JPH01268224A - Coordinate input device - Google Patents

Coordinate input device

Info

Publication number
JPH01268224A
JPH01268224A JP63096548A JP9654888A JPH01268224A JP H01268224 A JPH01268224 A JP H01268224A JP 63096548 A JP63096548 A JP 63096548A JP 9654888 A JP9654888 A JP 9654888A JP H01268224 A JPH01268224 A JP H01268224A
Authority
JP
Japan
Prior art keywords
light
coordinate
coordinate plane
input device
receiving means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63096548A
Other languages
Japanese (ja)
Other versions
JP2814490B2 (en
Inventor
Toshihiro Takada
博敞 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9654888A priority Critical patent/JP2814490B2/en
Publication of JPH01268224A publication Critical patent/JPH01268224A/en
Application granted granted Critical
Publication of JP2814490B2 publication Critical patent/JP2814490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Position Input By Displaying (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To improve the resolution of the title coordinate input device by providing scanning type light transmitting-receiving means on a square coordinate plane and at, at least, two nearly corner sections of the coordinate plane and light regressive reflecting bodies along, at least, two sides of the coordinate plane and detecting a coordinate position on the coordinate plane from the photodetecting output signals of at least two of the light transmitting-receiving means. CONSTITUTION:When the light beam which are emitted from scanning type light transmitting-receiving means 35a and 35b toward a light regressive reflecting body 36 applied or provided on the inside surface a frame body 24 surrounding the four sides of the coordinate plane 37 of a display device 9 and totally reflected by the reflecting bodies 36 in a normal way to the photodetecting element are intercepted by an instruction, when the instruction performs coordinate indication on the coordinate plane. Since the X- and Y-coordinates of the point indicated by the finger are found by detecting the intercepted states of the light beam, only two sets of light emitting and receiving elements can manage necessary light emission and reception and the resolution can be decided by the diameter of the spherical surface of the light regressive reflecting surface. Thus a coordinate input device which is simple in constitution low in cost, but high in resolution is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はタッチパネルに用いて好適な座標入力装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a coordinate input device suitable for use in a touch panel.

〔発明の概要〕[Summary of the invention]

この発明はタッチパネルに用いて好適な座標入力装置に
係り、四辺形の座標面と、この座標面の少くとも2つの
略隅部に配設された走査型光送受手段と、座標面の少く
とも2辺に沿って設けた光回帰性反射体とを具備し、少
くとも2つの走査型光送受手段の受光出力信号により、
座標面の座標位置を検知する様にして分解能が高く、周
囲ノイズに影響されず、構造簡単で廉価な座標入力装置
を得る様にしたものである。
The present invention relates to a coordinate input device suitable for use in a touch panel, and includes a quadrilateral coordinate plane, scanning light transmitting/receiving means disposed at at least two substantially corners of the coordinate plane, and at least one corner of the coordinate plane. and a light recursive reflector provided along two sides, and the light receiving output signals of at least two scanning light transmitting/receiving means
A coordinate input device that detects the coordinate position on a coordinate plane has high resolution, is unaffected by surrounding noise, has a simple structure, and is inexpensive.

〔従来の技術〕[Conventional technology]

従来から座標入力装置としてキーボードやデジタイザと
して利用可能な画面上を指でタッチするるだけで入力で
きるタッチパネル装置が種々提案されている。第6図〜
第12図は夫々その一例である。
2. Description of the Related Art Various touch panel devices have been proposed as coordinate input devices, which can be used as keyboards or digitizers and allow input by simply touching a screen with a finger. Figure 6~
FIG. 12 is an example of each.

すなわち、第6図は抵抗シート方式、第7図はマ) I
Jソックス式の構造を概略的に示すものであって、いず
れもその基本構造は第8図のように構成される。第8図
において、(1)はフィルム電極、(2)はガラス電極
であって、フィルム電極(1)は透明なフィルム(3)
と、このフィルム(3)の一方(指で押される側)に設
けられたハードコード層(4)と、フィルム(3)の他
方に設けられたネザ等の透明電極(5)とから成り、ガ
ラス電極(2)はフィルト又はガラス基板(6)と、透
明電極(5)と対向するよ゛うにフィルム又はガラス基
板(6)上に設けられた透明電極(7)と、この透明電
極(7)上に隔置された微小な点状のドツトスペーサ或
いはフィルムインシュレータ(8)とから成る。フィル
ム電極(1)は指で押して入力する側すなわち可動電極
であり、ガラス電極(2)は表示体側すなわち固定電極
側である。このようにして構成されたフィルム電極(1
)及びガラス電極(2)は第9図に示すように陰極線管
(CRT)(9)上に取付けられる。なお、第6図及び
第7図において、(10a)は透明電極(7)を引き出
すリード、(10b)  は透明電極を引き出すリード
、(11)はこのリード(10a)(10b)  を外
部と接続するコネクク接続部である。
In other words, Fig. 6 shows the resistor sheet method, and Fig. 7 shows the resistance sheet method.
This figure schematically shows the structure of the J-sock type, and the basic structure is as shown in FIG. In Figure 8, (1) is a film electrode, (2) is a glass electrode, and the film electrode (1) is a transparent film (3).
It consists of a hard code layer (4) provided on one side of this film (3) (the side pressed by a finger), and a transparent electrode (5) such as a nether provided on the other side of the film (3), The glass electrode (2) consists of a filter or glass substrate (6), a transparent electrode (7) provided on the film or glass substrate (6) so as to face the transparent electrode (5), and the transparent electrode (7). ) and a minute dot-like dot spacer or film insulator (8). The film electrode (1) is on the side to be pressed with a finger for input, that is, the movable electrode, and the glass electrode (2) is on the display side, that is, the fixed electrode side. Film electrode (1
) and a glass electrode (2) are mounted on a cathode ray tube (CRT) (9) as shown in FIG. In Figures 6 and 7, (10a) is the lead that brings out the transparent electrode (7), (10b) is the lead that brings out the transparent electrode, and (11) is the lead that connects these leads (10a) and (10b) to the outside. This is the connecting part.

そして、指やペンで表面のハードコード層(4)を裏側
のフィルム基板又はガラス基板(6)に向かって押すと
、透明電極(5)と(7)が接触し、一対の電極か導通
する。接触した点のX−Y座標はホスト・コンピュータ
(図示せず)に供給され位置決定がなされる。
Then, when the hard code layer (4) on the front surface is pushed toward the film substrate or glass substrate (6) on the back side with a finger or a pen, the transparent electrodes (5) and (7) come into contact and the pair of electrodes becomes electrically conductive. . The X-Y coordinates of the point of contact are provided to a host computer (not shown) for position determination.

第10図は光学方式(キャロル方犬)の構造を概略的に
示・ずものであって、米国特許4.267、443号公
報にし必ささている。表示画面の周辺に位置するように
プリント回路基板(12)上に配列された複数個の発光
ダイオード(13)が赤外線ビームを発光し、その反対
側のプリント回路基板(14)上に配列された複数個の
フォト・トランジスタ(15)が受光し、また、プリン
ト回路長□板(16)上に配列された複数個の発光ダイ
オード(13)が赤外線ビームを発光し、その反対側の
プリント回路基板(17)上に配列された複数個のフォ
ト・トランジスタ(15)が受光して赤外線ビームの格
子を作る。光軸に沿った各フォト・トランジスタ(15
)と発光ダイオード(13)には個別のアドレスを割り
付けである。アドレスを指定して各発光ダイオード(1
3)とこれに対になっているフォト・トランジスタ(1
5)を順次切換えることにより、どの発光ダイオード(
13)が発光し、反対側のどのフォト・トランジスタ(
15)がその光を検出することになっているかがわかる
FIG. 10 schematically shows the structure of the optical system (Carroll method), which is disclosed in US Pat. No. 4,267,443. A plurality of light emitting diodes (13) arranged on the printed circuit board (12) to be located around the periphery of the display screen emit infrared beams, and arranged on the printed circuit board (14) on the opposite side thereof. A plurality of phototransistors (15) receive light, and a plurality of light emitting diodes (13) arranged on a printed circuit board (16) emit an infrared beam, and a printed circuit board on the opposite side emits an infrared beam. (17) A plurality of phototransistors (15) arranged above receive light and form a grid of infrared beams. Each phototransistor (15
) and the light emitting diode (13) are assigned individual addresses. Each light emitting diode (1
3) and the paired phototransistor (1
5) by sequentially switching which light emitting diode (
13) emits light, and which phototransistor (
15) is supposed to detect that light.

指やペンで表示画面に触れると、これが赤外線ビームを
遮断する。遮断された光ビームのX−Y座標はホスト・
コンピュータに送られ、位置決定される。なお、赤外線
ビームがつくる光格子面に指を置いてビームを遮断する
構造のため、センス面(光格子面)は平面である。また
、(18)は導通させたい発光ダイオード(13)及び
フォト・トランジスタ(15)を選択するための切り替
え回路用ICである。
When you touch the display screen with your finger or pen, this blocks the infrared beam. The X-Y coordinates of the interrupted light beam are
It is sent to a computer and the location is determined. Note that the sense surface (optical lattice surface) is a flat surface because the structure is such that the beam is blocked by placing a finger on the optical lattice surface created by the infrared beam. Further, (18) is a switching circuit IC for selecting a light emitting diode (13) and a phototransistor (15) to be made conductive.

第11図は誘導方式(容量方式)の構造を概略的に示す
もので、ガラス基板(19)の表面を独立した領域に細
分化し、それぞれの領域に透明電極(20)を形成する
。そして、領域の1つに指が触れると、人体の容量が回
路に加わり、容量変化を検出した制御部は領域の位置を
識別する。
FIG. 11 schematically shows the structure of the inductive method (capacitive method), in which the surface of the glass substrate (19) is subdivided into independent regions, and a transparent electrode (20) is formed in each region. Then, when a finger touches one of the regions, the capacitance of the human body is added to the circuit, and the control section detecting the capacitance change identifies the location of the region.

第12図は表面波方式(音響方式)の構造を概略的に示
すもので、ガラス基板(21)の下端に音波発生器(2
2)と音波受信器(23)を設け、音波発生器。
Figure 12 schematically shows the structure of the surface wave method (acoustic method), in which a sound wave generator (2
2) and a sound wave receiver (23), which is a sound wave generator.

(22)がガラス基板(21)上に表面弾性波を送出し
、ガラス基板(21)に指を触れると、その表面波が反
射されて音波受信器(23)に戻ってくる。この戻って
くるまでの時間を計測してタッチ位置を算出する。
(22) sends out surface acoustic waves onto the glass substrate (21), and when a finger touches the glass substrate (21), the surface waves are reflected and return to the acoustic wave receiver (23). The touch position is calculated by measuring the time it takes for the touch to return.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで上述した従来のタッチパネル装置は夫々次のよ
うな種々の欠点がある。すなわち、抵抗シート方式及び
マトリックス方式の場合、ド・ソトスペーザ或いはフィ
ルムインシューク(8)により光が散乱して均一な透光
性が得られず、高い透明度が得られないので見に<<、
色再現性も悪く、更にすりきす等に弱く、フィルトが汚
れ易いく、タッチ感も悪い欠点があった。また、キャロ
ル方式の場合は光格子面を細かくしようとすると、発光
ダイオード(13)とフォト・トランジスタ(15)並
にこれら発光及び受光素子を駆動するアンプや切換用I
C(1B)の数が非常に多くなり、コストア・レプとな
ら、発光ダイオード(13)の発散角が大きいので、フ
ォト・トランジスタ(15)側にアンプゲインの大きい
ものが沢山必要で、画面を大型化すれば分解能が落して
、感度が劣化し、外部ノイズで誤動作し易い、更にCR
Tのフェース面の4側面に配設したプリント基板(12
)、 (14)、 (16)、 (17)  の奥行d
が深くなり、表示装置全体の形状がデザイン的に悪くな
るだけでなく、CRTのフェース面が奥の方に行き、タ
ッチしに<<、CRTのサイズ毎にプリント基板を変え
なければならないので汎用性のものが得られない。又、
CRT表面が曲面であるために視差(バララックス)を
生ずる欠点がある。
By the way, the above-mentioned conventional touch panel devices each have the following various drawbacks. In other words, in the case of the resistive sheet method and the matrix method, the light is scattered by the spacer or the film injector (8), making it impossible to obtain uniform translucency and high transparency.
The color reproducibility was poor, the filter was susceptible to scratches, the filter was easily stained, and the touch was poor. In addition, in the case of the Carroll method, when attempting to make the optical lattice plane finer, the light emitting diode (13), phototransistor (15), amplifiers and switching I/Os that drive these light emitting and light receiving elements are required.
Since the number of C(1B) becomes very large and the costar rep has a large divergence angle of the light emitting diode (13), many transistors with large amplifier gain are required on the phototransistor (15) side, which makes it difficult to control the screen. As the size increases, the resolution decreases, the sensitivity deteriorates, malfunctions are more likely to occur due to external noise, and CR
Printed circuit boards (12
), (14), (16), (17) depth d
Not only does this make the overall shape of the display device worse in terms of design, but the face of the CRT moves toward the back, making it difficult to touch the screen. I can't get anything sexual. or,
Since the CRT surface is curved, it has the disadvantage of causing parallax.

また、誘導方式の場合タッチの検出が人間の指の様な導
電性のものに限られ、手袋をはめて触れたり、鉛筆の先
で触れても人力することが出来ず、更にバット数が限、
られてしまう欠点を有する。更に表面波方式では指の様
に大きい物体の中心を求めることが出来ず、高分解能に
するためトランスジユーザを接近して配置すると高価と
なり汚れに対する感度も高くなって読取りの誤りが増加
する欠点を有する。
In addition, in the case of the inductive method, touch detection is limited to conductive objects such as human fingers, and it is impossible to manually touch it with gloves on or the tip of a pencil, and furthermore, the number of bats is limited. ,
It has the disadvantage of being damaged. Furthermore, the surface wave method cannot find the center of a large object such as a finger, and arranging transducers close together to achieve high resolution is expensive, increases sensitivity to dirt, and increases reading errors. has.

本発明は叙上の欠点に鑑みなされたものでそのI」的と
ずろところは分解能が高く、ノイズに影響されない構造
簡単で廉価な座標人力装置を得るようにしたものである
The present invention was devised in view of the above-mentioned drawbacks, and its main purpose is to provide a coordinate system that has high resolution, is unaffected by noise, has a simple structure, and is inexpensive.

〔課題を解決するだめの手段〕[Failure to solve the problem]

この発明の座標人力装置はその一例が第1図に示されて
いる様に四辺形の座標面(37)と、この座標面(37
)の少くとも2つの略隅部に配設された走査型光送受手
段(35a)、 (35b)  と、座標面(37)の
少くとも2辺に沿って設けた光回帰性反射体く36)と
を具備し、少くとも2つの走査型光送受手段(35a>
An example of the coordinate human power device of the present invention is shown in FIG.
) scanning type optical transmitting/receiving means (35a), (35b) disposed at at least two substantially corners of the coordinate plane (37); ), and at least two scanning optical transmitting/receiving means (35a>
.

(35b)  の受光出力信号により、座標面の座標位
置を検知する様にしたものである。
(35b) The coordinate position on the coordinate plane is detected by the received light output signal.

〔作用〕[Effect]

この発明の座標人力装置は走査型光送受手段(35a)
、 (35b)  から、表示装置(9)の座標面(3
7)の四辺を囲む様に配設した枠体(24)内面に塗布
或い配設された光回帰性反射体く36)に向かって射光
された通常な全反射されて受光素子に戻される光ビート
が表示装置(9)の座標面上を指で座序票指示を行うと
、この指で反射ビームは遮断される。この状態を検出し
てX及びY座標を求める様にしたので、発光及び受光素
子は2組で済み、分解能は回帰性反射面の球径で定まる
ため、簡単な構成で極めて廉価に高分解能の座標人力装
置が得られる。
The coordinate human-powered device of this invention has a scanning type optical transmitting/receiving means (35a)
, (35b), the coordinate plane (3
7) The light emitted toward the light-recurring reflector 36) coated or placed on the inner surface of the frame body (24) arranged to surround the four sides of the frame body (24) is totally reflected and returned to the light-receiving element. When the optical beat indicates a location chart with a finger on the coordinate plane of the display device (9), the reflected beam is blocked by the finger. Since this state is detected and the X and Y coordinates are determined, only two sets of light-emitting and light-receiving elements are required, and the resolution is determined by the spherical diameter of the recursive reflecting surface. A coordinate human powered device is obtained.

〔実施例〕〔Example〕

以下、第1図により本発明の座標入力装置をタッチパネ
ル装置に適用した場合を説明する。
Hereinafter, the case where the coordinate input device of the present invention is applied to a touch panel device will be explained with reference to FIG.

第1図でCRT (9)の前面に設けられた枠体(以下
ベズルと記す)はCRT (9)のフェース面即ち、座
標面(37)の上下左右の四辺を囲繞する様に配設され
る。このベズル(24)の内周の右側内面(24R)と
上側内面(240)  に光回帰性反射体(36)を形
成する。この光回帰性反射体(36)は例えは、第2図
に示す様に直径が70μ程度の球レンズからなるガラス
或いはアクリル製の透明微細球(40)をベズル(24
)の右側内面(24R)  と上側内面(2411) 
上に塗布した透明接着層(38)1に一様に接着させた
もので、どららの方向から入射した光ビーム(39)も
入射方向に略反射されることになる。
In Fig. 1, the frame body (hereinafter referred to as bezel) provided on the front surface of the CRT (9) is arranged so as to surround the face surface of the CRT (9), that is, the four sides of the coordinate plane (37) at the top, bottom, left and right. Ru. A light return reflector (36) is formed on the right inner surface (24R) and the upper inner surface (240) of the inner periphery of this bezel (24). This light-recurring reflector (36) is, for example, a transparent micro sphere (40) made of glass or acrylic made of a spherical lens with a diameter of about 70 μm, and a bezel (24) as shown in FIG.
) right inner surface (24R) and upper inner surface (2411)
It is uniformly adhered to the transparent adhesive layer (38) 1 applied above, so that the light beam (39) incident from the direction of the dora will also be substantially reflected in the direction of incidence.

本例の座標入力装置のベズル(24)の下部隅部には走
査型光送受器(35a)、 (35b)  が配設され
ている。
Scanning type optical transceivers (35a) and (35b) are disposed at the lower corner of the bezel (24) of the coordinate input device of this example.

第1図示の例では可動ミラー(25a)、 (25b)
  が置かれている。可動ミラー(25a)、 (25
b)  の代わりにポリゴンミラー等を配することも出
来る。可動ミラー(25a)、 (25b)  は例え
ばファイバオブテックス(26a)、 (26b)  
を介してレーザダイオード、或いはL E D (28
a)、 (28b)  に結合され、これら発光素子か
ら発光された光ビーノ、(39)は可動ミラー(25a
>。
In the example shown in the first diagram, movable mirrors (25a), (25b)
is placed. Movable mirror (25a), (25
b) It is also possible to arrange a polygon mirror or the like instead of. The movable mirrors (25a) and (25b) are made of fiber optics (26a) and (26b), for example.
via a laser diode or LED (28
a), (28b) and the light beam emitted from these light emitting elements, (39) is a movable mirror (25a
>.

(25b)  で反射され、ベズル(24)の右側内面
(24R)及び上側内面(24,U)  の面内を角度
θ3.θ5で走査する。
(25b) and passes through the planes of the right inner surface (24R) and upper inner surface (24, U) of the bezel (24) at an angle θ3. Scan at θ5.

この様に光ビーム(39)を走査するために可動される
可動ミラー(25a、)、 (25b)  はクロック
発生回路(33)からのクロック信号に基づき、ミラー
制御回路(32)で制御され、ベズル(24)の左右下
端に設けた可動ミラー(25a)、 (25b)  を
同期駆動させる。発光素子(28a)、 (28b) 
 から光回帰性反射体(36)に達した光ビーム(39
)は第2図に示した様に反射されて可動ミラー(25a
)、 (25b) 位置に達するが、CRT(9)の座
標面(37)に座標入力のために指等をタッチさせると
、光ビームは遮断されて光回線性反射体(36)に到達
しないために光ビーム(39)はインターラブドされる
。光回線性反射体(36)で反射されたか、インターラ
ブドされたかを可動ミラー(25a)。
The movable mirrors (25a,), (25b) that are moved to scan the light beam (39) in this way are controlled by the mirror control circuit (32) based on the clock signal from the clock generation circuit (33). Movable mirrors (25a) and (25b) provided at the lower left and right ends of the bezel (24) are driven synchronously. Light emitting elements (28a), (28b)
The light beam (39) reaches the light recursive reflector (36) from
) is reflected to the movable mirror (25a) as shown in Figure 2.
), (25b) reaches the position, but when you touch the coordinate plane (37) of the CRT (9) with your finger to input coordinates, the light beam is blocked and does not reach the optical line reflector (36). For this reason, the light beams (39) are interlaced. The movable mirror (25a) reflects or intersects with the optical line reflector (36).

(25b)  に結合されたファイバオブテックス(2
6a)。
(25b) Fiber obtex (2
6a).

(26b)  を介してホトダイオード或いはホトトラ
ンジスタ等から成る受光素子(27a)、 (27b)
  に送光し、受光出力を増幅回路(30a)、 (3
0b)  で増幅後に座標変換回路(31a)、 (3
1b)  で座標軸に変換し、インターラブドされた座
標の演算を演算回路(34)で行うことでフェース面(
37)の指示点のX及びY座標を求めることが出来る。
(26b) A light receiving element (27a) consisting of a photodiode or a phototransistor, etc. (27b)
The received light output is sent to the amplifier circuit (30a), (3
0b) After amplification, the coordinate conversion circuit (31a), (3
1b) into the coordinate axes, and the interwoven coordinates are calculated in the arithmetic circuit (34) so that the face surface (
37) The X and Y coordinates of the indicated point can be found.

尚(29a)、 (29b)  は発光素子(28a)
 、 (28b )を発光制御させる制御回路であり、
増幅回路(30a)、 (30b)  はミラー制御回
路(32)により制御されている。又、X及びYの座標
は走査角θ6.θ、のtan の関数として求めること
が出来る。
Note that (29a) and (29b) are light emitting elements (28a)
, (28b) is a control circuit that controls light emission,
The amplifier circuits (30a) and (30b) are controlled by a mirror control circuit (32). Also, the X and Y coordinates are the scanning angle θ6. It can be determined as a function of tan of θ.

上述の例ではCRT (9)の座標面(37)をフラッ
ト面と考えて、ベズル(24)の左右下端の2個所に走
査型光送受器(35a)、 (35b)  を設けたが
、座標面(37)が曲面を形成している場合には左右下
端の2 個の走査型光送受器(35a)、 (35b)
 間に1〜2個の走査型光送受器を配設して走査領域を
分割して分担すればよい。
In the above example, the coordinate plane (37) of the CRT (9) is considered to be a flat plane, and the scanning optical transceivers (35a) and (35b) are provided at two locations at the lower left and right ends of the bezel (24). If the surface (37) forms a curved surface, the two scanning optical transceivers (35a) and (35b) at the lower left and right ends
One or two scanning type optical transceivers may be disposed between them to divide the scanning area and share the task.

又、上側では光回線性反射体(36)を構成するために
接着層(38)上に透明微細球(40)を付着させた場
合を説明したが、第3図へに示すようにフィルl、状の
基板(41)上に予め透明微細球(40)をバインダと
共に塗布したフィルムを所定寸法に切りとってベズル(
24)の内面に貼着させてもよい。
Furthermore, in the upper part, a case was explained in which transparent microspheres (40) were attached on the adhesive layer (38) to constitute the optical line reflector (36), but as shown in FIG. A film on which transparent microspheres (40) are coated with a binder in advance on a substrate (41) shaped like , is cut to a predetermined size and a bezel (
24).

上述の例では、角度情報θ6.θ、からX及びY座標を
求めたが、光回線性反射体(36)を第3図B。
In the above example, the angle information θ6. The X and Y coordinates were determined from θ, and the optical line reflector (36) is shown in FIG. 3B.

Cに示す様にバーコード(42)化して位置情報をコー
ド化して置けば受光素子(28a)、 (28b)  
に得られる反射ビームはコード変副されているために座
標変換回路(31a)、 (31b> 等で座標変換を
行う必要がなくなるために角度座標変換は容易になる。
As shown in C, if the position information is coded using a barcode (42), the light receiving elements (28a), (28b)
Since the reflected beam obtained at 2 is code-transformed, there is no need to perform coordinate transformation using the coordinate transformation circuits (31a), (31b>, etc.), so that angular coordinate transformation becomes easy.

第3図Bはベズル(24)の側内面の長平方向に沿って
バ一コード化した光回線性反射体を形成した場合である
が、第3図Cの場合はベズル(24)の内側面の□幅方
向にバーコード(42)を形成したので光ビート(39
)を主走査させると共にウォーブリング(43)等の副
走査を行う必要がある。
Fig. 3B shows a case in which a barcoded optical line reflector is formed along the longitudinal direction of the side surface of the bezel (24), while Fig. 3C shows a case in which a barcoded optical line reflector is formed along the longitudinal direction of the side surface of the bezel (24). Since the barcode (42) was formed in the width direction, the optical beat (39)
), it is necessary to perform main scanning and sub-scanning such as wobbling (43).

第3図りに示すものは光ビーム(39)を複数(第3図
りでは2個の光ビーム(39a)、 (39b))とな
し、バーコード(42a)、 (42b) をベズル(
24)の内側面に並設配置して同時走査を行う様にした
ものである。
The one shown in the third diagram has a plurality of light beams (39) (two light beams (39a), (39b) in the third diagram), and the barcodes (42a), (42b) are connected to the bezel (
24) are arranged side by side on the inner surface to perform simultaneous scanning.

この様なバーコード化の場合、通常のバーコードの白の
ストライプ部分に本例の光回線性反射体を設けると良い
が、黒ストライプ部分に設ける様にしてもよい。第4図
は本発明の座標入力装置に用いるベズル(24)を裏側
からみた斜視図であるが、例えば、ベズル(24)の右
側内面(24R)にはsinθ。
In the case of such a barcode, it is preferable to provide the optical line reflector of this example in the white stripe portion of a normal barcode, but it may also be provided in the black stripe portion. FIG. 4 is a perspective view of the bezel (24) used in the coordinate input device of the present invention, seen from the back side. For example, the right inner surface (24R) of the bezel (24) has sin θ.

で変化する不等間隔目盛からなる光回線性反射体を形成
し、上側内面(240)にはcosθ、で変化する不等
間隔目盛を光回線性反射体で形成することで、位置座標
はsinθa+ CO8θbの関数で定まる座標に事前
に変換された反射ビートを取り出すことが出来る。
By forming an optical line reflector consisting of non-uniformly spaced scales that vary by cos θ, and by forming an optical line reflector on the upper inner surface (240) with non-uniformly spaced scales that vary by cosθ, the position coordinates are sinθa+ It is possible to extract a reflected beat that has been converted in advance to coordinates determined by a function of CO8θb.

第5図はベズル(24)の隅部に設ける走査型光送受器
(35i)、 (35b)  の他の実施例を示すもの
で、ターンテーブル(42)の中心には中心孔を有し、
モータ軸(45)も中空と成されている。ターンテーブ
ル(42)上には中心孔上にプリズム(43)が載置さ
れ、ターンテーブル(42)はモータ(44)で矢印方
向に回動されて角度θ、だけ走査される。発光素子(2
8a)からの光はファイバーオブテックス(26a) 
 を通してプリズム(43)を底面から入射し、45°
の傾斜面で反射されて垂直面から出射して、例えば光回
線性反射体(36)を構成する透明微細球(40)に入
射した光ビーム(39)は反射されて、プリズム(43
)の垂直面に入射し、45°の傾斜面で反射されて底面
からファイバーオブテックス(26a)  を介して受
光素子(27a)  に達する。この様な走査型光送受
器(35a)であればベズル(24)の隅部にターンテ
ーブル(42)とプリズム(43)を配し、モータ(4
4)や受光素子(27a) 、発光素子(28a)  
をベズル(24)外に配置することが極めて容易となる
Fig. 5 shows another embodiment of the scanning type optical transceiver (35i), (35b) provided at the corner of the bezel (24), which has a central hole in the center of the turntable (42).
The motor shaft (45) is also hollow. A prism (43) is placed on the center hole of the turntable (42), and the turntable (42) is rotated in the direction of the arrow by a motor (44) and scanned by an angle θ. Light emitting element (2
The light from 8a) is fiber obtex (26a)
The prism (43) is incident from the bottom through the 45° angle.
The light beam (39) is reflected by the inclined surface of the prism (43) and emitted from the vertical surface, and enters, for example, the transparent microsphere (40) constituting the optical line reflector (36).
), is reflected by the 45° inclined surface, and reaches the light receiving element (27a) from the bottom surface via the fiber optic (26a). In the case of such a scanning type optical transceiver (35a), a turntable (42) and a prism (43) are arranged at the corner of the bezel (24), and a motor (4
4), light receiving element (27a), light emitting element (28a)
It becomes extremely easy to arrange the outside of the bezel (24).

本例の座標入力装置は炊上の様に構成させたので分解能
は透明微細球(40)の直径で定まり、例えば70μの
微細球を用いれば極めて高分解能のタッチパネルが得ら
れる。又、2組の走査型光送受器で送受光するので簡単
な構成で廉価なりッヂパネルが得られる。更にベズルの
側内面の奥行は浅くて済むので、意匠的にも自由なもの
が選べる。更に、光回帰性反射面で光ビームのほとんど
が反射されるために受光素子では、感度が高い検出信心
が得られて周囲ノイズによる誤動作が減少する。
Since the coordinate input device of this example is constructed in a similar manner, the resolution is determined by the diameter of the transparent microspheres (40). For example, if microspheres of 70 μm are used, a touch panel with extremely high resolution can be obtained. Furthermore, since the light is transmitted and received by two sets of scanning type optical transmitters and receivers, an inexpensive edge panel can be obtained with a simple configuration. Furthermore, since the depth of the inner surface of the side surface of the bezel only needs to be shallow, it is possible to choose a design freely. Furthermore, since most of the light beam is reflected by the light-recurring reflective surface, the light-receiving element achieves detection reliability with high sensitivity and reduces malfunctions due to ambient noise.

依って大型のCRTに適した座標入力系が得られる。又
、光回帰性反射体をバーコード化したり、サイン目盛化
して位置情報を事前に座標変換させることも容易である
等の多くの効果を有する。
Therefore, a coordinate input system suitable for large-sized CRTs can be obtained. In addition, it has many advantages, such as the fact that it is easy to convert the positional information into coordinates in advance by converting the light-recurring reflector into a bar code or into a sign scale.

」二連の実施例では、本例をタッチパネルに適用した場
合を説明したがキーボードやデジタイザにも適用出来る
ことは勿論である。
In the two series of embodiments, the case where this embodiment is applied to a touch panel has been described, but it goes without saying that it can also be applied to a keyboard or a digitizer.

又、上述の各実施例では光回帰性反射面として透明微細
球をベズルに形成した場合を説明したが、この透明微細
球に代えてプライアイレンズやレンディキュラ等にして
もよい。
Further, in each of the above-described embodiments, a case has been described in which transparent microspheres are formed on the bezel as a light-returning reflecting surface, but a ply eye lens, a rendicular lens, or the like may be used in place of the transparent microspheres.

尚、本発明は叙」−の実施例に限定されることなく、本
発明の要旨を逸脱しない範囲で種々の変形が可能である
Note that the present invention is not limited to the embodiments described above, and various modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば座標面の格子ピッチを1mm間隔とする
様な高解像度の座標入力装置とすることも出来る。又、
発光及び受光素子数が2組の走査型光送受器でよいので
光送受素子が少なくてずみ、低パワーの発光素子でも光
回帰性反射体でほとんどの光ビー1、が反射されて受光
素子へ戻るための検出出力が大きく、周囲ノイズの影響
を受けにくい構造簡単な座標入力装置が得られる。
According to the present invention, it is also possible to provide a high-resolution coordinate input device in which the grid pitch of the coordinate plane is 1 mm. or,
Since a scanning type optical transmitter/receiver with two sets of light emitting and light receiving elements is sufficient, the number of light transmitting and receiving elements is reduced, and even with a low power light emitting element, most of the light beams 1 are reflected by the light recursive reflector and reach the light receiving element. A coordinate input device with a simple structure that has a large detection output for returning and is not easily affected by surrounding noise can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の座標人力装置の一実施例を示す系統図
、第2図は光回帰性反射体の模式図、第3図は光回帰性
反射体の塗布方法を説明する図、第4図は本発明の座標
人力装置の他の実施例を示す斜視図、第5図は走査機構
の模式図、第6図乃至第12図は従来装置の一例を示す
図である。 (9)はCRT、(24)はベズル、(24R)  は
ベズルの右側内面、(2411)  はベズルの上側内
面、(35a)。 (35b)  は走査型光送受器、(36)は光回帰性
反射体である。 代  理  人     伊  藤     真岡  
      松  隈  秀  盛く       m 目 永 Q口
FIG. 1 is a system diagram showing an embodiment of the coordinate system of the present invention, FIG. 2 is a schematic diagram of a light recursive reflector, and FIG. FIG. 4 is a perspective view showing another embodiment of the coordinate human-powered device of the present invention, FIG. 5 is a schematic diagram of a scanning mechanism, and FIGS. 6 to 12 are views showing an example of a conventional device. (9) is a CRT, (24) is a bezel, (24R) is the right inner surface of the bezel, (2411) is the upper inner surface of the bezel, (35a). (35b) is a scanning type optical transceiver, and (36) is a light recursive reflector. Agent Moka Ito
Hide Matsukuma M Menaga Q mouth

Claims (1)

【特許請求の範囲】 四辺形の座標面と、 該座標面の少くとも2つの略隅部に配設された操作型光
送受手段と、 上記座標面の少くとも2辺に沿って設けた光回帰性反射
体とを具備し、 上記少くとも2つの走査型光送受手段の受光出力信号に
より、上記座標面の座標位置を検知する様にしたことを
特徴とする座標入力装置。
[Claims] A quadrilateral coordinate plane, an operable light transmitting/receiving means disposed at at least two substantially corners of the coordinate plane, and a light beam disposed along at least two sides of the coordinate plane. A coordinate input device comprising: a recursive reflector, and configured to detect a coordinate position on the coordinate plane based on the received light output signals of the at least two scanning light transmitting/receiving means.
JP9654888A 1988-04-19 1988-04-19 Coordinate input device Expired - Fee Related JP2814490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9654888A JP2814490B2 (en) 1988-04-19 1988-04-19 Coordinate input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9654888A JP2814490B2 (en) 1988-04-19 1988-04-19 Coordinate input device

Publications (2)

Publication Number Publication Date
JPH01268224A true JPH01268224A (en) 1989-10-25
JP2814490B2 JP2814490B2 (en) 1998-10-22

Family

ID=14168144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9654888A Expired - Fee Related JP2814490B2 (en) 1988-04-19 1988-04-19 Coordinate input device

Country Status (1)

Country Link
JP (1) JP2814490B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1185377A (en) * 1997-09-02 1999-03-30 Fujitsu Ltd Information display with optical position detector
US8526175B2 (en) 2009-09-07 2013-09-03 Sony Corporation Information processing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625428A (en) * 1985-06-05 1987-01-12 ウエルズ−ガ−ドナ−エレクトロニクス コ−ポレイション Optical positioning apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625428A (en) * 1985-06-05 1987-01-12 ウエルズ−ガ−ドナ−エレクトロニクス コ−ポレイション Optical positioning apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1185377A (en) * 1997-09-02 1999-03-30 Fujitsu Ltd Information display with optical position detector
US8526175B2 (en) 2009-09-07 2013-09-03 Sony Corporation Information processing device

Also Published As

Publication number Publication date
JP2814490B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
US8115753B2 (en) Touch screen system with hover and click input methods
US6816537B2 (en) Device having touch sensitivity functionality
US4782328A (en) Ambient-light-responsive touch screen data input method and system
US8130210B2 (en) Touch input system using light guides
US4949079A (en) Brightpen/pad graphic device for computer inputs and the like
JP5490720B2 (en) Input device for scanning beam display
US20060227120A1 (en) Photonic touch screen apparatus and method of use
US20140132516A1 (en) Optical keyboard
US20060139338A1 (en) Transparent optical digitizer
US20070097097A1 (en) Laser type coordinate sensing system for touch module
TWI396123B (en) Optical touch system and operating method thereof
JP2000259334A (en) Coordinate input pen
KR20100030022A (en) Opto-touch screen
TW201643609A (en) Contactless input device and method
TWI511006B (en) Optical imaging system and imaging processing method for optical imaging system
CN1701351A (en) Quasi-three-dimensional method and apparatus to detect and localize interaction of user-object and virtual transfer device
KR20100066671A (en) Touch display apparatus
JPH11119912A (en) Optical input device
JPH01268224A (en) Coordinate input device
WO2003063069A2 (en) Touch screen
JPH08320207A (en) Coordinate input apparatus and light emitting body for the apparatus
JP2876825B2 (en) Light tablet
Sherr Input and Output
Sherr 10.1 Input Devices
JPS62165231A (en) Optical position detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees