JPH01267399A - Superconducting cooling fan - Google Patents

Superconducting cooling fan

Info

Publication number
JPH01267399A
JPH01267399A JP9343688A JP9343688A JPH01267399A JP H01267399 A JPH01267399 A JP H01267399A JP 9343688 A JP9343688 A JP 9343688A JP 9343688 A JP9343688 A JP 9343688A JP H01267399 A JPH01267399 A JP H01267399A
Authority
JP
Japan
Prior art keywords
blade
superconductor
pole
magnetic substance
cooling fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9343688A
Other languages
Japanese (ja)
Inventor
Hisashi Soma
相馬 尚志
Hiromi Tokoi
博見 床井
Mitsuo Hayashibara
光男 林原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9343688A priority Critical patent/JPH01267399A/en
Publication of JPH01267399A publication Critical patent/JPH01267399A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a small-sized cooling fan with high controllability and responsibility, which is provided with a plurality of blades, by using resilience generated between a superconductor and a magnetic substance as a drive source, so as to drive the blades. CONSTITUTION:A supporting base 3 is fitted with a superconductor blade 1 and a magnetic substance blade 2. The magnetic substance blade 2 is installed thereto so that its one side surface, which faces the superconductor blade 1, is made an N pole (or an S pole) and the other side surface is made an S pole (or an N pole). And a resistance R is connected to the superconductor blade 1 in series, and sine-wave voltage is applied thereto from a sine-wave power source as a drive power source. Then ventilation can be available by alternately repeating the elastic deformation of the superconductor blade caused by resilience against the magnetic substance blade 2 in a superconducting condition and its restoration in a normal conducting conditions. Consequently, if such a ventilating fan is adopted, the life of the fan can be prolonged and its controllability and responsibility can also be improved because there is no sliding area on it.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷却用ファンに係り、特に、ICなど電子要
素の冷却に好適な小型のファンに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling fan, and particularly to a small fan suitable for cooling electronic elements such as ICs.

〔従来の技術〕[Conventional technology]

従来は、「圧電/電歪アクチュエータ」森北出版P19
3〜P194に記載のように、圧電素子の薄板二枚を接
合した圧電バイモルフを用いた圧電ファンがある。これ
は圧電素子バイモルフを振動させバイモルフ上端に取り
付けた付加重量、および、フレキシブルブレードを振動
させ気体を流動させ冷却するものである。
Previously, "Piezoelectric/Electrostrictive Actuator" Morikita Publishing P19
As described in 3 to P194, there is a piezoelectric fan using a piezoelectric bimorph made by joining two thin plates of piezoelectric elements. This is done by vibrating the piezoelectric bimorph, an additional weight attached to the upper end of the bimorph, and vibrating the flexible blade to cause gas to flow and cool it down.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、冷却ファンのブレード(送風板)屈曲
運動を起こす主要構成要素として圧電バイモルフを用い
ているため、その変位は原理的に小さい。そこで、ブレ
ードの変位を大きくシ、冷却効率を上げるため、圧電バ
イモ・ルフに高周波数電圧を印加し、ブレードを共振さ
せて変位を大きくしていた。そのため周波数発振器が必
要であり、冷却ファンの制御を難しくしていた。
Since the above-mentioned conventional technology uses a piezoelectric bimorph as a main component that causes the bending motion of the blades (blow plate) of the cooling fan, its displacement is small in principle. Therefore, in order to increase the displacement of the blade and increase the cooling efficiency, a high frequency voltage was applied to the piezoelectric bimo-ruf, causing the blade to resonate and increasing the displacement. This required a frequency oscillator, making it difficult to control the cooling fan.

大発明の目的は、制御の簡単な小型の冷却ファンを提供
することにある。
The purpose of the invention is to provide a compact cooling fan that is easy to control.

〔課題を解決するための手段〕[Means to solve the problem]

圧電素子は応答性に優れてレミるが、変位自体が小さい
ことが問題となる。従って、この課題を解決するために
は同等以上の応答性をもち変位の大きな手段を採ればよ
い。
Although piezoelectric elements have excellent responsiveness and remit, the problem is that the displacement itself is small. Therefore, in order to solve this problem, it is only necessary to adopt a means with equal or higher responsiveness and a larger displacement.

そこで、本発明では、超電導体のマイスナ効果による磁
石との反応を用いる。これにより応答性が良く変位の大
きい冷却ファンブレードが構成できる。
Therefore, in the present invention, a reaction between a superconductor and a magnet due to the Meissner effect is used. As a result, a cooling fan blade with good responsiveness and large displacement can be constructed.

〔作用〕[Effect]

本発明の動作原理を第2図により説明する。 The operating principle of the present invention will be explained with reference to FIG.

ある温度Tの条件下で、超電導体に電流を流す場合、臨
界電流密度Jc (T)以下の電流では超電導体は超電
導状態を示し、臨界電流密度Jc(T)を超える電流を
流すと超電導状態から常な導状態に転移する。超電導状
態では、超電導体はマイスナ効果を示し、磁性体との間
に反発力が働き、超電導体が超電導状態から常電導状態
に転移すると。
When a current is passed through a superconductor under the condition of a certain temperature T, the superconductor exhibits a superconducting state when the current is below the critical current density Jc (T), and it becomes superconducting when a current exceeding the critical current density Jc (T) is passed. to the normal guided state. In the superconducting state, the superconductor exhibits the Meissner effect, and a repulsive force acts between it and the magnetic material, and the superconductor transitions from the superconducting state to the normal conducting state.

マイスナ効果に起因する反発力は消滅する。この反発力
のオン、オフにより冷却ファンのブレードを駆動し、気
体の駆動源とすることにより、小型で摺動部のない冷却
ファンが得られる。
The repulsive force caused by the Meisna effect disappears. By turning the repulsive force on and off to drive the blades of the cooling fan and using it as a gas drive source, a compact cooling fan with no sliding parts can be obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図に示す。 An embodiment of the present invention is shown in FIG. 1 below.

支持基板3に、超電導体ブレード1.及び、磁性体ブレ
ード2を固定する。磁性体ブレードは。
A superconductor blade 1 is attached to the support substrate 3. Then, the magnetic blade 2 is fixed. magnetic blade.

超電導体ブレードに対峙する側をN極(あるいは5ti
)、その裏面をS極(あるいはN極)となるように配置
する0本発明の駆動電源は、第5図に示すように、正弦
波電源を用いた。超電導体ブレードの電極7と抵抗Rを
直列接続し、第5図に示した回路を構成し、第5図下の
ような正弦波電圧を印加する6その結果、流れる電流が
超電導体の臨界電流密度となる電圧をVCとすれば、V
c=Jc (T) ・S−R−(1)Jc(T):超電
導体の電流密度 S:  ′  の断面積(通電面¥l1)R:抵抗 で表わせる。従って、印加電圧がVc未満では超電導体
ブレードは超電導状態となり、マイスナ効果により、磁
性体ブレードとの間に反発力が働き第1図(a)に示す
ように弾性変形し、支持基板に固定されていない1,2
のブレード端の間の距離かはなされる。印加電圧がVc
を超えると超電導体ブレードは、常電導状態となり、マ
イスナ効果は消失し、第1図(b)のように加工時の形
状に復元する。正弦波電圧の印加により超電導状態にお
ける反発力による弾性変形と常電導状態における復元の
繰り返しにより、風を送ることができる。本発明では正
弦波電圧をファンの駆動源として用いたが、Vc以上の
電圧をステップ状に印加してもよい。本発明により、モ
ータなどの摺動部のない小型で制御の容易なファンを提
供できる。
The side facing the superconductor blade is the N pole (or 5ti
), the back surface of which is arranged as the S pole (or N pole).The drive power source of the present invention uses a sine wave power source, as shown in FIG. The electrode 7 of the superconductor blade and the resistor R are connected in series to form the circuit shown in Figure 5, and a sinusoidal voltage as shown in the lower part of Figure 5 is applied.6 As a result, the flowing current is the critical current of the superconductor. If the voltage that results in density is VC, then V
c=Jc (T) ・S-R-(1) Jc(T): Current density of superconductor S: Cross-sectional area of ' (current-carrying surface ¥l1) R: Expressed as resistance. Therefore, when the applied voltage is less than Vc, the superconductor blade becomes superconducting, and due to the Meisner effect, a repulsive force is generated between it and the magnetic blade, causing it to elastically deform as shown in Figure 1(a) and being fixed to the support substrate. Not done1,2
The distance between the blade ends is determined. The applied voltage is Vc
When the superconductor blade exceeds the superconducting temperature, the superconductor blade enters a normal conductive state, the Meissner effect disappears, and the superconductor blade returns to its shape as shown in FIG. 1(b). By applying a sinusoidal voltage, wind can be sent by repeating elastic deformation due to repulsive force in a superconducting state and restoration in a normal conducting state. In the present invention, a sine wave voltage is used as a drive source for the fan, but a voltage higher than Vc may be applied in a stepwise manner. According to the present invention, it is possible to provide a small and easily controllable fan that does not have a sliding part such as a motor.

第3図に本発明の変形例を示す。この発明は、弾性変形
の容易なフレキシブルブレード4の表面に超電導体5の
薄膜を形成したものである。薄膜超電導体5の形成法に
はスパッタリング法を用いた。
FIG. 3 shows a modification of the present invention. In this invention, a thin film of a superconductor 5 is formed on the surface of a flexible blade 4 that is easily elastically deformable. A sputtering method was used to form the thin film superconductor 5.

本実施例によれば、超電導体の厚さを薄くできるため、
(1)式においてVcを小さくでき低消費電力化の効果
がある。
According to this example, since the thickness of the superconductor can be reduced,
In equation (1), Vc can be reduced, resulting in lower power consumption.

第4図に他の変形例を示す。本発明は、ブレードの変位
を大きくするため、付加質量をもうけたものである0本
発明によりブレードの変位を太きくでき、冷却効率を上
げることができる。
FIG. 4 shows another modification. According to the present invention, an additional mass is provided to increase the displacement of the blade.The present invention allows the displacement of the blade to be increased, thereby increasing the cooling efficiency.

尚、本発明では超電導状態と常電導状態の転移を臨界電
流密度を超える電流を流すかどうかで制御したが、パル
ス的に熱を与える方法(例えば。
In the present invention, the transition between the superconducting state and the normal conducting state is controlled by whether or not to flow a current exceeding the critical current density.

レーザなどの光を照射する)や臨界磁界を印加する方法
でも可能である。
It is also possible to apply a critical magnetic field.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、小型で、また、摺動部がないため長寿
命の冷却ファンを提供することができる。
According to the present invention, it is possible to provide a cooling fan that is small in size and has a long life since there are no sliding parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明図、第2図は臨界電流
の特性図、第3図、第4図は本発明の他の実施例の説明
図、第5図は本発明の駆動電源回路図および特性図であ
る。 1・・・超電導体ブレード、2・・・磁性体ブレード、
3・・・支持基板、4・・・フレキシブルブレード、5
・・・超電導体薄改、7・・・電極、8・・・ベンダ、
9・・・付加質第1図 と    と (り 第2図 電え区度J 第3図 第4図
FIG. 1 is an explanatory diagram of one embodiment of the present invention, FIG. 2 is a characteristic diagram of critical current, FIGS. 3 and 4 are explanatory diagrams of other embodiments of the present invention, and FIG. FIG. 2 is a drive power supply circuit diagram and a characteristic diagram. 1... Superconductor blade, 2... Magnetic blade,
3... Support substrate, 4... Flexible blade, 5
...Superconductor thin modification, 7... Electrode, 8... Bender,
9...Additional properties Fig. 1 and (ri Fig. 2 Electricity section J Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】 1、複数のブレードを具備した冷却ファンにおいて、 超電導体と磁性体との反発力を駆動源として前記ブレー
ドを駆動させることを特徴とする超電導冷却ファン。 2、特許請求の範囲第1項において、 前記超電導体に流す電流を前記超電導体の臨界電流密度
以上から臨界電流密度未満まで繰返して変化させ、前記
ブレードの駆動を制御することを特徴とする超電導冷却
ファン。
[Claims] 1. A superconducting cooling fan comprising a plurality of blades, characterized in that the blades are driven by using a repulsive force between a superconductor and a magnetic material as a driving source. 2. The superconductor according to claim 1, wherein the drive of the blade is controlled by repeatedly changing the current flowing through the superconductor from a critical current density or higher to a critical current density of the superconductor or lower. cooling fan.
JP9343688A 1988-04-18 1988-04-18 Superconducting cooling fan Pending JPH01267399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9343688A JPH01267399A (en) 1988-04-18 1988-04-18 Superconducting cooling fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9343688A JPH01267399A (en) 1988-04-18 1988-04-18 Superconducting cooling fan

Publications (1)

Publication Number Publication Date
JPH01267399A true JPH01267399A (en) 1989-10-25

Family

ID=14082264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9343688A Pending JPH01267399A (en) 1988-04-18 1988-04-18 Superconducting cooling fan

Country Status (1)

Country Link
JP (1) JPH01267399A (en)

Similar Documents

Publication Publication Date Title
US4498851A (en) Solid state blower
US6713942B2 (en) Piezoelectric device with feedback sensor
US5008582A (en) Electronic device having a cooling element
US7518283B2 (en) Nanometer-scale electrostatic and electromagnetic motors and generators
US20040239119A1 (en) Energy conversion systems utilizing parallel array of automatic switches and generators
US20110150669A1 (en) Non-Propeller Fan
KR20070004629A (en) Wide frequency range electromechnical actuator
EP0993055A3 (en) Piezoelectric actuator and electronic apparatus with piezoelectric actuator
Wood et al. Actuators and their mechanisms in microengineering
US7414437B1 (en) Nanomechanical computer
JP2000323882A (en) Fan device and driving method therefor
JPH01267399A (en) Superconducting cooling fan
Bilgen et al. Lightweight high voltage electronic circuits for piezoelectric composite actuators
Toda et al. A new electromotional device
Chang et al. Rotary ultrasonic motor driven by a disk-shaped ultrasonic actuator
US20130195616A1 (en) Wave-driven blower and electric motor/generator
JP3190636B2 (en) Computer-readable storage medium storing a piezoelectric actuator, a method for controlling a piezoelectric actuator, and a program for causing a computer to execute the method for controlling a piezoelectric actuator
US20030006674A1 (en) Thin-disc piezoelectric actuating ultrasonic motor
JP2012513188A (en) Piezoelectric motor
Ong et al. Optimized and microfabricated ionic wind pump array as a next generation solution for electronics cooling systems
CN112392780A (en) Piezoelectric fan structure capable of blowing air to periphery and driving method
CN114307768B (en) Thermoelectric coupling flexible oscillator and driving method thereof
JPH02238195A (en) Forced cooling by air
WO1996018823A1 (en) Metal enforced pvdf vibrational fan
Ma et al. The novel modularized multiple fans system with a piezoelectric actuator