JPH0126726B2 - - Google Patents

Info

Publication number
JPH0126726B2
JPH0126726B2 JP56043332A JP4333281A JPH0126726B2 JP H0126726 B2 JPH0126726 B2 JP H0126726B2 JP 56043332 A JP56043332 A JP 56043332A JP 4333281 A JP4333281 A JP 4333281A JP H0126726 B2 JPH0126726 B2 JP H0126726B2
Authority
JP
Japan
Prior art keywords
fibers
fiber
water
fiber mass
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56043332A
Other languages
Japanese (ja)
Other versions
JPS57156012A (en
Inventor
Hiroaki Ida
Masahiro Fujii
Toshio Haruta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP56043332A priority Critical patent/JPS57156012A/en
Priority to GB8138266A priority patent/GB2091303B/en
Priority to DE19813151107 priority patent/DE3151107A1/en
Priority to FR8124153A priority patent/FR2497118B1/en
Publication of JPS57156012A publication Critical patent/JPS57156012A/en
Priority to US06/493,433 priority patent/US4576716A/en
Publication of JPH0126726B2 publication Critical patent/JPH0126726B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】 本発明は、汚水を浄化するための材または微
生物付着用媒体などとして使用されて高い懸濁物
質付着効果を有する水処理媒体の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a water treatment medium that is used as a material for purifying waste water or a medium for attaching microorganisms and has a high suspended solid adhesion effect.

従来から汚水浄化のための材としては、
紙、布、セラミツク、金網などが用いられてき
たが、これらは過する液体と材との接触面積
が小さいので、液体内の懸濁物質の該材への付
着効果が低く、従つて充分な過効果を得ようと
すれば、勢い過量の減少、即ち所謂過効率の
低下を招くという欠点を有している。
Traditionally, materials used for purifying sewage include:
Paper, cloth, ceramics, wire mesh, etc. have been used, but since the contact area between the liquid and the material is small, the effect of adhesion of suspended substances in the liquid to the material is low, and therefore, there is no sufficient If an attempt is made to obtain overeffect, it has the disadvantage of causing a decrease in overpower, that is, a decrease in so-called overefficiency.

一般に、水と固体の分離に使用する材には、
液の通過は許すが、固体である懸濁物質の通過
を阻み、これを材面に付着させるか、または留
めるための無数の通水孔を有する微細な網目状面
を有することが必要である。そしてこの通水孔の
数が多い程過される液の量、即ち過効率が
大となり、水の浄水程度即ち過効果が高められ
るが、適当な太さ(デニール)と長さを有する適
当な種類の繊維を、適当な方法でもつれ合わせる
ことによつて、以上の条件を満足する材となる
水処理媒体を得ることが出来る。これは、繊維が
もつれ易く、非常に複雑な塊状構造を形成し得る
特性を利用したもので、この繊維がもつれ易いの
は、その太さに較べて長さが非常に長く、曲がり
やすいために、極めて小さな外力によつても、複
雑に彎曲したり、ねじれたり、またはもつれ合つ
て繊維の配向がランダムな塊を形成するためで、
例えば衣類等の布地の表面に突出した毛羽がもつ
れて玉状または畝状の塊を形成する、所謂ピリン
グ現象はこの特性によるものである。従つてもつ
れによる繊維塊の形成はどんな種類の繊維でも起
こり、その形成される繊維塊の構造も多種多様で
あるが、繊維塊の大きさ、形状、もつれ合いの状
態は、繊維太さ、長さ、ヤング率、剛さ、密度、
摩擦係数などの繊維の物理的性質や表面構造、そ
の繊維塊の製造方法などによつて定まるが、繊維
素材として、天然繊維、再生繊維、合成繊維等の
有機繊維を必要に応じて適宜選択することによつ
て、複数本の繊維が互いにからまり合つた所要の
水処理媒体としての繊維塊を得ることが出来る。
ただし、その繊維長は5〜50mmの長さのものを採
用し、無捲縮短繊維を使用することが必要であ
る。即ち、5mm未満のものを使用すれば繊維塊が
発生しにくくなり、また50mmを越えるものを使用
すれば第1図に示すように繊維が分離出来ない程
しつかりとからみ合つた結び目を作り、鎖のよう
に連結して可成り長い20cm以上の繊維塊を形成
し、水処理媒体としては使用困難なものとなるか
らである。また、捲縮繊維の場合、小型の球状の
ものは得られず、紐状又は大塊状にもつれたもの
しか得られない。
In general, the materials used to separate water and solids include:
It is necessary to have a fine mesh surface with numerous water passage holes that allow the passage of liquid but prevent the passage of solid suspended substances and allow them to adhere or remain on the surface of the material. . The larger the number of water passage holes, the greater the amount of liquid passing through, that is, the overefficiency, and the higher the degree of water purification, that is, the overefficiency. By entangling different types of fibers in an appropriate manner, a water treatment medium that satisfies the above conditions can be obtained. This takes advantage of the fact that fibers tend to get tangled and can form extremely complex block structures.The reason these fibers get tangled easily is that they are very long compared to their thickness and bend easily. Even under extremely small external forces, the fibers become complicatedly curved, twisted, or entangled to form a mass with random fiber orientation.
This characteristic is responsible for the so-called pilling phenomenon in which fluff protruding from the surface of fabrics such as clothing becomes entangled to form ball-like or ridge-like lumps. Therefore, the formation of fiber lumps due to entanglement occurs with any type of fiber, and the structure of the formed fiber lumps is also diverse, but the size, shape, and state of entanglement of the fiber lumps depend on the fiber thickness and length. , Young's modulus, stiffness, density,
It is determined by the physical properties and surface structure of the fibers such as the coefficient of friction, the method of manufacturing the fiber mass, etc., but as the fiber material, organic fibers such as natural fibers, recycled fibers, and synthetic fibers are selected as appropriate. By doing so, it is possible to obtain a fiber mass as a required water treatment medium in which a plurality of fibers are entangled with each other.
However, it is necessary to adopt a fiber length of 5 to 50 mm and to use non-crimped short fibers. In other words, if you use a material that is less than 5 mm, fiber lumps will be less likely to occur, and if you use a material that exceeds 50 mm, the fibers will form a knot so tightly that they cannot be separated, as shown in Figure 1. This is because they connect like a chain to form a fairly long fiber mass of 20 cm or more, making it difficult to use as a water treatment medium. Furthermore, in the case of crimped fibers, small spherical fibers cannot be obtained, but only string-like or large tangled fibers can be obtained.

かかる繊維塊の製造法として、本発明者らは、
特願昭55−186297号において、短繊維群を水中に
分散させた状態で気体を吹込み、該短繊維群に振
動を与えて流動させることにより、複数本の短繊
維を塊状にからみ合わせる方法を提案した。
As a method for producing such a fiber mass, the present inventors
Japanese Patent Application No. 55-186297 discloses a method of intertwining a plurality of short fibers into a lump by blowing gas into the short fibers dispersed in water and applying vibration to the short fibers to make them flow. proposed.

上記方法では、製造装置の槽の形状が底面直径
に比らべて槽高が数倍以上必要であつたので、多
量の繊維塊を製造する時は槽高の高さ故に操作は
不便であつた。また繊維塊製造時の温度は10℃以
上好ましくは20〜80℃の間にあり、しかも処理時
の温度が一定であることがよく、これにより均一
な径の繊維塊が得られるものであるが、上記方法
では、特に冬場において、冷たい気体を吹込むた
め、時間が経過するにつれて当初の温度よりずれ
てくる欠点があるため、繊維塊の形状を一定に保
つことが難しかつた。
In the above method, the shape of the tank of the production equipment requires a tank height several times larger than the bottom diameter, so when manufacturing a large amount of fiber lumps, the high tank height makes operation inconvenient. Ta. Furthermore, the temperature during production of the fiber mass is preferably 10°C or higher, preferably between 20 and 80°C, and the temperature during processing is preferably constant, so that a fiber mass of uniform diameter can be obtained. However, the above method has the disadvantage that the temperature deviates from the initial temperature as time passes due to the blowing of cold gas, especially in winter, making it difficult to keep the shape of the fiber mass constant.

本発明はかかる欠点を解消した製造方法を提供
するものであり、以下本発明の一実施例を図面に
基づいて説明する。
The present invention provides a manufacturing method that eliminates such drawbacks, and one embodiment of the present invention will be described below with reference to the drawings.

第2図および第3図はそれぞれ製造装置の概略
構成図を示し、第2図は撹拌羽根による回転式撹
拌装置をもつものであり、第3図はポンプによる
噴射式撹拌装置をもつものである。
Figures 2 and 3 show schematic diagrams of the manufacturing equipment, respectively, with Figure 2 having a rotary stirring device using stirring blades, and Figure 3 having an injection stirring device using a pump. .

第2図および第3図において、水Wを満した撹
拌槽1内へ投入ホツパー2より適当量の短繊維3
を供給し、撹拌槽1内の撹拌羽根4による水流、
またはポンプ5による水噴射により槽内の一部を
少なくとも乱流状態にするべく撹拌し、短繊維3
群を浮遊させ、流動させる。その結果、撹拌作用
により短繊維3は曲げられ、互いに連結、からま
り合い、最大直径が5〜100mmの球、楕円球また
は円板状の繊維塊6に製造される。この際使用さ
れる繊維長は5〜50mmの長さのものを採用し、ま
た無捲縮短繊維を使用することが必要である。ま
た繊維の素材はポリエステル、ナイロン、ビニロ
ン、アクリル等の合成繊維が水処理に使用した際
の耐久性の点で良く、製造方法の容易さからレー
ヨン、ポリエステルが良い。短繊維に使用する繊
維の直径は素材のヤング率により異なるが、10〜
100ミクロン程度のものが必要である。また繊維
の断面形状は円形の他、所謂三角形、星形などの
異形糸も使用できる。
In FIGS. 2 and 3, an appropriate amount of short fibers 3 are fed into a stirring tank 1 filled with water W from a hopper 2.
water flow by the stirring blades 4 in the stirring tank 1,
Alternatively, a water jet from the pump 5 is used to agitate a part of the tank to create at least a turbulent state, and the short fibers 3
Make the group float and flow. As a result, the short fibers 3 are bent by the stirring action, connected and entangled with each other, and are produced into a spherical, ellipsoidal or disc-shaped fiber mass 6 with a maximum diameter of 5 to 100 mm. In this case, it is necessary to use fibers having a length of 5 to 50 mm, and to use non-crimped short fibers. As for the fiber material, synthetic fibers such as polyester, nylon, vinylon, and acrylic are good in terms of durability when used for water treatment, and rayon and polyester are preferable because of the ease of production. The diameter of the fibers used for short fibers varies depending on the Young's modulus of the material, but is between 10 and
A material of about 100 microns is required. Further, the cross-sectional shape of the fibers is not only circular, but also irregularly shaped fibers such as so-called triangular and star-shaped fibers can be used.

製造に際して、水の代りにエチレングリコー
ル、エタノール、ブタノールなどの溶剤も使用で
きる。また繊維塊の染色のため染料および助剤の
添加や出来上つた繊維塊の中の繊維間の接着のた
めの接着硬化剤を槽中に共存させることもでき
る。
During production, solvents such as ethylene glycol, ethanol, and butanol can also be used instead of water. Further, dyes and auxiliary agents may be added for dyeing the fiber mass, and an adhesive hardening agent for adhesion between fibers in the finished fiber mass may be coexisting in the bath.

撹拌羽根は特に限定されないが、タービン型、
フアンタービン型、彎曲羽根フアンタービン型、
プロペラ型、パドル型、いかり型等の羽根の形状
が単純なものの方がよく、螺旋帯やヘリカルリボ
ン型の複雑な形状は短繊維が羽根にからまり易い
ので好ましくない。その点家庭用洗濯機に用いら
れるような槽内の露出部が少なく滑めらかな形状
が好ましい。
The stirring blade is not particularly limited, but may be a turbine type,
Fan turbine type, curved blade fan turbine type,
It is better if the blades have a simple shape such as a propeller type, paddle type, anchor type, etc., and complex shapes such as a spiral band or helical ribbon type are not preferable because the short fibers are likely to become entangled with the blades. In this respect, a tub with a smooth shape with few exposed parts, such as those used in domestic washing machines, is preferable.

また球形回転型槽やコンクリートミキサー等に
使用されている槽内に邪魔板が内蔵され、槽が2
重円錐型で槽全体が回転するようなタイプのもの
もよい。また回転以外の振動子により水を振動さ
せる撹拌装置も採用できる。
In addition, a baffle plate is built into the tank used in spherical rotary tanks and concrete mixers, and the tank is divided into two parts.
A heavy conical type in which the entire tank rotates is also good. It is also possible to employ a stirring device that vibrates water using a vibrator other than rotation.

またポンプの水流による撹拌に当つてはポンプ
に短繊維がからまないように適当なフイルタを取
付けるか、ポンプ自身をノンクロツク型のものを
使用する。
When agitating with water flow from a pump, either install a suitable filter to the pump to prevent short fibers from getting entangled, or use a non-clock type pump itself.

次に実施例で本発明を詳細に説明するが、これ
に限定されるものではない。
Next, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.

実施例 1 フアードラー型の撹拌羽根をもつ直径1.2m、
高さ1.5mの円筒状の撹拌槽内に水を400入れ、
温度を40℃に調整し、60rpmで回転させた。次い
で15mmの長さに切断した20デニール(直径45ミク
ロン)のポリエステル繊維50Kgを分散しながら投
入する。投入終了後、45分間撹拌を続けると15〜
30mmの直径の繊維塊が得られた。このものは水処
理媒体として使用できる。
Example 1 1.2 m diameter with Fuadler type stirring blade,
Pour 400ml of water into a cylindrical stirring tank with a height of 1.5m.
The temperature was adjusted to 40°C and rotated at 60 rpm. Next, 50 kg of 20 denier (45 micron diameter) polyester fibers cut into 15 mm lengths were added while being dispersed. After addition, if you continue stirring for 45 minutes, it will be 15~
A fiber mass with a diameter of 30 mm was obtained. This can be used as a water treatment medium.

実施例 2 繊維直径が28ミクロンの断面円形のポリエステ
ルを捲縮を与えず紡糸されたものを20mmの長さに
切断したもの0.8Kgを、一般家庭用洗濯機の洗濯
槽内の60℃の温水50中に分散しながら投入し、
撹拌強度「弱」にして30分間撹拌する。製造され
た繊維塊は直径10〜25mmの球に近い形状であつ
た。
Example 2 0.8 kg of polyester with a circular cross section with a fiber diameter of 28 microns was spun without crimping and cut into 20 mm lengths, and 0.8 kg was washed in hot water at 60°C in the washing tub of a general household washing machine. 50, add it while dispersing it,
Turn the stirring intensity to "low" and stir for 30 minutes. The produced fiber mass had a shape close to a sphere with a diameter of 10 to 25 mm.

なお繊維長が64mmの捲縮のあるポリエステル短
繊維を使用して実施例2と同様に製造したが、こ
の場合は小型の球状のものは製造できず、第1図
に例示するような500mm程度の紐状または大塊状
にもつれ合つたものしかできなかつた。
It should be noted that crimped short polyester fibers with a fiber length of 64 mm were used to produce the same as in Example 2, but in this case, it was not possible to produce small spherical fibers, and the fiber length was about 500 mm as illustrated in Figure 1. The only thing that could be formed was a tangled string-like or large block-like structure.

実施例 3 直径1mの球形回転型槽に300の水を入れ、
20mmにカツトしたレーヨン繊維(直径31ミクロ
ン)4Kgに投入する。常温にて30rpmの回転速度
で30分回転すると直径10〜30mmの繊維塊が得られ
た。
Example 3 Put 300ml of water into a spherical rotating tank with a diameter of 1m,
Pour into 4 kg of rayon fiber (diameter 31 microns) cut into 20 mm pieces. When rotated at room temperature for 30 minutes at a rotation speed of 30 rpm, a fiber mass with a diameter of 10 to 30 mm was obtained.

実施例 4 直径30cm、高さ30cmのステンレス製容器に、巾
10cm、高さ20cmのゴム製の板状撹拌羽根をもつた
撹拌機を取付けた。そして容器内に水8を入
れ、全体を80℃の浴内に設置した。次に20mmに切
断した60ミクロンのナイロン短繊維200gを容器
内に入れ、30分間、90rpmで撹拌し、繊維塊を製
造した。出来上つた繊維塊の直径は15〜25mmであ
つた。
Example 4 In a stainless steel container with a diameter of 30 cm and a height of 30 cm,
A stirrer with a rubber plate stirring blade measuring 10 cm and 20 cm in height was installed. Then, water 8 was poured into the container, and the entire container was placed in a bath at 80°C. Next, 200 g of 60 micron short nylon fibers cut into 20 mm pieces were placed in a container and stirred at 90 rpm for 30 minutes to produce a fiber mass. The diameter of the resulting fiber mass was 15-25 mm.

以上本発明によれば、繊維長が5〜50mmの短繊
維群を液中に分散させた状態で水流または振動に
より撹拌して繊維塊を形成させるので、液温の保
持は比較的容易であり、良好な繊維塊を得やすい
利点を有する。また製造装置を簡略化でき、一般
家庭用洗濯機程度の小型のものでも容易に製造で
きるに至つた。
As described above, according to the present invention, short fibers with a fiber length of 5 to 50 mm are dispersed in a liquid and stirred by water flow or vibration to form a fiber mass, so it is relatively easy to maintain the liquid temperature. , it has the advantage that it is easy to obtain a good fiber mass. Furthermore, the manufacturing equipment can be simplified, and even products as small as a general household washing machine can be easily manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水処理媒体としては使用困難な繊維塊
の構造模式図、第2図および第3図はそれぞれ本
発明方法に用いる製造装置の一例を示す概略構成
図である。 1……撹拌槽、2……投入ホツパー、3……短
繊維、4……撹拌羽根、5……ポンプ、6……繊
維塊。
FIG. 1 is a schematic diagram of the structure of a fiber mass that is difficult to use as a water treatment medium, and FIGS. 2 and 3 are schematic configuration diagrams each showing an example of a manufacturing apparatus used in the method of the present invention. 1... Stirring tank, 2... Feeding hopper, 3... Short fiber, 4... Stirring blade, 5... Pump, 6... Fiber mass.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維長が5〜50mmの無捲縮短繊維群を液中に
分散させた状態で機械撹拌し、前記短繊維群を塊
状にからみ合わせて断面最大直径が5〜100mmの
繊維塊を形成することを特徴とする水処理媒体の
製造方法。
1. A group of non-crimped short fibers with a fiber length of 5 to 50 mm are dispersed in a liquid and are mechanically stirred, and the short fiber groups are intertwined in a lump to form a fiber mass with a maximum cross-sectional diameter of 5 to 100 mm. A method for producing a water treatment medium characterized by:
JP56043332A 1980-12-27 1981-03-24 Production of medium for water treatment Granted JPS57156012A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56043332A JPS57156012A (en) 1981-03-24 1981-03-24 Production of medium for water treatment
GB8138266A GB2091303B (en) 1980-12-27 1981-12-18 Producing fibre clamps for filtering
DE19813151107 DE3151107A1 (en) 1980-12-27 1981-12-23 "METHOD FOR PRODUCING A WATER TREATMENT AGENT AND PRODUCT PRODUCED BY THE METHOD"
FR8124153A FR2497118B1 (en) 1980-12-27 1981-12-23 METHOD FOR PRODUCING A WATER TREATMENT MEDIUM AND THE MEDIUM THUS PRODUCED
US06/493,433 US4576716A (en) 1980-12-27 1983-05-09 Method of producing water treatment medium and medium produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56043332A JPS57156012A (en) 1981-03-24 1981-03-24 Production of medium for water treatment

Publications (2)

Publication Number Publication Date
JPS57156012A JPS57156012A (en) 1982-09-27
JPH0126726B2 true JPH0126726B2 (en) 1989-05-25

Family

ID=12660872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56043332A Granted JPS57156012A (en) 1980-12-27 1981-03-24 Production of medium for water treatment

Country Status (1)

Country Link
JP (1) JPS57156012A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112816A (en) * 1982-12-17 1984-06-29 Unitika Ltd Preparation of fiber lump
JPS63156594A (en) * 1986-12-19 1988-06-29 Ebara Infilco Co Ltd Biological treatment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211637A (en) * 1985-07-10 1987-01-20 大日本印刷株式会社 Laminated sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211637A (en) * 1985-07-10 1987-01-20 大日本印刷株式会社 Laminated sheet

Also Published As

Publication number Publication date
JPS57156012A (en) 1982-09-27

Similar Documents

Publication Publication Date Title
US4049491A (en) Viscous dispersion for forming wet-laid, non-woven fabrics
US4200488A (en) Viscous dispersion for forming wet-laid, non-woven fabrics
JP4131439B2 (en) Reeling method
KR100456057B1 (en) Biodegradable Hydrolyzable Sheet
JP2003119654A (en) Water-disintegrable sheet and method for manufacturing the same
US4576716A (en) Method of producing water treatment medium and medium produced thereby
JPH0126726B2 (en)
JPH0757274B2 (en) Roller type agitator type washing machine
US4512849A (en) Wet-laid, non-woven fabrics
CN215028557U (en) Solid material dispersing and feeding device for producing suspending agent
JPS5924107B2 (en) Manufacturing method of fiber reinforced cement composite material
JPS5812048B2 (en) Stirring blades in stirrer
CN208911524U (en) A kind of sedimentation mixing plant
US3384535A (en) Process for fibrillating polyamide-containing fibers with an acid swelling agent
CN208082254U (en) A kind of urea for vehicle solution agitating device
CN107139339B (en) A break up equipment for fibre
JPH0427495A (en) Medium for water treatment
US3467362A (en) Mixing processes
JPS59112816A (en) Preparation of fiber lump
CN211358464U (en) Raw material slurry dispersing equipment for producing paper towels
CN219690172U (en) Anti-blocking hydraulic pulper
JPS641991Y2 (en)
CN209612800U (en) Dispersion machine for defoaming agent
JPS6211637B2 (en)
CN216006386U (en) Ready-made clothe clean-up equipment