JPH01267953A - Manufacture of positive electrode for lithium battery - Google Patents

Manufacture of positive electrode for lithium battery

Info

Publication number
JPH01267953A
JPH01267953A JP9544488A JP9544488A JPH01267953A JP H01267953 A JPH01267953 A JP H01267953A JP 9544488 A JP9544488 A JP 9544488A JP 9544488 A JP9544488 A JP 9544488A JP H01267953 A JPH01267953 A JP H01267953A
Authority
JP
Japan
Prior art keywords
temp
mixture
viscosity
temperature
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9544488A
Other languages
Japanese (ja)
Inventor
Kenichi Shinoda
健一 篠田
Kohei Yamamoto
浩平 山本
Toshio Mizuno
水野 利男
Yuzo Tanaka
田中 雄三
Hiroshi Hamada
浩 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP9544488A priority Critical patent/JPH01267953A/en
Publication of JPH01267953A publication Critical patent/JPH01267953A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture

Abstract

PURPOSE:To provide possibility of coating on a current collector with a certain viscosity without causing dispersion of the viscosity by adjusting the internal temp. of a mixture in accordance with the temp. of pure water, and setting the temp. of the knead black mix between 15 and 19 deg.C. CONSTITUTION:The internal temp. of a mixture is adjusted according to the temp. of pure water, and the temp. of kneaded black mix is set to 15-19 deg.C. Accordingly kneading is made under the condition, that the temp. of the black mix is held at a temp. below the glass transition point of teflon disversion, and can be finished with much time put in prior to gelling of the black mix. When kneading is completed, the viscosity of the black mix is retained in a certain stable condition. Thereafter the temp. rises slowly till the time of coating on the material to current collector, and associate therewith the viscosity of the knead black mix rises, wherein dispersion of the viscosity in coated condition is very small.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、リチウム電池用正極の製造方法に関し、特
に正極合剤を構成する各粒子が均一に混合分散された状
態で所定の粘度に調整して集電体素材に塗布できるよう
にした方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a positive electrode for lithium batteries, and in particular to a method for adjusting the viscosity to a predetermined value in a state in which each particle constituting a positive electrode mixture is uniformly mixed and dispersed. The present invention relates to a method that enables the coating to be applied to a current collector material.

(従来の技術) スパイラル形リチウム電池に用いる正極合剤の工業的な
製造方法は、従来より以下の手順で行なわれていた。
(Prior Art) An industrial method for manufacturing a positive electrode mixture for use in spiral-shaped lithium batteries has conventionally been carried out in the following manner.

■熱処理した二酸化マンガンに導電剤として黒鉛、アセ
チレンブラックを混合した後、純水を添加して混練し、
最終段階で結着剤、例えばテフロンデイスパージョンを
添加して再度混練し二酸化マンガンと導電剤とを結着剤
で結合させた混線合剤を調整する。
■After mixing heat-treated manganese dioxide with graphite and acetylene black as conductive agents, pure water is added and kneaded.
In the final step, a binder such as Teflon dispersion is added and kneaded again to prepare a mixed wire mixture in which manganese dioxide and a conductive agent are bound together by the binder.

■次いで、この混線合剤を塗布装置の内部に収容し、ロ
ール状に巻かれた集電体素材を繰り出しつつ、塗布装置
に設けた送りガイドを通過させることにより、送りガイ
ドのスリット厚みに応じた厚みで、集電体素材の両面に
混線合剤をコーティングする。
■Next, this mixed wire mixture is stored inside the coating device, and while the current collector material wound in a roll is fed out, it is passed through the feed guide provided in the coating device, so that it can be adjusted according to the thickness of the slit in the feed guide. Coat the crosstalk mixture on both sides of the current collector material to a certain thickness.

■コーティングした状態で連続的に乾燥炉を通過させて
混線合剤を乾燥固化させた後、プレス用ローラを通過さ
せることによって均一な厚みに合剤を整形し、この状態
で巻き取り、ストック位置に保持する。
■After the coated mixture is passed through a drying oven to dry and solidify, the mixture is shaped into a uniform thickness by passing through a press roller, and in this state, it is wound up and placed at the stock position. to hold.

■以上の工程を経て得られた正極は二次加工工程で、ス
トック位置に保持されたロールを順次繰り出しつつ所定
寸法にカットし、集電体の一部を露出させてこの部分に
正極リード板を溶接すれば、スパイラル形電池用の正極
が完成する。
■In the secondary processing step, the positive electrode obtained through the above steps is cut into a predetermined size while sequentially unrolling the rolls held in the stock position, exposing a part of the current collector, and attaching the positive electrode lead plate to this part. By welding them together, the positive electrode for a spiral battery is completed.

(発明が解決しようとする課題) 前記■の工程での混練合剤の作成作業は一般的に室温で
行われているが、室内温度は季節、時間帯、日照などで
変化するため、混練する導電剤。
(Problem to be solved by the invention) The preparation of the kneading mixture in the step (①) above is generally performed at room temperature, but since the indoor temperature changes depending on the season, time of day, sunlight, etc. conductive agent.

結着剤などの温度も室温に応じて25部5℃の範囲を上
下していた。
The temperature of the binder etc. varied within a range of 25 parts and 5°C depending on the room temperature.

ここで問題なのは、特に、結着剤であるテフロンディス
パージョンのガラス転移点が19℃であり、例えばこれ
以外の混線対象物の温度が19℃よりも高い場合には、
混合開始後早期にゲル化しやすく、そのままの状態で塗
布工程に供給すると凝集状態が不均一であるため、各部
分で密度にバラツキが生じ、塗布が不均一となり、乾燥
後のプレス整形時に剥がれなどの不具合を生じたり、密
度むらによる重量のバラツキなどを生じやすい。
The problem here is that the glass transition point of Teflon dispersion, which is the binder, is 19°C, and for example, if the temperature of the other object of crosstalk is higher than 19°C,
It tends to gel early after mixing begins, and if it is supplied as is to the coating process, the agglomeration state is uneven, resulting in uneven density in each part, resulting in uneven coating, and peeling during press shaping after drying. It is easy to cause problems such as weight variations due to uneven density.

このような問題を回避するために、現状ではテフロンデ
ィスパージョンの添加後の混練時間を手早く終了するた
めに、室温に応じて2〜4分以内に設定している。
In order to avoid such problems, the kneading time after adding the Teflon dispersion is currently set within 2 to 4 minutes depending on the room temperature in order to quickly finish the kneading time.

しかし、この場合には各構成要素の分散が不均一になる
欠点があり、しかもこのように混線時間を短くしても、
周囲温度に応じてロット毎の粘度にバラツキを生じ易か
った。
However, in this case, there is a drawback that the distribution of each component is uneven, and even if the crosstalk time is shortened in this way,
Variations in viscosity from lot to lot were likely to occur depending on the ambient temperature.

本発明は以上の問題点に鑑みてなされたものであり、混
線時間を従来よ、り長くして合剤を構成する各要素を均
一に混合分散したとしても、粘度のバラツキが生ずるこ
とがなく、一定の粘度で集電体に塗布できるようにした
リチウム電池用正極の製造方法を提供することを目的と
するものである。
The present invention has been made in view of the above problems, and even if the crosstalk time is made longer than in the past and the elements constituting the mixture are uniformly mixed and dispersed, variations in viscosity do not occur. The object of the present invention is to provide a method for manufacturing a positive electrode for a lithium battery that can be applied to a current collector with a constant viscosity.

(課題を解決するための手段) 前記目的を達成するため、この発明は、二酸化マンガン
に黒鉛、アセチレンブラックなどの導電剤を添加混合し
、次いで純水を添加して混練し、しかる後に結着剤とし
てテフロンディスパージョンを加えて二酸化マンガンと
導電剤とを結着剤で結合させた混線合剤を調整し、次い
でこの混線合剤を集電体素材に塗布して乾燥固化させる
リチウム電池用正極の製造方法において、前記純水の温
度に応じて混合物の内部温度を調整して前記混線合剤の
温度が15〜19℃となるように設定した。
(Means for Solving the Problems) In order to achieve the above object, this invention adds and mixes a conductive agent such as graphite or acetylene black to manganese dioxide, then adds pure water and kneads it, and then binds it. A positive electrode for lithium batteries in which a mixed wire mixture is prepared by adding Teflon dispersion as an agent and combining manganese dioxide and a conductive agent with a binder, and then this mixed wire mixture is applied to a current collector material and dried and solidified. In the manufacturing method, the internal temperature of the mixture was adjusted according to the temperature of the pure water so that the temperature of the mixed wire mixture was set at 15 to 19°C.

前記混線合剤の配合比は一般に以下の通りとなっている
The blending ratio of the mixed wire mixture is generally as follows.

二酸化マンガン  100部(重量、以下同じ)黒鉛 
        6部 アセチレンブラック  2部 純水        50部 テフロン ディスバージョン  7.5部 合計       165.5部 工業的生産に当たっては、部をkgに置き換えれば一ロ
ット毎の製造に適合した量となる。
Manganese dioxide 100 parts (weight, same below) graphite
6 parts Acetylene black 2 parts Pure water 50 parts Teflon dispersion 7.5 parts Total 165.5 parts In industrial production, if parts are replaced with kg, the amount will be suitable for manufacturing each lot.

なお、混線合剤の温度範囲を15〜19℃とした限定理
由は、以下の通りである。
The reason for limiting the temperature range of the mixed wire mixture to 15 to 19°C is as follows.

19℃を上回ると、前述のごとくテフロンディスパージ
ョンのガラス転移点を越え、早期にゲル化を生ずる。
If the temperature exceeds 19°C, the glass transition point of the Teflon dispersion is exceeded as described above, and gelation occurs early.

また、15℃を下回った場合にはほとんど凝集しないた
め、得られた混合物は流動性が大きくなりすぎるので、
一定厚みの塗布が難しくなり、また塗布装置の送りガイ
ドに付むし、除去が難しいため、好ましくない。したが
って、以上の温度範囲を保つことが必要である。
In addition, if the temperature is below 15°C, there will be almost no aggregation, and the resulting mixture will have too much fluidity.
It is undesirable because it makes it difficult to apply a constant thickness, and it also sticks to the feed guide of the coating device and is difficult to remove. Therefore, it is necessary to maintain the above temperature range.

(作 用) 以上の方法によれば、混線剤の温度がテフロンディスパ
ージョンのガラス転移点以下の温度に保たれた状態で混
練され、合剤のゲル化が生ずる前に時間をかけて混線を
完了できる。
(Function) According to the above method, the temperature of the crosstalk agent is kept at a temperature below the glass transition point of the Teflon dispersion, and the crosstalk is mixed over time before gelation of the mixture occurs. Can be completed.

混線完了時点で、合剤の粘度は一定の安定状態に保たれ
る。
At the time of completion of crosstalk, the viscosity of the mixture is maintained at a certain stable state.

その後集電体素材に対する塗布時までに温度は緩やかに
上昇し、それに応じて混練合剤の粘度も上昇するが、従
来に比べて塗布状態での粘度のバラツキは極めて小さく
なる。
Thereafter, by the time of application to the current collector material, the temperature rises slowly, and the viscosity of the kneading agent rises accordingly, but the variation in viscosity in the application state is extremely small compared to conventional methods.

(実 施 例) 以下、この発明の一実施例を図面を用いて詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail using the drawings.

第1図における工程順序は前述の■〜■の工程を示して
いる。
The process order in FIG. 1 shows the above-mentioned steps ① to ②.

まず二酸化マンガン(Mn 02 ) 100部を容器
1内に投入し、次いで黒鉛(C)6部、アセチレンブラ
ック2部(導電剤)を容器1内に投入し、次いで純水3
0部を投入し、撹拌機2を介して十分に混合撹拌する。
First, 100 parts of manganese dioxide (Mn 02 ) was put into container 1, then 6 parts of graphite (C) and 2 parts of acetylene black (conductive agent) were put into container 1, and then 3 parts of pure water
Add 0 parts and mix and stir thoroughly using stirrer 2.

次いで容器1内に純水20部を投入し、さらに撹拌機2
を介して混合撹拌する。
Next, 20 parts of pure water was poured into the container 1, and the stirrer 2 was added.
Stir to mix through.

この純水は、二酸化マンガンおよび黒鉛、アセチレンブ
ラックを均一に分散させるための溶媒とし、での機能と
、冷却媒体など温度調整媒体としての機能を兼用するも
のであって、容器1内の温度は少なくても上限が19℃
を上回らない範囲、下限が15℃を下回らない範囲に保
たれるようにその温度が設定される。
This pure water serves as a solvent for uniformly dispersing manganese dioxide, graphite, and acetylene black, and also serves as a temperature regulating medium such as a cooling medium. At least the upper limit is 19℃
The temperature is set so that the lower limit is maintained within a range that does not exceed 15°C and the lower limit does not fall below 15°C.

なお、この設定温度は取扱量および周囲の室温によって
も異なる 例えば、周囲の室温が一定であって、純水の水温を一定
とした場合には、取扱い量が多いと温度変化が小さいし
、取扱量が少なければ温度変化も大きなものとなる。
Note that this set temperature varies depending on the amount handled and the surrounding room temperature.For example, if the surrounding room temperature is constant and the temperature of pure water is constant, the temperature change will be small when the amount handled is large, and the temperature change will be small when the amount handled is large. If the amount is small, the temperature change will be large.

また、室温に対する温度勾配が小さい場合と多い場合に
よってもその温度変化は異なる。例えば、室温が25℃
±5内に設定されている場合には最大限30℃に対する
温度勾配と、最低限15℃に対する温度勾配(この場合
には0)を考慮して純水温度が設定される。
The temperature change also differs depending on whether the temperature gradient with respect to room temperature is small or large. For example, the room temperature is 25℃
If it is set within ±5, the pure water temperature is set taking into consideration the maximum temperature gradient of 30° C. and the minimum temperature gradient of 15° C. (in this case, 0).

したがって、純水の当初温度は取扱い量と周囲の室温と
を加味して設定される。
Therefore, the initial temperature of pure water is set taking into consideration the amount to be handled and the surrounding room temperature.

いずれにあっても、この発明方法を工業的生産に実施し
た場合には、容器1内が15〜19℃に保たれるべく純
水の当初温度を16℃以下の温度に設定しておくことに
より、目的を達成できることが判明している。
In any case, when this invention method is implemented for industrial production, the initial temperature of the pure water should be set to a temperature of 16°C or lower so that the inside of the container 1 is maintained at 15 to 19°C. It has been found that the objective can be achieved.

以上の混合作業の後、テフロンディスパージョン(テト
ラフルオロエチレンのエマルジョン溶液)7.5部を添
加し、十分に混練する。この混線時間は各粒子が十分に
混合分散される時間で良く、その間に粘性が増してくる
After the above mixing operation, 7.5 parts of Teflon dispersion (emulsion solution of tetrafluoroethylene) is added and thoroughly kneaded. This mixing time may be a time during which each particle is sufficiently mixed and dispersed, during which time the viscosity increases.

第2図は、テフロンディスパージョンを純水に分散した
場合の温度と凝集速度との関係を示すものであり、15
℃以下ではほとんど凝集が進行せず、逆に19℃を越え
ると急速に凝集素速度が大きくなることが示されている
Figure 2 shows the relationship between temperature and aggregation rate when Teflon dispersion is dispersed in pure water.
It has been shown that below 19°C, aggregation hardly progresses, and on the contrary, above 19°C, the rate of agglutination increases rapidly.

したがって混線合剤の混練時間は15〜19℃の範囲で
は温度勾配に応じて十分な時間をかけるこ、Lができる
。。
Therefore, in the range of 15 to 19[deg.] C., the kneading time for the mixed wire mixture can be adjusted to a sufficient time depending on the temperature gradient. .

そして、工業的生産方法においては、前記温度範囲内で
6〜8分程度の時間をかけることができ、従来の混練時
間(2〜4分)の2〜4倍の時間をかけることが出来、
各粒子を均一に分散混合できる。
In the industrial production method, it is possible to take about 6 to 8 minutes within the above temperature range, which is 2 to 4 times the conventional kneading time (2 to 4 minutes).
Each particle can be uniformly dispersed and mixed.

混線合剤が一定の粘度となった状態でこれをホッパー状
に形成された塗布装置3内に移し替える。
When the mixed wire mixture has a constant viscosity, it is transferred into a coating device 3 formed in a hopper shape.

塗布装置3の上部にはロール状に巻回されt−集電体素
材4が位置し7ている。
A T-current collector material 4 wound into a roll is located above the coating device 3 .

この集電体素材4は、ステンレスなどの金網、エキスバ
ンドメタル、パンチングメタルであって、塗布装置3の
先端に開口した送りガイド3aを通じて外部に引き出さ
れ、送りガイド3aに設定された隙間に応じて集電体素
材4の両面に対する塗布合剤5の塗布厚みが設定される
This current collector material 4 is made of wire mesh such as stainless steel, expanded metal, or punched metal, and is drawn out through a feed guide 3a opened at the tip of the coating device 3, and is drawn out according to the gap set in the feed guide 3a. The coating thickness of the coating mixture 5 on both sides of the current collector material 4 is set.

塗布装置3を出た集電体素材4は連続して直ちに乾燥炉
6内を通過する。乾燥炉6を通過することにより、両面
に塗(Iiされた塗6i合剤5は乾燥固化して集電体素
材4の両面に定着する。
The current collector material 4 leaving the coating device 3 immediately passes through a drying oven 6 in succession. By passing through the drying oven 6, the coating mixture 5 coated on both sides (Ii) is dried and solidified and fixed on both sides of the current collector material 4.

次いで集電体素材4は圧延ローラ7を通過し、これによ
って塗布合剤5の厚みを一定に揃えられる。その後、巻
取ローラ8に巻き取られ、ストック位置に保存され、前
述の■の二次加工工程に供されることになる。
Next, the current collector material 4 passes through a rolling roller 7, whereby the thickness of the coating mixture 5 is made uniform. Thereafter, it is wound up by the winding roller 8, stored in a stock position, and subjected to the secondary processing step (2) described above.

次に以上の方法を実施して作られた正極と従来の方法に
より形成された正極を比較したところ、以下の第3図、
第4図に示す結果を得られた。
Next, when we compared the positive electrode made by implementing the above method and the positive electrode formed by the conventional method, we found that the following figure 3,
The results shown in FIG. 4 were obtained.

第3図は合剤を圧延ローラで圧延した後の厚さ分布を示
しており、従来品が0.75〜1,05l111の範囲
までばらついていたが、本発明品の厚さ分布は0 、8
5〜0 、 95 m+*の範囲となり、均一な厚みと
なっていることが判明した。
Figure 3 shows the thickness distribution after rolling the mixture with a rolling roller, and while the conventional product varied in the range of 0.75 to 1,05 l111, the thickness distribution of the inventive product was 0. 8
It was found that the thickness ranged from 5 to 0.95 m+*, and the thickness was uniform.

次に第4図は同じく圧延後のtfI量分布を示すもので
あって、従来品が標準重量に対して±15%のバラツキ
があるのに対し、本発明品では±8%の範囲で正規分布
し、安定していることが判明した。
Next, Figure 4 similarly shows the tfI amount distribution after rolling, and while the conventional product has a variation of ±15% with respect to the standard weight, the product of the present invention has a normal variation of ±8%. It was found to be distributed and stable.

さらに製品の1000個当たりの合剤剥離による不良数
量、塗布むらによる重量不良数を検査したところ、以下
の表12表2に示す結果を得られた。
Furthermore, the number of defective products due to peeling of the mixture and the number of defective weights due to uneven coating per 1000 products were examined, and the results shown in Table 12 and Table 2 below were obtained.

表 1 (合剤剥離による不良数) *不良率 10%→4%に低下 表 2 (重量不良による不良数) *不良率 15%→4%に低下 なお、全体としての正極合剤の歩留まりは従来が75%
であったのが94%まで向上することができることを確
認している。
Table 1 (Number of defects due to mixture peeling) *Defect rate decreased from 10% to 4% Table 2 (Number of defects due to weight defects) *Defect rate decreased from 15% to 4% Note that the overall yield of positive electrode mixture is Conventional 75%
It has been confirmed that this can be improved from 94%.

(発明の効果) 以上実施例によって詳細に説明したように、この発明に
よるリチウム電池における正極の製造方法によれば、以
下の効果がある。
(Effects of the Invention) As described above in detail using the examples, the method for manufacturing a positive electrode in a lithium battery according to the present invention has the following effects.

混合物温度がテフロンディスパージョンのガラス転移点
以下の温度に保たれた状態で混練され、混練合剤のゲル
化が生ずる前に時間をかけて配合出来るので、各粒子を
十分均一に混合分散できる。
The mixture is kneaded while the temperature is kept below the glass transition point of the Teflon dispersion, and the mixing can be carried out over time before the kneading agent gels, so that each particle can be sufficiently uniformly mixed and dispersed.

混練完了時点で、混練合剤の粘度は一定の安定状態に保
たれ、集電体素材に対する塗布時までに温度は緩やかに
上昇し、それに応じて混線合剤の粘度も上昇するが、従
来に比べて塗布状態での粘度のバラツキは極めて小さく
なる。
At the time of completion of kneading, the viscosity of the mixed mixture is kept in a certain stable state, and the temperature rises gradually by the time it is applied to the current collector material, and the viscosity of the mixed mixture increases accordingly. In comparison, the variation in viscosity during application is extremely small.

したがって、厚み分布、重量分布は均一となり、これに
伴い剥離や重量不良数を従来より大巾に減することがで
き、歩留まりを大巾に向上できるとともに、均一な製品
を得ることができる。
Therefore, the thickness distribution and weight distribution become uniform, and accordingly, the number of peelings and weight defects can be greatly reduced compared to the conventional method, and the yield can be greatly improved, and uniform products can be obtained.

また、この発明方法によれば、作業環境温度に応じて添
加する純水の温度を管理するだけで良いため、容易に実
施できる。
Further, according to the method of the present invention, it is only necessary to control the temperature of the pure water added according to the working environment temperature, so it can be easily carried out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための工程説明図、第2
図は凝集速度と温度との関係を示すグラフ、第3図は圧
延後の合剤の厚さ分布を従来と本発明とで比較したグラ
フ、第4図は合剤の重量分布を従来と本発明とで比較し
たグラフである。 3・・・塗布装置    3a・・・送りガイド4・・
・集電体素材   5・・・塗布合剤6・・・乾燥炉 
    7・・・圧延ローラ第1図
Fig. 1 is a process explanatory diagram for carrying out the method of the present invention;
Figure 3 is a graph showing the relationship between agglomeration rate and temperature, Figure 3 is a graph comparing the thickness distribution of the mixture after rolling between the conventional and the present invention, and Figure 4 is the graph comparing the weight distribution of the mixture between the conventional and the present invention. This is a graph comparing the invention. 3... Coating device 3a... Feed guide 4...
・Current collector material 5...Coating mixture 6...Drying oven
7...Rolling roller Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)二酸化マンガンに黒鉛、アセチレンブラックなど
の導電剤を添加混合し、次いで純水を添加して混練し、
しかる後に結着剤としてテフロンディスパージョンを加
えて二酸化マンガンと導電剤とを結着剤で結合させた混
練合剤を調整し、次いでこの混練合剤を集電体素材に塗
布して乾燥固化させるリチウム電池用正極の製造方法に
おいて、前記純水の温度に応じて混合物の内部温度を調
整して前記混練合剤の温度が15〜19℃となるように
することを特徴とするリチウム電池における正極の製造
方法。
(1) Add and mix conductive agents such as graphite and acetylene black to manganese dioxide, then add pure water and knead.
After that, Teflon dispersion is added as a binder to prepare a kneading agent in which manganese dioxide and a conductive agent are combined with the binder, and this kneading agent is then applied to the current collector material and dried and solidified. A method for producing a positive electrode for a lithium battery, wherein the internal temperature of the mixture is adjusted according to the temperature of the pure water so that the temperature of the kneading agent is 15 to 19°C. manufacturing method.
JP9544488A 1988-04-20 1988-04-20 Manufacture of positive electrode for lithium battery Pending JPH01267953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9544488A JPH01267953A (en) 1988-04-20 1988-04-20 Manufacture of positive electrode for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9544488A JPH01267953A (en) 1988-04-20 1988-04-20 Manufacture of positive electrode for lithium battery

Publications (1)

Publication Number Publication Date
JPH01267953A true JPH01267953A (en) 1989-10-25

Family

ID=14137863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9544488A Pending JPH01267953A (en) 1988-04-20 1988-04-20 Manufacture of positive electrode for lithium battery

Country Status (1)

Country Link
JP (1) JPH01267953A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639865A1 (en) * 1993-06-15 1995-02-22 Fuji Photo Film Co., Ltd. A method for producing a sheet-like plate and an electrochemical cell produced by using the plate
US6284405B2 (en) 1996-06-19 2001-09-04 Toshiba Battery Co., Ltd. Nonaqueous electrolyte battery, electrode plate for nonaqueous electrolyte battery, and method for manufacturing electrode plate for nonaqueous electrolyte battery
JP2005310522A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolytic solution battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639865A1 (en) * 1993-06-15 1995-02-22 Fuji Photo Film Co., Ltd. A method for producing a sheet-like plate and an electrochemical cell produced by using the plate
US6284405B2 (en) 1996-06-19 2001-09-04 Toshiba Battery Co., Ltd. Nonaqueous electrolyte battery, electrode plate for nonaqueous electrolyte battery, and method for manufacturing electrode plate for nonaqueous electrolyte battery
US6314638B1 (en) 1996-06-19 2001-11-13 Toshiba Battery Co., Ltd. Apparatus for manufacturing electrode plate for nonaqueous electrolyte battery
JP2005310522A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolytic solution battery

Similar Documents

Publication Publication Date Title
KR20090016712A (en) Method and apparatus for continuously mixing battery pastes
DE2924035A1 (en) METHOD FOR CHAIN EXTENSION OF GELATINE BY PARTIAL HARDENING
DE112021005033T5 (en) NANOSCALE IRON PHOSPHATE, PROCESS FOR ITS PRODUCTION AND ITS USE
CN111632509A (en) Homogenizing method of lithium ion battery anode slurry
CN108598487A (en) A kind of preparation method of negative electrode of lithium ion battery conductive gelatin
JPH01267953A (en) Manufacture of positive electrode for lithium battery
JP2750077B2 (en) Method for producing electrode slurry for lithium battery
DE19837625A1 (en) Lithium manganese oxide, process for its manufacture and lithium secondary battery
US20230104306A1 (en) Method for producing electrode and electrode mixture
CN108550793A (en) A kind of preparation method of lithium ion battery anode sizing agent
JPH01320761A (en) Manufacture of positive slurry for battery
EP4235853A1 (en) Method for producing electrode member
CN107749460A (en) A kind of method for preparing lithium ion battery cathode slurry
DE19913925A1 (en) Spinel type complex lithium-manganese oxide used as cathode active material for a secondary lithium cell
US1948308A (en) Method of making magnetic bodies
US3062908A (en) Storage battery electrodes and methods for making them
JPH06138704A (en) Method and device for producing toner
JPS63269456A (en) Manufacture of electrode for lead battery
CN113113580B (en) Special high-rate high-capacity high-platform lithium ion battery for electronic cigarette
JPH07114923A (en) Manufacture of negative electrode for nickel hydrogen storage battery
JP3504371B2 (en) Manufacturing method of paste electrode
JPS60127661A (en) Manufacturing of positive electrode for nonaqueous electrolyte battery
JPH03129666A (en) Manufacture of positive electrode mix
US2347132A (en) Manufacture of red litharge
JP2989001B2 (en) Method for producing cadmium negative electrode for alkaline storage battery