GM34GM2+G旧+GD3+GD2)をTLCに
かけてレゾルシノールで染色したもの、ヒトメラノーマ
細胞株M14のガングリオシド分画をTCLにかけてレ
ゾルシノールで染色したもの、M14のガングリオシド
分画をTCLにかけた後A1.410で酵素免疫染色を
行なったものである。(レーン番号5)この図のレーン
番号5で示されるように、モノクロナール抗体A1.4
10はGD2にのみ反応している。
(4) Results of enzyme immunostaining on a TLC plate reacted with M14 ganglioside monoclonal antibody Figure 1 shows, starting from the left lane, a mixture of pure gangliosides (GM34GM2+Gold+GD3+GD2) was subjected to TLC and stained with resorcinol. The ganglioside fraction of human melanoma cell line M14 was subjected to TCL and stained with resorcinol. The ganglioside fraction of M14 was subjected to TCL and then subjected to enzyme immunostaining using A1.410. (Lane number 5) As shown in lane number 5 of this figure, monoclonal antibody A1.4
10 reacts only to GD2.

その他のガングリオシド純品および中性糖脂質純品につ
いても各々TCLにかけた後モノクローナル抗体A1.
410で酵素免疫染色を行なった。これらの結果につい
ては図には示さず、第1図の内容と合わせて、A1.4
10との反応性を表2に示す。
Other pure ganglioside products and pure neutral glycolipids were also subjected to TCL, followed by monoclonal antibody A1.
Enzyme immunostaining was performed with 410. These results are not shown in the figure, but together with the contents of Figure 1, A1.4
Table 2 shows the reactivity with 10.

表   2 ガングリオシド反応性 ガングリオシド反応性GD3 
         0M3    −GD2     
+++     0M2    −GDla     
     GMI     −GDlb       
   GlcCer    −GT 13      
    LacCar    −GTlb      
    GgOs:1Cer   −GQlb    
      Gg0s4Cer   −GT3    
       GbOs、Cer   −GT2   
        Gg0s4Car   −GM4  
  − 表2から分かるように本発明のモノクローナル抗体AI
、410はモノ−シアロシル−ガングリオシド(GM4
.0M3.0M2およびGMI)、および中性糖脂質(
G1.cCer、  LacCer、 0g0s3Ca
r% Gg0s4Car、  GbOs、Cerおよび
GbOs、Cer)とは反応しない。
Table 2 Ganglioside reactivity Ganglioside reactivity GD3
0M3-GD2
+++ 0M2 -GDla
GMI-GDlb
GlcCer-GT13
LacCar-GTlb
GgOs:1Cer-GQlb
Gg0s4Cer-GT3
GbOs, Cer-GT2
Gg0s4Car-GM4
- Monoclonal antibody AI of the invention as seen from Table 2
, 410 is mono-sialosyl-ganglioside (GM4
.. 0M3.0M2 and GMI), and neutral glycolipids (
G1. cCer, LacCer, 0g0s3Ca
r% Gg0s4Car, GbOs, Cer and GbOs, Cer).

次に4種類のGD3(GD3(NauAc、 NeuA
c)、GD3(NeuAc、 NeuGc)、GD3(
NeuGc、 NeuAc)、およびGD3(NeuG
c、NeuGc))とモノクローナル抗体A1.410
のTLCプレート上で酵素免疫染色法の結果は第2図の
(C)に示されている。A1.410はこれらの何れと
も反応しなかった。
Next, four types of GD3 (GD3 (NauAc, NeuA
c), GD3 (NeuAc, NeuGc), GD3 (
NeuGc, NeuAc), and GD3 (NeuG
c, NeuGc)) and monoclonal antibody A1.410
The results of enzyme immunostaining on TLC plates are shown in FIG. 2(C). A1.410 did not react with any of these.

以上のように、少なくとも反応性試験を行なったガング
リオシドの範囲内ではモノクローナル抗体A1.4LO
は細胞表面ガングリオシドに対してはGD2とのみ反応
した。
As mentioned above, at least within the range of gangliosides for which reactivity tests were conducted, monoclonal antibody A1.4LO
reacted only with GD2 for cell surface gangliosides.

スー施朋6 モノクローナル  A1.425の  y
Balb/c系のヌードマウスの腹腔にブリステン0.
5mΩ投与し、7日後に実施例1により得られたハイブ
リドーマA1.425(F!ERM P−9994)約
5〜10xio’細胞を腹腟内接種して腹水化を行なっ
た。
Sue Shiho 6 Monoclonal A1.425 y
Blisten 0.0.
After 7 days, about 5 to 10 xio' cells of hybridoma A1.425 (F!ERM P-9994) obtained in Example 1 were inoculated intraperitoneally to induce ascites.

1〜2週間後に腹水を採取し、3 、0OOr、3.m
、、15分間の遠心により上清上層部分のブリステンと
沈澱物である細胞塊を取り除いたモノクローナル抗体が
含まれる中間層の部分を回収した。
After 1 to 2 weeks, ascites was collected and treated with 3,0OOr,3. m
By centrifugation for 15 minutes, the upper layer of the supernatant and the cell aggregates as precipitates were removed, and the middle layer containing the monoclonal antibody was recovered.

上記により回収された溶液10m12に硫酸アンモニウ
ムを最終濃度50%となるように加えて、塩析した。こ
れを10,0OOr、p、+a、、30分間の遠心にか
け、沈澱した分画をPBS(pH7,2の0.01M燐
酸緩衝液に0.15M NaC4を加えた燐酸緩衝塩溶
液) 10+++Qに溶かした。この溶液をPBS 1
,000mMに対して3回透析を繰り返し、免疫グロブ
リン分画とした。
Ammonium sulfate was added to 10 ml of the solution recovered above to give a final concentration of 50% for salting out. This was centrifuged for 30 minutes at 10,0OOr, p, +a, and the precipitated fraction was dissolved in PBS (a phosphate buffered salt solution prepared by adding 0.15M NaC4 to 0.01M phosphate buffer, pH 7.2) 10+++Q. Ta. This solution was dissolved in PBS 1
,000mM was repeated three times to obtain an immunoglobulin fraction.

次いで該免疫グロブリン分画を、0,03M NaCQ
を含むPI+8.0の燐酸緩衝液に対して十分に透析し
た。
The immunoglobulin fraction was then treated with 0.03M NaCQ.
The sample was thoroughly dialyzed against a phosphate buffer containing PI+8.0.

別にこれと同じ緩衝液で平衡化しておいたイオン交換樹
脂DH52カラム(ワットマン社製)に該透析液をかけ
、 DE52カラムに吸着されなかった両分を回収した
。この回収された両分をPBSに対して透析を行なった
ものを精製IgG抗体とし、モノクローナル抗体A1.
425を得た。
Separately, the dialysate was applied to an ion exchange resin DH52 column (manufactured by Whatman) that had been equilibrated with the same buffer, and both fractions that were not adsorbed to the DE52 column were collected. Both recovered fractions were dialyzed against PBS to obtain purified IgG antibodies, and monoclonal antibodies A1.
I got 425.

失週−例7(モノクローナル抗体A1.425(1)#
踵(’l)−モノクローナル抗体41.425が認識し
ているガングリオシドを決定するために、薄層クロマト
グラフィー(以下TLCと称す)上での酵素免疫染色法
を行なった。
Week loss - Case 7 (monoclonal antibody A1.425 (1) #
In order to determine the ganglioside recognized by the heel ('l) monoclonal antibody 41.425, enzyme immunostaining on thin layer chromatography (hereinafter referred to as TLC) was performed.

(1)ヒトメラノーマ株M14のガングリオシド分画と
糖脂質純品の調製 M14のガングリオシド分画の調製はTai、 T、 
et’a1.、Proc、  Naむ1.  Acad
、  Sci、  LISA  80. 5392−5
396(1983)に従った。
(1) Preparation of ganglioside fraction and pure glycolipid of human melanoma strain M14 Ganglioside fraction of M14 was prepared by Tai, T.
et'a1. , Proc, Nam1. Acad
, Sci, LISA 80. 5392-5
396 (1983).

ガングリオシドGM1、GDla、 GDlb、 GT
lbはウシの脳から調製し、Kanfer、 J、 N
、 Methods Enzymol。
Ganglioside GM1, GDla, GDlb, GT
lb was prepared from bovine brain and Kanfer, J, N.
, Methods Enzymol.

旦、 660−664(1,969)に従って精製した
。 GQlbはヤトロン社から購入した。ヒト脳のGM
3はスウェーデンのGotaborg大学のり、 Sv
ennerho1m博士から入手した。6阿2とGD2
はそれぞれ0M2とGDlbから、ウシ來丸β−ガラク
トシダーゼ(アメリカのミシガン大学のJ、 II、 
Jourdian博士から入手)を用いて調製した。ヒ
トミニリンの0M4とヒト脳のGTlaは東京都臨床医
学総合研究所の有賀博士から入手した。クマ赤血球のG
D3(NeuAc、 NeuAc)、 GD3(Neu
Ac。
660-664 (1,969). GQlb was purchased from Yatron. GM of the human brain
3 is from Gotaborg University in Sweden, Sv
Obtained from Dr. Ennerho1m. 6A2 and GD2
were obtained from 0M2 and GDlb, respectively, using Ushiraimaru β-galactosidase (J, II, University of Michigan, USA).
(obtained from Dr. Jourdian). Human minirin 0M4 and human brain GTla were obtained from Dr. Ariga of the Tokyo Metropolitan Institute of Clinical Medicine. bear red blood cell G
D3 (NeuAc, NeuAc), GD3 (Neu
Ac.

NeuGc)、GD3(NauGc、 NauAc)、
およびGD3 (NeuGc 。
NeuGc), GD3 (NauGc, NauAc),
and GD3 (NeuGc.

NeuGc)は東京都臨床医学総合研究所の橋本博士と
鈴木明身博士から入手したe LacCer+ GgO
s、Cer。
NeuGc) was obtained from Dr. Hashimoto and Dr. Akimi Suzuki of the Tokyo Metropolitan Institute of Clinical Medicine.
s, Cer.

およびGg084CerはそれぞれGM3.0M2. 
GMIから弱酸で処理し、イアトロビーズカラムクロマ
トグラフィーで精製して調製した。GlcCerはTa
i、 T。
and Gg084Cer are GM3.0M2.
It was prepared from GMI by treatment with a weak acid and purification by Iatrobead column chromatography. GlcCer is Ta
i, T.

et al、 Proc、 Natl、Acad、 S
ci、 USA 80.5392−5396(1913
3)に従って調製した。GbOs3CerとGbOs、
Cerは5upelco社(アメリカ、ペンシルバニア
州、ベラフォンテ)から購入した。
et al, Proc, Natl, Acad, S
ci, USA 80.5392-5396 (1913
3). GbOs3Cer and GbOs,
Cer was purchased from 5upelco (Belafonte, Pennsylvania, USA).

(2) TLCの方法 メルク社製のシリカゲルを塗布済みのT1.Cプレート
「シリカゲル60」(厚さ200μm)と同じくメルク
社製のシリカゲルを塗布済みのTLCプラスチックシー
トを使用した。クロマトグラムの展開溶媒はクロロフォ
ルム/メタノール10.22%CaC1□水溶液を容積
比55/45/10としたものを用いた。TLCプレー
ト上に展開されたガングリオシドの染色にはレゾルシノ
ール(resorcinol )染色を、中性糖脂質の
染色にはオルシノール(orcinol)染色を用いた
(2) TLC method T1. which has been coated with Merck's silica gel. A TLC plastic sheet coated with silica gel manufactured by Merck Co., Ltd., like the C plate "Silica Gel 60" (thickness 200 μm), was used. The developing solvent for the chromatogram was a chloroform/methanol 10.22% CaCl□ aqueous solution with a volume ratio of 55/45/10. Resorcinol staining was used to stain gangliosides developed on the TLC plate, and orcinol staining was used to stain neutral glycolipids.

(3) TLCプレート上での酵素免疫染色法ガングリ
オシドのTLC終了後、TLCプレートをウシ血清アル
ブミン1%とポリビニールピロリドン(polyvin
ylpyrolidone) 1%とを含有する燐酸緩
衝塩溶液に浸した。空気中で乾燥させた後、プレートを
モノクローナル抗体溶液(10μg/mQ)と2時間2
5℃で反応させた0次に燐酸緩衝塩溶液(以下PBSと
称す)を5回交換しつつその中でクロマトグラムを洗浄
した。そして西洋ワサビベルオキシダ゛−ゼを結合させ
たヤギ抗マウスIgGおよび丁gM抗体をこのクロマト
グラムと25℃で2時間反応させた5再びPBSを5回
交換しつつその中でクロマトグラムを洗浄した。染色に
当たっては400μg/mQのO−フェニレンジアミン
と0.12%の過酸化水素を含むクエン酸−燐酸緩衝液
(p115.o、80n+M)を用い、15分間反応さ
せた。その後、水に浸して反応を停止させた。
(3) Enzyme immunostaining method on TLC plate After TLC of gangliosides, the TLC plate was treated with 1% bovine serum albumin and polyvinyl pyrrolidone (polyvinyl pyrrolidone).
ylpyrolidone) in a phosphate buffered saline solution containing 1%. After drying in air, the plate was incubated with monoclonal antibody solution (10 μg/mQ) for 2 hours.
The chromatogram was washed in a zero-order phosphate buffered saline solution (hereinafter referred to as PBS) which had been reacted at 5° C. and was exchanged five times. The chromatogram was then reacted with horseradish peroxidase-conjugated goat anti-mouse IgG and anti-gM antibodies at 25°C for 2 hours.5 The chromatogram was washed again in PBS with 5 changes of PBS. . For staining, a citric acid-phosphate buffer (p115.o, 80n+M) containing 400 μg/mQ O-phenylenediamine and 0.12% hydrogen peroxide was used, and the reaction was carried out for 15 minutes. Thereafter, the reaction was stopped by immersing it in water.

(4) 814のガングリオシドのモノクローナル抗体
とを反応させたTLCプレート上での酵素免疫染色法の
結果 第1図は左のレーンから、ガングリオシド純品の混合物
(GM3÷aiz÷GM1+GD3+GD2)をTLC
にかけてし。
(4) Results of enzyme immunostaining on a TLC plate in which 814 ganglioside monoclonal antibodies were reacted. Figure 1 shows, from the left lane, a mixture of pure gangliosides (GM3 ÷ aiz ÷ GM1 + GD3 + GD2) by TLC.
I put it on.

ゾルシノールで染色したもの、ヒトメラノーマ細胞株M
14のガングリオシド分画を丁CLにかけてレゾルシノ
ールで染色したもの、M14のガングリオシド分画をT
CLにかけた後A1.425で酵素免疫染色を行なった
ものである。(レーン番号6)この図のレーン番号6で
示されるように、モノクロナール抗体A1.425はG
D2にのみ反応している。
Stained with zorcinol, human melanoma cell line M
The ganglioside fraction of M14 was subjected to TCL and stained with resorcinol, and the ganglioside fraction of M14 was stained with TCL.
After being subjected to CL, enzyme immunostaining was performed using A1.425. (Lane number 6) As shown in lane number 6 of this figure, monoclonal antibody A1.425 was
It reacts only to D2.

その他のガングリオシド純品および中性糖脂質純品につ
いても各々TCLにかけた後モノクローナル抗体A1.
425で酵素免疫染色を行なった。これらの結果につい
ては図には示さず、第1図の内容と合わせて、A1.4
25との反応性を表3に示す。
Other pure ganglioside products and pure neutral glycolipids were also subjected to TCL, followed by monoclonal antibody A1.
Enzyme immunostaining was performed with 425. These results are not shown in the figure, but together with the contents of Figure 1, A1.4
Table 3 shows the reactivity with 25.

表  3 ガングリオシド 反応性  ガングリオシド 反応性G
D3            GM3’     −G
D2      +++      6M2     
−GDla     −GMI      −GDlb
           GlcCar    −GTl
a           LacCer    −GT
lb           GgOs、Cer   −
GQlb           Gg0s4Cer  
 −GT3            GbOs、Cer
   −GT2            Gg0s4C
er   −0M4     − 表3から分かるように本発明のモノクローナル抗体A1
.425はモノ−シアロシル−ガングリオシド(0M4
、GM3.6M2およびGMI)、および中性糖脂質(
GlcCer、 LacCer、 Gg0s3Car、
 0g0s4Car%GbOs、CerおよびGg0s
3Car)とは反応しない。
Table 3 Ganglioside Reactivity Ganglioside Reactivity G
D3 GM3'-G
D2 +++ 6M2
-GDla -GMI -GDlb
GlcCar-GTl
a LacCer-GT
lb GgOs, Cer −
GQlb Gg0s4Cer
-GT3 GbOs, Cer
-GT2 Gg0s4C
er -0M4 - As can be seen from Table 3, monoclonal antibody A1 of the present invention
.. 425 is mono-sialosyl-ganglioside (0M4
, GM3.6M2 and GMI), and neutral glycolipids (
GlcCer, LacCer, Gg0s3Car,
0g0s4Car%GbOs, Cer and Gg0s
3Car).

次に4種類のGD3(GD3(NauAc、 NeuA
c)、GD3(NeuAc、 NeuGc)、GD3(
NeuGc、 NeuAc)、およびGD3(NeuG
c、 NeuGc))とモノクローナル抗体AI、42
5のTLCプレート上で酵素免疫染色法の結果は第2図
(C)に示されている。
Next, four types of GD3 (GD3 (NauAc, NeuA
c), GD3 (NeuAc, NeuGc), GD3 (
NeuGc, NeuAc), and GD3 (NeuG
c, NeuGc)) and monoclonal antibody AI, 42
The results of enzyme immunostaining on TLC plates of 5 are shown in Figure 2 (C).

第2図(A)は4種類のGD3をTLCにかけ、レゾル
シノールで染色したものである。左からガングリオシド
純品の混合物(GM3+GM l+GD 1 )、レー
ン番号1はGD3(NeuAc、’ NeuAc)、レ
ーン番号2はGD3(NeuAc、 NauGc)、レ
ーン番号3はGD3(NeuGc、 NeuAc)、レ
ーン番号4はGD3(NeuGc、 NeuGc)であ
る。第2図(C)はA1.425によるTLCの酵素免
疫染色の結果である。レーン番号とGD3の種類は第2
図(A)と同じである。この図の(C)から判るように
、 A1.425はこれらの何れとも反応しなかった。
FIG. 2(A) shows four types of GD3 subjected to TLC and stained with resorcinol. From the left: a mixture of pure gangliosides (GM3 + GM l + GD 1 ), lane number 1 is GD3 (NeuAc, 'NeuAc), lane number 2 is GD3 (NeuAc, NauGc), lane number 3 is GD3 (NeuGc, NeuAc), lane number 4 is GD3 (NeuGc, NeuGc). FIG. 2(C) shows the results of TLC enzyme immunostaining with A1.425. Lane number and GD3 type are second
This is the same as in Figure (A). As can be seen from (C) of this figure, A1.425 did not react with any of these.

以上のように、少なくとも反応性試験を行なったガング
リオシドの範囲内ではモノクローナル抗体At、425
は細胞表面ガングリオシドに対してはGD2とのみ反応
した。
As mentioned above, at least within the range of gangliosides for which reactivity tests were conducted, monoclonal antibodies At, 425
reacted only with GD2 for cell surface gangliosides.

8 モノクローナルJiA1.267の実験動物として
はC57[IL/6マウスを対照群は14匹、試験群は
モノクローナル抗体の投与量により2群に分け、各々5
匹使用した。移植腫瘍にはC57/BL6と同系(sy
ngeneic)のT細胞白血病細胞株EL4を使用し
、2X10’個腹腟内に接種した。翌日燐酸緩衝塩類液
0 、2mRに溶かした100μg又は500μgのモ
ノクローナル抗体A1.267を試験群に、対照群には
同量の鱗酸緩衝塩類液のみを腹腔内に投与し、マウスの
生死を60日1amした。
8 The experimental animals for monoclonal JiA1.267 were C57[IL/6 mice, the control group was 14 mice, and the test group was divided into 2 groups depending on the dose of monoclonal antibody, each with 5 mice.
I used two. The transplanted tumor contains C57/BL6 and syngeneic (sy)
The T-cell leukemia cell line EL4 (geneic) was used and inoculated intravaginally into 2×10′ cells. The next day, 100 μg or 500 μg of monoclonal antibody A1.267 dissolved in 0.2 mR of phosphate buffered saline was intraperitoneally administered to the test group, and the same amount of scaly acid buffered saline alone was administered intraperitoneally to the control group. It was 1am on the day.

結果を表4に示す。なお、抗腫瘍効果の判定にはMSD
(Median 5urvival Day;生存日数
中央値)とILS(Increased Life 5
pan= (T−C)/C:延命率)を用いた。
The results are shown in Table 4. In addition, for determining the antitumor effect, MSD
(Median 5urvival Day) and ILS (Increased Life 5
pan=(TC)/C: life extension rate) was used.

また第3図には対称群とA1.267を500μg投与
群について、腫瘍細胞移植後の日数経過に対して生残し
ているマウスの割合をグラフに示す6表   4 (接種細胞数2X10’) 対照群   0  22.0   0   0/14采
丈立11− 対照群の動物数を9匹、接種細胞数をl X 10’個
、接種方法を皮下移植、モノクローナル抗体の投与量を
500μgだけとした他は実施例8と同じ条件で実験を
行なった6 結果を表5に示す。抗腫瘍効果の判定は実施例8と同じ
値を使用した。
In addition, Fig. 3 shows a graph of the percentage of surviving mice as a function of the number of days after tumor cell implantation for the control group and the group administered with 500 μg of A1.267. Group 0 22.0 0 0/14 Kajotachi 11- The number of animals in the control group was 9, the number of inoculated cells was 1 x 10', the inoculation method was subcutaneous implantation, and the dose of monoclonal antibody was only 500 μg. An experiment was conducted under the same conditions as in Example 8. The results are shown in Table 5. The same values as in Example 8 were used to evaluate the antitumor effect.

第4図は第3図と同様に対照群とA1.267を500
μg投与群について、腫瘍細胞移植後の日数経過に対し
て生残しているマウスの割合をグラフに示したものであ
る。
Figure 4 shows the control group and A1.267 at 500% as in Figure 3.
This is a graph showing the percentage of surviving mice with respect to the number of days after tumor cell transplantation for the μg administration group.

表   5 (接種細胞数lX10’) 対照群   0  22.5   0   0/9投与
群  500  >60   >166.7  415
実施例8および実施例9の結果から判るように、モノク
ローナル抗体A1.267の投与によりマウスT細胞白
血病の増殖は著しく抑制され、或は移植腫瘍は拒絶され
るに至ったことが示された。
Table 5 (Number of inoculated cells l x 10') Control group 0 22.5 0 0/9 administration group 500 >60 >166.7 415
As can be seen from the results of Examples 8 and 9, it was shown that administration of monoclonal antibody A1.267 significantly suppressed the proliferation of murine T-cell leukemia or led to rejection of the transplanted tumor.

実験動物としてはC57BL/6マウスを対照群は14
匹、試験群はモノクローナル抗体の投与量により2群に
分け、各々5匹使用した。移植腫瘍にはC57/Bl、
6と同系(syngeneic)のT細胞白血病細胞株
1’:14を使用し、2xlO’個腹腔内に接種した。
The experimental animals were C57BL/6 mice, and the control group was 14
The test group was divided into two groups depending on the dose of monoclonal antibody, and five animals were used in each group. C57/Bl for the transplanted tumor;
The T-cell leukemia cell line 1':14, which is syngeneic to 6, was used and 2xlO' cells were inoculated intraperitoneally.

翌日燐酸緩衝塩類液0 、2m(lに溶かした100μ
g又は500μgのモノクローナル抗体At、410を
試験群に、対照群には同量の燐酸緩衝塩類液のみを腹腔
内に投与し、マウスの生死を60日間観察した。
The next day, 100μ dissolved in 0.2ml (l) of phosphate buffered saline solution was added.
g or 500 μg of the monoclonal antibody At, 410 was intraperitoneally administered to the test group, and the same amount of phosphate buffered saline alone was intraperitoneally administered to the control group, and the survival or death of the mice was observed for 60 days.

結果を表6に示す。なお、抗腫瘍効果の判定にはMSD
(Median 5urvival Day;生存日数
中央値)とILS(Increased Life 5
pan=(T−C)/C;延命率)を用いた。
The results are shown in Table 6. In addition, for determining the antitumor effect, MSD
(Median 5urvival Day) and ILS (Increased Life 5
pan=(TC)/C; life extension rate) was used.

また第5図には対称群とA1.410を500μg投与
群について、腫瘍細胞移植後の日数経過に対して生残し
ているマウスの割合をグラフに示す。
Furthermore, FIG. 5 is a graph showing the percentage of surviving mice versus the number of days after tumor cell implantation for the control group and the group administered with 500 μg of A1.410.

表   6 (接種細胞数2X10’) 対照群   0  22.0   0   0/14対
照群の動物数を9匹、接種細胞数をt x to’個、
接種方法を皮下移植、モノクローナル抗体の投与量を5
00μgだけとした他は実施例10と同じ条件で実験を
行なった。
Table 6 (Number of inoculated cells 2 x 10') Control group 0 22.0 0 0/14 The number of animals in the control group is 9, the number of inoculated cells is t x to',
Inoculation method: subcutaneous implantation, monoclonal antibody dose: 5
The experiment was conducted under the same conditions as in Example 10, except that only 00 μg was used.

結果を表7に示す。抗腫瘍効果の判定は実施例10と同
じ値を使用した。
The results are shown in Table 7. The same values as in Example 10 were used to evaluate the antitumor effect.

第6図は第5図と同様に対照群とA1.410を500
μg投与群について、腫瘍細胞移植後の日数経過に対し
て生残しているマウスの割合をグラフに示したものであ
る。
Figure 6 shows the control group and A1.410, similar to Figure 5.
This is a graph showing the percentage of surviving mice with respect to the number of days after tumor cell transplantation for the μg administration group.

表   7 (接種細胞数lXl0’) 対照群   0  22.5   0   0/9投与
群  500  60.5  62.2  115大週
−例12 (モノクロ二丈p皿木へJ−リリ旦9−疲腫
−済蘇孟ユ) 対照群の動物数を8匹、接種細胞数をi x to5個
、接種方法を皮下移植とし、モノクローナル抗体の投与
方法を静脈投与(iv)と腹J控内投与(ip)の両方
で行なった。他は実施例10と同じ条件で実験を行なっ
た。
Table 7 (Number of inoculated cells lXl0') Control group 0 22.5 0 0/9 administration group 500 60.5 62.2 115 weeks - Example 12 (Monochrome Nijo p Saraki he J - Lily Dan 9 - Exhaustion - completed (Su Mengyu) The number of animals in the control group was 8, the number of inoculated cells was ix to 5, the inoculation method was subcutaneous implantation, and the monoclonal antibody was administered both intravenously (IV) and intraperitoneally (IP). I did it. The experiment was otherwise conducted under the same conditions as in Example 10.

結果を表8に示す。抗11!T!瘍効果の判定は実施例
10と同じ値を使用した6 表   8 (接種細胞数lXl0’) 2026.518.8015 1ν投与  100  31.541.3  0155
0044.599.6215 2025゜514.3015 ip投与  100  37,5  68.2  01
550039.577.1215 実施例10、実施例11および実施例12の結果から判
るように、モノクローナル抗体A1.410の投与によ
りマウスT細胞白血病の増殖は著しく抑制され、或は移
植腫瘍は拒絶されるに至ったことが示された。
The results are shown in Table 8. Anti-11! T! The same values as in Example 10 were used to determine the tumor effect6 Table 8 (Number of inoculated cells lXl0') 2026.518.8015 1ν administration 100 31.541.3 0155
0044.599.6215 2025°514.3015 IP administration 100 37,5 68.2 01
550039.577.1215 As can be seen from the results of Example 10, Example 11, and Example 12, administration of monoclonal antibody A1.410 significantly suppresses the proliferation of mouse T cell leukemia or rejects the transplanted tumor. It was shown that this has been achieved.

実験動物としてはC57DL/6マウスを対照群は14
匹、試験群はモノクローナル抗体の投与量により2群に
分け、各々5匹使用した。移植腫瘍にはC57/BL6
と同系(Syngen8iC)のT細胞白血病細胞株[
E+、4を使用し、2XlO”側腹腔内に接種した。翌
[1燐酸緩衝塩類液0.2mυに溶かした100μg又
は500μにのモノクローナル抗体A1.425を試験
群に、対照群には同量の燐酸緩?#塩類液のみを腹腔内
に投与し、マウスの生死を60日間IIF;%した。
The experimental animals were C57DL/6 mice, and the control group was 14
The test group was divided into two groups depending on the dose of monoclonal antibody, and five animals were used in each group. C57/BL6 for transplanted tumor
Syngeneic (Syngen8iC) T-cell leukemia cell line [
The test group was inoculated with monoclonal antibody A1.425 at 100 μg or 500 μg dissolved in 0.2 mυ of phosphate buffered saline, and the control group was inoculated with the same amount. Only a mild phosphoric acid saline solution was administered intraperitoneally, and the survival of the mice was determined by IIF% for 60 days.

結果を表9に示す、なお、抗腫瘍効果の判定にはMSD
(Median 5urvival Day;生存日数
中央値)とILS(Increased Life S
pa+1=(T−C)/C;延命率)を用いた。
The results are shown in Table 9. In addition, MSD was used to determine the antitumor effect.
(Median 5urvival Day) and ILS (Increased Life S
pa+1=(TC)/C; life extension rate) was used.

また第7図には対照群とA1.425を500μg投与
群について、腫瘍、細胞移植後の日数経過に対して生残
しているマウスの割合をグラフに示す。
Furthermore, FIG. 7 shows a graph of the percentage of surviving mice with respect to the number of days after tumor and cell transplantation for the control group and the group administered with 500 μg of A1.425.

表  9 (接種細胞数2X104) 対照群   0  22.0   0   0/14処
來丈攻フー) 対照群の動物数を9匹、接種細胞数をlXl0’個。
Table 9 (Number of inoculated cells 2 x 104) Control group 0 22.0 0 0/14 The number of animals in the control group was 9, and the number of inoculated cells was 1 x 10'.

接種方法を皮下移植、モノクローナル抗体の投4量を5
00μgだけとした他は実施例3と同じ条件で実験を行
なった。
The inoculation method was subcutaneous implantation, and 4 doses of monoclonal antibody were administered in 5 doses.
The experiment was conducted under the same conditions as in Example 3 except that only 00 μg was used.

結果を表10に示す。抗腫瘍効果の判定は実施例13と
同じ値を使用した。
The results are shown in Table 10. The same values as in Example 13 were used to evaluate the antitumor effect.

第8図は第7図と同様に対照群とA1.425を500
μg投与群について、腫瘍細胞移植後の日数経過に対し
て生残しているマウスの割合をグラフに示したものであ
る。
Figure 8 shows the control group and A1.425 at 500% as in Figure 7.
This is a graph showing the percentage of surviving mice with respect to the number of days after tumor cell transplantation for the μg administration group.

表  10 (接種細胞数IX]、0’) 対照群   0  22.5   0   0/9投与
群  に00  39.5  75.6  115実施
例13、および実施例1/lの結果から判るように、モ
ノクローナル抗体A1.425の投与によりマウスT細
胞白血病の増殖は著しく抑制され、或は移植腫瘍は拒絶
されるに至ったことが示された。
Table 10 (Number of inoculated cells IX], 0') Control group 0 22.5 0 0/9 Administration group 00 39.5 75.6 115 As can be seen from the results of Example 13 and Example 1/l, It was shown that administration of monoclonal antibody A1.425 significantly suppressed the proliferation of murine T-cell leukemia or led to rejection of the transplanted tumor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は左のレーンから、、ガングリオシド純品の混合
物(GM3+GM2+GM1+GD3+GD2)をTL
Cにかけてレゾルシノールで染色したもの、ヒトメラノ
ーマ細胞株M14のガングリオシド分画をTLCにかけ
てレゾルシノールで染色したもの、M14のガングリオ
シド分画をTLCにかけた後A1.267、A1.41
0及びA1./125で酵素免疫染色を行なったもので
ある。 第2図(A)は4種類のGD3をTI、Cにかけ、レゾ
ルシノールで染色したものである。左からガングリオシ
ド純品の混合物(0M3+G旧+GD3)、レーン番号
1はGD3(NeuAc、 NeuAc)、レーン番号
2はGD3(NeuAc、 NeuGc)、レーン番号
3はGD3(NauGc。 NeuAc)、レーン番号4はGD3(NeuGc、 
NeuGc)である。第2図はAt、267、A1..
410及びA1.425&、:よル’rLCの酵素免疫
染色の結果である。レーン番号とGD3の種類は共通で
ある。 第3図、第5図及び第7図には、C57/nL6マウス
を用い、移植腫瘍としてこれと同系(syngenei
c)のT細胞白血病細胞株EL4を使用し、2XlO’
個腹腟内に接種したものに対して、対照群とA1.26
7、A1.410及びA1.425をそれぞれ500μ
g投与した群について、腫瘍細胞移植後の日数経過と生
残マウスの数の関係をグラフに示す。 第4図、第6図及び第8図は、接種細胞数を1XIO’
個、接種方法を皮下移植とした他は第3図と同じ条件で
実験を行ない、対照群とA1,267、A1.410及
びA1.425をそれぞれ500μ&投与した群につい
て、腫瘍細胞移植後の日数経過と生残マウスの数の関係
をグラフに示したものである。 代理人 弁理士 戸 1)親 男 (A)     (B)       ・・Stcls
M14  1  2  3  4  5’   6経過
日数 経過日数 手続補正書(鏝) 昭和63年 8月18日
Figure 1 shows a mixture of pure gangliosides (GM3+GM2+GM1+GD3+GD2) starting from the left lane.
The ganglioside fraction of human melanoma cell line M14 was subjected to TLC and stained with resorcinol, and the ganglioside fraction of M14 was subjected to TLC and stained with resorcinol.A1.267, A1.41
0 and A1. Enzyme immunostaining was performed at /125. FIG. 2(A) shows four types of GD3 subjected to TI and C and stained with resorcinol. From the left: a mixture of pure gangliosides (0M3 + G old + GD3), lane number 1 is GD3 (NeuAc, NeuAc), lane number 2 is GD3 (NeuAc, NeuGc), lane number 3 is GD3 (NauGc. NeuAc), lane number 4 is GD3 (NeuGc,
NeuGc). Figure 2 shows At, 267, A1. ..
410 and A1.425 &: Results of enzyme immunostaining of Yoru'rLC. The lane number and GD3 type are common. In Figures 3, 5, and 7, C57/nL6 mice are used, and syngeneic (syngenei) tumors are used as transplanted tumors.
c) Using the T cell leukemia cell line EL4, 2XlO'
Control group and A1.26 for those inoculated intravaginally.
7, 500μ each of A1.410 and A1.425
The graph shows the relationship between the number of surviving mice and the number of days after tumor cell transplantation for the group administered with g. Figures 4, 6, and 8 show the number of inoculated cells being 1XIO'.
The experiment was conducted under the same conditions as in Figure 3, except that the inoculation method was subcutaneous implantation. The graph shows the relationship between the progress and the number of surviving mice. Agent Patent Attorney 1) Parent Male (A) (B) ・・Stcls
M14 1 2 3 4 5' 6 Elapsed days Procedure amendment for elapsed days (trowel) August 18, 1988

Claims (1)

【特許請求の範囲】 1、C57BL/6マウス由来のT細胞白血病細胞株E
L4でA系マウスを免疫することにより得られる抗体産
生細胞とBa1b/c系マウス由来の骨髄腫細胞株NS
1とを融合させることにより得られるハイブリドーマが
産生し、免疫グロブリンクラスが(IgG3、x)であ
って、細胞表面ガングリオシドに対する認識の特異性の
強さにおいて、 GD2>GD3(NeuAc、NeuAc)、GD3(
NeuGc、NeuAc)、GD1b、GT1a、GQ
1b>GT1 であるモノクローナル抗体A1.267を有効成分とす
る抗腫瘍剤。 2、C57BL/6マウス由来のT細胞白血病細胞株E
L4でA系マウスを免疫することにより得られる抗体産
生細胞とBa1b/c系マウス由来の骨髄腫細胞株NS
1とを融合させることにより得られるハイブリドーマが
産生し、免疫グロブリンクラスが(IgG3、x)であ
って、細胞表面ガングリオシドGD2を認識するモノク
ローナル抗体A1.410を有効成分とする抗腫瘍剤。 3、C57BL/6マウス由来のT細胞白血病細胞株E
L4でA系マウスを免疫することにより得られる抗体産
生細胞とBa1b/c系マウス由来の骨髄腫細胞株NS
1とを融合させることにより得られるハイブリドーマが
産生し、免疫グロブリンクラスが(IgG3、x)であ
って、細胞表面ガングリオシドGD2を認識するモノク
ローナル抗体A1.425を有効成分とする抗腫瘍剤。
[Claims] 1. T-cell leukemia cell line E derived from C57BL/6 mice
Antibody-producing cells obtained by immunizing A mice with L4 and myeloma cell line NS derived from Ba1b/c mice
1, the immunoglobulin class is (IgG3, (
NeuGc, NeuAc), GD1b, GT1a, GQ
An antitumor agent containing monoclonal antibody A1.267, in which 1b>GT1, as an active ingredient. 2. T-cell leukemia cell line E derived from C57BL/6 mice
Antibody-producing cells obtained by immunizing A mice with L4 and myeloma cell line NS derived from Ba1b/c mice
1. An antitumor agent produced by a hybridoma obtained by fusion of A1.410 with A1.410, which has an immunoglobulin class of (IgG3, x) and which recognizes cell surface ganglioside GD2, as an active ingredient. 3. T-cell leukemia cell line E derived from C57BL/6 mice
Antibody-producing cells obtained by immunizing A mice with L4 and myeloma cell line NS derived from Ba1b/c mice
1. An antitumor agent produced by a hybridoma obtained by fusion of A1.425 and A1.425, which has an immunoglobulin class of (IgG3, x) and which recognizes cell surface ganglioside GD2, as an active ingredient.
JP63095724A 1988-04-20 1988-04-20 Antitumor agent Pending JPH01268646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63095724A JPH01268646A (en) 1988-04-20 1988-04-20 Antitumor agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63095724A JPH01268646A (en) 1988-04-20 1988-04-20 Antitumor agent

Publications (1)

Publication Number Publication Date
JPH01268646A true JPH01268646A (en) 1989-10-26

Family

ID=14145422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63095724A Pending JPH01268646A (en) 1988-04-20 1988-04-20 Antitumor agent

Country Status (1)

Country Link
JP (1) JPH01268646A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045140A1 (en) * 1996-05-24 1997-12-04 Glaxo Group Limited Concentrated antibody preparation
US7132100B2 (en) 2002-06-14 2006-11-07 Medimmune, Inc. Stabilized liquid anti-RSV antibody formulations
US7425618B2 (en) 2002-06-14 2008-09-16 Medimmune, Inc. Stabilized anti-respiratory syncytial virus (RSV) antibody formulations
US7700735B2 (en) 2000-03-01 2010-04-20 Medimmune, Llc High potency recombinant antibodies and method for producing them
US7740851B2 (en) 2000-01-27 2010-06-22 Medimmune, Llc Ultra high affinity neutralizing antibodies
US7847082B2 (en) 2000-11-28 2010-12-07 Medimmune, Llc Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment
EP2292636A2 (en) 2004-09-09 2011-03-09 Genentech, Inc. Process for concentration of antibodies and therapeutic products thereof
US9321831B2 (en) 2007-06-01 2016-04-26 Medimmune Limited RSV-specific binding molecules and means for producing them
US10035843B2 (en) 2009-10-06 2018-07-31 Medimmune Limited RSV-specific binding molecule

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045140A1 (en) * 1996-05-24 1997-12-04 Glaxo Group Limited Concentrated antibody preparation
US7740851B2 (en) 2000-01-27 2010-06-22 Medimmune, Llc Ultra high affinity neutralizing antibodies
US7700735B2 (en) 2000-03-01 2010-04-20 Medimmune, Llc High potency recombinant antibodies and method for producing them
US7847082B2 (en) 2000-11-28 2010-12-07 Medimmune, Llc Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment
US8206951B2 (en) 2002-06-14 2012-06-26 Medimmune, Llc Stabilized liquid anti-RSV antibody formulations
US7425618B2 (en) 2002-06-14 2008-09-16 Medimmune, Inc. Stabilized anti-respiratory syncytial virus (RSV) antibody formulations
US7785592B2 (en) 2002-06-14 2010-08-31 Medimmune, Llc Stabilized liquid anti-RSV antibody formulations
US7294336B2 (en) 2002-06-14 2007-11-13 Medimmune, Inc. Stabilized liquid anti-RSV antibody formulations
US8007793B2 (en) 2002-06-14 2011-08-30 Medimmune, Llc Stabilized liquid anti-RSV antibody formulations
US7132100B2 (en) 2002-06-14 2006-11-07 Medimmune, Inc. Stabilized liquid anti-RSV antibody formulations
US9879067B2 (en) 2002-06-14 2018-01-30 Medimmune, Llc Stabilized liquid anti-RSV antibody formulations
US11180542B2 (en) 2002-06-14 2021-11-23 Arexis Ab Stabilized liquid anti-RSV antibody formulations
US10604560B2 (en) 2002-06-14 2020-03-31 Arexis Ab Stabilized liquid anti-RSV antibody formulations
EP2292636A2 (en) 2004-09-09 2011-03-09 Genentech, Inc. Process for concentration of antibodies and therapeutic products thereof
EP4108259A1 (en) 2004-09-09 2022-12-28 Genentech, Inc. Process for concentration of antibodies and therapeutic products thereof
EP4104859A1 (en) 2004-09-09 2022-12-21 Genentech, Inc. Process for concentration of antibodies and therapeutic products thereof
EP3805248A2 (en) 2004-09-09 2021-04-14 Genentech, Inc. Process for concentration of antibodies and therapeutic products thereof
US10730931B2 (en) 2007-06-01 2020-08-04 Medimmune Limited RSV-specific binding molecules and means for producing them
US10059757B2 (en) 2007-06-01 2018-08-28 Medimmune Limited RSV-specific binding molecules and means for producing them
US9321831B2 (en) 2007-06-01 2016-04-26 Medimmune Limited RSV-specific binding molecules and means for producing them
US10723786B2 (en) 2009-10-06 2020-07-28 Medimmune, Limited RSV-specific binding molecule
US10035843B2 (en) 2009-10-06 2018-07-31 Medimmune Limited RSV-specific binding molecule

Similar Documents

Publication Publication Date Title
US5091178A (en) Tumor therapy with biologically active anti-tumor antibodies
Reisfeld et al. Human tumor antigens
US7147850B2 (en) Therapeutic binding agents against MUC-1 antigen and methods for their use
US20050048059A1 (en) Therapeutic binding agents against MUC-1 antigen and methods for their use
US20100297008A1 (en) Ganglioside associated recombinant antibodies and the use thereof in the diagnosis and treatment of tumors
JPH06505253A (en) Monoclonal antibodies against ELAM-1 and their uses
EP0252741B1 (en) Use of a monoclonal antibody against the 17-1A antigen for the manufacture of a medicament for the treatment of a gastrointestinal tumor
JP4125383B2 (en) Monoclonal antibody recognizing N-glycolylated-galactose-glucose sialic acid oligosaccharide in malignant tumor and composition containing this antibody
JPH01268646A (en) Antitumor agent
Ito et al. Carbohydrates as antigenic determinants of tumor‐associated antigens recognized by monoclonal anti‐tumor antibodies produced in a syngeneic system
JP3066741B2 (en) Composition for suppressing cancer cell growth and replication
Spitalnik et al. Anti-My-28, an antigranulocyte mouse monoclonal antibody, binds to a sugar sequence in lacto-N-neotetraose
SK286627B6 (en) Use of antibodies for anticancer vaccination
JPH04179493A (en) Dimer le x(defucosyl y 2;iii3 fucv 3 fucnlc 6 cer) and its analogue bio-organic synthesis
Masson et al. Cancer-associated tumour markers CA 19-9 and CA-50 in patients with pancreatic cancer with special reference to the Lewis blood cell status
AU2015257496B2 (en) Glycolipid containing compositions for use in the treatment of tumours
US6096725A (en) Methods of using αGal oligosaccharides as immune system targeting agents
Hagenaars et al. The development of novel mouse monoclonal antibodies against the CC531 rat colon adenocarcinoma
EP0234122A2 (en) Tumor therapy with biologically active anti-tumor antibodies
O'BOYLE et al. Specificity analysis of murine monoclonal antibodies reactive with Tn, sialylated Tn, T, and monosialylated (2→ 6) T antigens
JP2007252372A (en) Monoclonal antibody, gene encoding the antibody, hybridoma, pharmaceutical composition and diagnostic reagent
JPH07504222A (en) Suppression of cell adhesion by chemically defined oligosaccharides, derivatives and mimetics of the oligosaccharides, and antibodies against the oligosaccharides
Miyamoto et al. Establishment of a monoclonal antibody directed against Gb3Cer/CD77: a useful immunochemical reagent for a differentiation marker in Burkitt's Iymphoma and germinal centre B cells
JPH0673470B2 (en) Anti-human gastric cancer monoclonal antibody AMC-462
CN115485304A (en) Antibody drug conjugates and formulations thereof