JPH01266895A - Sterilizing device - Google Patents

Sterilizing device

Info

Publication number
JPH01266895A
JPH01266895A JP9498288A JP9498288A JPH01266895A JP H01266895 A JPH01266895 A JP H01266895A JP 9498288 A JP9498288 A JP 9498288A JP 9498288 A JP9498288 A JP 9498288A JP H01266895 A JPH01266895 A JP H01266895A
Authority
JP
Japan
Prior art keywords
liquid
water
ion exchanger
container
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9498288A
Other languages
Japanese (ja)
Inventor
Goro Fujiwara
藤原 護朗
Mitsunobu Masuda
益田 光信
Masanori Shiraishi
白石 雅範
Shinya Matsumoto
松元 信也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINANEN NEW CERAMIC KK
Takuma Co Ltd
Suntory Ltd
Original Assignee
SHINANEN NEW CERAMIC KK
Takuma Co Ltd
Suntory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINANEN NEW CERAMIC KK, Takuma Co Ltd, Suntory Ltd filed Critical SHINANEN NEW CERAMIC KK
Priority to JP9498288A priority Critical patent/JPH01266895A/en
Publication of JPH01266895A publication Critical patent/JPH01266895A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To exterminate live bacteria or suppress the proliferation thereof and to reduce the running cost of the device by disposing an ion exchanger bonded with metal ions to the liquid contact surface in the flow passage from the liquid inflow port to liquid outflow port in a container. CONSTITUTION:The container 1 having the liquid inflow port 1a and the liquid outflow port 1b is provided and a granular material layer 3 having the ion exchanger bonded with the metal ions on the surface is packed to the liquid contact surface in the flow passage from the liquid inflow port 1a to the liquid outflow port 1b in this container 1. The ion exchanger boned with the metal ions of silver, copper, tin, zinc, etc., has the effect of exterminating the bacteria in contact therewith by contact with the bacteria or the antimicrobial effect of suppressing the proliferation thereof and, therefore, the live bacteria in the raw water supplied from the liquid inflow port 1a into the container 1 comes into contact with the ion exchanger having the antimicrobial effect at the time of flowing in the flow passage so as to arrive at the liquid outflow port 1b. The bacteria are thereby exterminated or the proliferation thereof is suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、飲料水・食品用水・工場冷却水・浴用水・プ
ール水等、イオン含有量の多い水の殺菌および、各種精
密機器の洗浄水・メツキ品等製品の洗浄水・高比抵冷却
水・半導体の洗浄水等、イオン交換でイオンが除去され
た純水・超純水に代表される脱イオン水の殺菌に用いら
れる殺菌装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is useful for sterilizing water with high ion content, such as drinking water, food water, factory cooling water, bath water, and pool water, and for cleaning various precision equipment. Sterilizer used to sterilize deionized water, such as water, cleaning water for plated products, high-resistance cooling water, cleaning water for semiconductors, etc., such as pure water and ultrapure water from which ions have been removed by ion exchange. Regarding.

〔従来の技術〕[Conventional technology]

従来のこの種の殺菌装置としては、塩素を塩素ガスや次
亜塩素酸ソーダの形で水中に注入して殺菌するものと、
紫外線を水に照射して殺菌するものとが知られている(
文献を示すことができない)。そして、前者の塩素注入
式の殺菌装置は、飲料水等のイオン含有量の多い水の殺
菌に主として使用され、後者の紫外線照射式の殺菌装置
は、純水・超純水等の脱イオンの殺菌に主として使用さ
れている。
Conventional sterilization equipment of this type involves injecting chlorine into water in the form of chlorine gas or sodium hypochlorite to sterilize water.
It is known to sterilize water by irradiating it with ultraviolet light (
(Unable to provide references). The former chlorine injection type sterilizer is mainly used to sterilize water with high ion content such as drinking water, while the latter ultraviolet irradiation type sterilizer is used to sterilize deionized water such as pure water and ultrapure water. Mainly used for sterilization.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、前者塩素注入式殺菌装置によるときは、塩素
を常時消費するため、ランニングコストが高く付く欠点
があった。しかも、塩素を注入するため、純水や超純水
の殺菌に用いることができないことはもちろん、注入し
た塩素により、飲料用として好ましくないトリハロメタ
ンを生成したり、或いは、鋼材を腐食させたり眼をil
J激したりする等、所期の水殺菌は遂行できても、水質
を使用に好ましくないものにしてしまうという欠点があ
った。
However, when using the former chlorine injection type sterilizer, chlorine is constantly consumed, resulting in high running costs. Moreover, since chlorine is injected, it cannot be used to sterilize pure or ultrapure water, and the injected chlorine may produce trihalomethane, which is not suitable for drinking, or may corrode steel materials or cause eye damage. il
Even if the desired water sterilization can be accomplished, such as by using a J-stimulant, there is a drawback that the water quality becomes unfavorable for use.

また、後者紫外線照射式殺菌装置によるときは、紫外線
照射のために電力を多大に消費し、しかも、紫外線ラン
プの消耗が多大であるため、ランニングコストが高く付
くといった欠点があった。
Furthermore, when using the latter ultraviolet irradiation type sterilization device, a large amount of electricity is consumed for ultraviolet irradiation, and furthermore, the ultraviolet lamp consumes a large amount of water, resulting in high running costs.

本発明の目的は、上述した従来欠点を一掃する点にある
An object of the present invention is to eliminate the above-mentioned conventional drawbacks.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による殺菌装置の特徴構成は、液流入口および液
流出口を備えた容器を設け、この容器内の液流入口から
液流出口への流路中の接液面に、金属イオンが結合した
イオン交換体を配置してある点にある。
The characteristic structure of the sterilizer according to the present invention is that a container is provided with a liquid inlet and a liquid outlet, and metal ions are bonded to the liquid contact surface in the flow path from the liquid inlet to the liquid outlet in the container. The point is that an ion exchanger is arranged.

前記イオン交換体が配置、される接液面としては、前記
流路を多数の通液路に細分する粒状体層の粒状体表面や
前記流路中に配設した多数の通液孔を有する多孔体の表
面を用いることが好ましい。
The liquid contact surface on which the ion exchanger is arranged has a granular surface of a granular layer that subdivides the flow path into a large number of liquid passages, and a large number of liquid passage holes arranged in the flow path. It is preferable to use the surface of a porous body.

〔作 用〕[For production]

つまり、銀や銅、錫、亜鉛等の金属イオンが結合したイ
オン交換体には、菌との接触によってその接触した菌を
死滅あるいは、その増殖を抑制する抗菌作用があること
が今日では広く知られており、また、イオン交換体に結
合する金属イオンは、それよりもイオン化傾向の小なる
イオンでなければ交換せずに、安定していることがイオ
ン交換体の技術分野では周知の事実として知られている
。他方、純水や超純水はもちろんのこと、飲料水のよう
にイオン含有量が多い水であっても、イオン交換体に結
合させた金属イオンよりもイオン化傾向の小なるイオン
を含んでいることは非常に少なく、また、イオン交換体
に結合させる金属イオンとしては、銀等、イオン化傾向
が非常に小さなものがある。
In other words, it is now widely known that ion exchangers to which metal ions such as silver, copper, tin, and zinc are bound have antibacterial effects that kill or inhibit the growth of bacteria upon contact with them. In addition, it is a well-known fact in the technical field of ion exchangers that metal ions bound to ion exchangers do not exchange unless they have a smaller ionization tendency than the metal ions and are stable. Are known. On the other hand, not only pure water and ultrapure water, but even water with a high ion content such as drinking water contains ions that have a smaller tendency to ionize than the metal ions bound to the ion exchanger. This is very rare, and some metal ions that are bound to the ion exchanger have a very small tendency to ionize, such as silver.

従って、液流入口から容器内に供給された原水中の生菌
は、液流出口に至るべく流路を流れるとき、その流路中
に配置した抗菌作用を有するイオン交換体に接触するこ
とにより、死滅する又は増殖を抑制させることになる。
Therefore, when the living bacteria in the raw water supplied from the liquid inlet into the container flows through the channel to reach the liquid outlet, they come into contact with the ion exchanger with antibacterial action placed in the channel. , they will die or their growth will be inhibited.

また、請求項2や3のように、イオン交換体を配置した
接液面を構成する場合は、流路が細分化されて、単位流
路長さ当りで生菌がイオン交換体に接触する機会が多く
なる。
In addition, as in claims 2 and 3, when configuring a liquid contact surface on which an ion exchanger is arranged, the flow path is subdivided so that live bacteria come into contact with the ion exchanger per unit length of the flow path. There will be more opportunities.

〔発明の効果〕〔Effect of the invention〕

従って、本発明は次のような効果を奏し得るに至った。 Therefore, the present invention has achieved the following effects.

液流入口から容器内に水を供給して、その水中の生菌を
、抗菌剤として作用するイオン交換体に接触させること
でその生菌を死滅させる、あるいは、増殖を抑制するの
であって、抗菌剤として作用するイオン交換体が安定し
ていて、結合する金属イオンよりもイオン化傾向が小な
るイオンがないかぎりその金属イオンの流出がなく、ま
た、純水や超純水はもちろんのこと、結合した金属イオ
ンよりもイオン化傾向の小なるイオンを水が含んでいる
ことが非常に少ないため、ランニングコストが安くつく
とともに、殺菌による水質変化がなく、特に、純水や超
純水等の脱イオン水の殺菌に有用である。
Water is supplied into the container from the liquid inlet, and the living bacteria in the water are brought into contact with an ion exchanger that acts as an antibacterial agent, thereby killing the living bacteria or suppressing their growth. Unless the ion exchanger that acts as an antibacterial agent is stable and there are ions that have a smaller ionization tendency than the bound metal ions, there will be no outflow of the metal ions. Since water rarely contains ions that have a smaller tendency to ionize than bound metal ions, running costs are low and there is no change in water quality due to sterilization. Useful for sterilizing ionized water.

また、請求項2や3のようにした場合には、単位流路長
さでの生菌のイオン交換体への接触の機会を多くできる
ため、全体の小型化を図り得る。
Further, in the case of the second or third aspect, the chances of contact of viable bacteria with the ion exchanger per unit channel length can be increased, so that the overall size can be reduced.

〔実施例〕〔Example〕

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

第1図に示すように、殺菌装置は、イオン交換皮脂充填
用のFRPタンクを利用した容器(1)と、その上部開
口を閉塞する蓋(2)とを設け、その蓋(2)に、容器
(1)内の上部に原水を散布するための複数の液流入口
(1a)を下端部分に分散形成した給水パイプ(IA)
と、容器(1)の下部から水を取出すための複数の液流
出口(1b)を下端部分に分散形成した出水パイプ(I
B)とを貫通状態に取付け、容器(1)内に前記液流入
口(1a)か液流出口(1b)への流路を多数の通液路
に細分する粒状体層(3)を充宅し、その粒状体層(3
)の粒状体に抗菌性を持たせ、原水を粒状体層(3)の
上面に散布させて、粒状体層(3)流下時に抗菌性粒状
体に接触させることで殺菌し、その殺菌された処理水を
液流出口(1b)および取出パイプ(IB)を介して取
出すように構成されている。
As shown in FIG. 1, the sterilizer includes a container (1) using an FRP tank for filling ion exchange sebum, and a lid (2) that closes the upper opening of the container. A water supply pipe (IA) with a plurality of liquid inlets (1a) distributed at the lower end for dispersing raw water to the upper part of the container (1).
and a water outlet pipe (I
B) is installed in a penetrating state, and the container (1) is filled with a granular material layer (3) that subdivides the flow path to the liquid inlet (1a) or the liquid outlet (1b) into a large number of liquid passages. and its granular layer (3
) is made to have antibacterial properties, raw water is sprayed on the top surface of the granule layer (3), and the granule layer (3) is sterilized by coming into contact with the antibacterial granules as it flows down. The treated water is configured to be taken out through the liquid outlet (1b) and the takeout pipe (IB).

前記抗菌性粒状体は、銀、銅、亜鉛等の金、塀イオンが
結合したイオン交換体をその表面に備えたものであって
、イオン交換体としては、天然ゼオライト、合成ゼオラ
イト、強酸性カチオン交換皮脂を挙げることができ、表
面にイオン交換体を備えた粒状体にする手段とし、では
、粒状体自体をイオン交換体から構成する手段、イオン
交換体が分散された樹脂をもって粒状体を成形する手段
、粒状体の表面にイオン交換体をコーティング又は付着
させる手段がある。
The antibacterial granules have on their surface an ion exchanger to which gold such as silver, copper, zinc, etc., and fence ions are bonded, and the ion exchanger includes natural zeolite, synthetic zeolite, and strongly acidic cations. For example, exchangeable sebum can be used as a means to form a granular body with an ion exchanger on the surface, a means for forming the granule itself from an ion exchanger, and a means for molding the granule with a resin in which the ion exchanger is dispersed. There are means for coating or adhering an ion exchanger to the surface of the granules.

そして、抗菌性粒状体の具体例を挙げると、(A)天然
ゼオライトに銀イオンおよび亜鉛イオンを1:3の比率
で2.5〜3%付加した粒径が1〜5mmのもの、 (B)合成ゼオライトに銀イオンおよび亜鉛イオンを1
:3の比率で2.5〜3%付加したものを1〜2μmに
粉砕し、その粉砕物をポリエチレン樹脂中に重量比で2
0%分散させて、2mm径、3mm軸長程度の円柱状の
粒に成形したもの、(C) Na型強酸性カチオン交換
樹脂にAgNO3を50g/βの割合でイオン交換させ
た粒径が0.3〜l、 2mmのもの、 がある。
Specific examples of antibacterial granules include (A) natural zeolite with 2.5 to 3% silver ions and zinc ions added at a ratio of 1:3 and a particle size of 1 to 5 mm; (B ) Adding silver ions and zinc ions to synthetic zeolite
: 2.5 to 3% added at a ratio of 3 is pulverized to 1 to 2 μm, and the pulverized product is added to polyethylene resin at a weight ratio of 2
(C) AgNO3 was ion-exchanged with a Na-type strongly acidic cation exchange resin at a rate of 50 g/β, and the particle size was 0%. There are .3~l, 2mm ones, and .

次に殺菌効果をKo++>するために本発明者が行った
実験例を示す。
Next, an example of an experiment conducted by the present inventor to improve the bactericidal effect will be shown.

実験例 前述実施例で説明した個の空容積が7.7βの容器(1
)に5βの抗菌性粒状体を充填し、そのようなものを、
前述の実施例で示した(A)、(B)。
Experimental Example The container (1
) is filled with 5β antibacterial granules, and such
(A) and (B) shown in the above examples.

(C)3種類の抗菌性粒状体ごとに用意し、水温20℃
、生菌数20個/cc以上を含む脱イオン水を原水とし
て各種の流速で給水パイプ(IA)より供給し、出水パ
イプ<IB)から取出した処理水の生菌数を調べた。な
お、菌はシュードモナス(Pseudomonas)で
ある。結果を第2図に示す。
(C) Prepare each of the three types of antibacterial granules at a water temperature of 20°C.
Deionized water containing 20 or more viable bacteria/cc was supplied as raw water from the water supply pipe (IA) at various flow rates, and the number of viable bacteria in the treated water taken out from the water outlet pipe <IB) was examined. Note that the bacterium is Pseudomonas. The results are shown in Figure 2.

第2図は、原水の供給流速、つまり、原水が抗菌性粒状
体に接している処理時間と生菌数との関係を示している
FIG. 2 shows the relationship between the raw water supply flow rate, that is, the treatment time during which the raw water is in contact with the antibacterial granules, and the number of viable bacteria.

その実験の結果、(A)、 (B)、 (C)いずれの
抗菌性粒状体の場合であっても殺菌能力があることが確
認された。
As a result of the experiment, it was confirmed that any of the antibacterial granules (A), (B), and (C) had bactericidal ability.

また、 (1) (A)、 (B)、 (C)いずれの場合も処
理時間が長くなれば殺菌率が向上すること、 (2) (B)よりも(A)および(C)の場合の方が
短い処理時間で殺菌数が多くなること から、抗菌性粒状の金属イオン含有量、抗菌性粒状体の
形状・大きさ、原水の流速に左右される原水の金属イオ
ンとの接触の機会が多くなるほど、殺菌能力が高くなる
ことが判明した。
In addition, (1) In all cases of (A), (B), and (C), the sterilization rate improves as the treatment time increases; (2) In the case of (A) and (C) more than in (B). Since the number of sterilizations is higher in a shorter treatment time, the opportunity for contact with metal ions in the raw water depends on the metal ion content of the antibacterial granules, the shape and size of the antibacterial granules, and the flow rate of the raw water. It was found that the greater the number, the higher the bactericidal ability.

つまり、 (1〉 抗菌性粒状体の金属イオン含有量が多くなるほ
ど、 (2)抗菌性粒状体への原水の接触面積が大になるほど
、 (3)処理時間が長くなるほど 殺菌能力が高くなる。
In other words, (1) the higher the metal ion content of the antibacterial granules, (2) the larger the contact area of raw water with the antibacterial granules, and (3) the longer the treatment time, the higher the sterilizing ability.

〔別実施例〕[Another example]

以下、本発明の別実施例を示す。 Another example of the present invention will be shown below.

[1]上記実施例では、原水が粒状体層(3)を上部か
ら下部に向かって流動するようにしたが、第3図に示す
ように、原水が粒状体層(3)を下部から上部に向かっ
て流動するように構成してもよい。
[1] In the above embodiment, the raw water flows through the granular layer (3) from the upper part to the lower part, but as shown in FIG. It may also be constructed so that it flows towards.

[2]第4図に示すように、容器<1)内の液流入口(
1a)から液流出口(1b)への流路中に前述した多数
の抗菌性粒状体からなる粒状体層(3)を配置し、前記
液流入口(1a)を形成するパイプ(PI)に、バルブ
(vl)付きの原水供給管(C1)とバルブ(v2)付
きの排水管(C2)とを接続し、前記液流出口(1b)
を形成するパイプ(P2)に、バルブ(v3)付きの処
理水取出し管(Ct)とバルブ(V、)付きの洗浄水供
給管(C4)とを接続し、もって、原水供給管(C2)
および処理水取出管(C3)のバルブ(Vl)、 (V
3)を開いて原水を殺菌する状態と、洗浄水供給管(C
4)および排水管(C2) (7) バルブ(V4)、
 (V2)を開いて粒状体層(3)を洗浄する状態とに
切替自在に構成する。
[2] As shown in Fig. 4, the liquid inlet (
A granular material layer (3) consisting of a large number of antibacterial granules described above is arranged in the flow path from 1a) to the liquid outlet (1b), and the pipe (PI) forming the liquid inlet (1a) is , connect the raw water supply pipe (C1) with a valve (vl) and the drain pipe (C2) with a valve (v2), and connect the liquid outflow port (1b).
A treated water take-out pipe (Ct) with a valve (V3) and a wash water supply pipe (C4) with a valve (V, ) are connected to the pipe (P2) forming the raw water supply pipe (C2).
and the valve (Vl) of the treated water outlet pipe (C3), (V
3) opened to sterilize the raw water and the cleaning water supply pipe (C
4) and drain pipe (C2) (7) valve (V4),
(V2) is configured to be freely switchable between opening and cleaning the granular material layer (3).

[3]上記実施例や[1]、[2]の別実施例において
、多数の通液孔を形成し、かつ、金属イオンが結合した
イオン交換体をそれら通液孔周面に備えた多孔体(3゛
)を、前記粒状体層(3)に代えて設ける。前記イオン
交換体は、上記実施例で示したものと同様なものであり
、通液孔周面にイオン交換体を備えさせる手段としては
、イオン交換体が分散された樹脂をもって多孔体を形成
する手段や、イオン交換体をもって多孔体を構成する手
段を挙げることができる。
[3] In the above embodiments and other embodiments of [1] and [2], a porous structure having a large number of liquid passage holes and an ion exchanger to which metal ions are bonded is provided on the peripheral surface of the liquid passage holes. A layer (3) is provided in place of the granular layer (3). The ion exchanger is the same as that shown in the above example, and the means for providing the ion exchanger on the peripheral surface of the liquid passage hole is to form a porous body using a resin in which the ion exchanger is dispersed. Examples include means and means for constructing a porous body using an ion exchanger.

[4]前記粒状体層(3)に代えて、抗菌性を有する繊
維をもって多数の通水路を形成する状態に構成された集
合体を設ける。繊維に抗菌性を付与する手段としては、
繊維の表面に前述したイオン交換体またはそのイオン交
換体を含有する樹脂をコーティングする手段や、繊維自
体を、イオン交換体を含有する樹脂から作製する手段が
ある。
[4] In place of the granular layer (3), an aggregate is provided that is made of antibacterial fibers and is configured to form a large number of water passages. As a means of imparting antibacterial properties to fibers,
There is a method of coating the surface of the fiber with the above-mentioned ion exchanger or a resin containing the ion exchanger, and a method of producing the fiber itself from a resin containing the ion exchanger.

[5]上記実施例において、容器(1)の内面や給水パ
イプ(IA)の表面、出水パイプ(IB)の表面(いず
れも接液面の1つ)にも前述のイオン交換体を配置する
[5] In the above embodiment, the above-mentioned ion exchanger is also arranged on the inner surface of the container (1), the surface of the water supply pipe (IA), and the surface of the water outlet pipe (IB) (all of which are one of the surfaces in contact with liquid). .

[6]尚、特許請求の範囲の項に図面との対照を便利に
する為に符号を記すが、該記入により本発明は添付図面
の構造および方法に限定されるものではない。
[6] Note that although reference numerals are written in the claims for convenient comparison with the drawings, the present invention is not limited to the structures and methods shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図であり、第2図は
実験データを示すグラフである。第3図、第4図は本発
明の別実施例を示す断面図である。 (1a)・・・・・・液流入口、(1b)・・・・・・
液流出口、(1)・・・・・・容器、(3)・・・・・
・粒状体層、(3′)・・・・・・多孔体。
FIG. 1 is a sectional view showing an example of the present invention, and FIG. 2 is a graph showing experimental data. FIGS. 3 and 4 are cross-sectional views showing another embodiment of the present invention. (1a)...Liquid inlet, (1b)...
Liquid outlet, (1)... Container, (3)...
- Granular material layer, (3')... Porous material.

Claims (1)

【特許請求の範囲】 1、液流入口(1a)および液流出口(1b)を備えた
容器(1)を設け、この容器(1)内の液流入口(1a
)から液流出口(1b)への流路中の接液面に、金属イ
オンが結合したイオン交換体を配置してある殺菌装置。 2、前記接液面が前記流路を多数の通液路に細分する粒
状体層(3)の粒状体表面である請求項1記載の殺菌装
置。 3、前記接液面が、前記流路中に配設した多数の通液孔
を有する多孔体(3’)の表面である請求項1記載の殺
菌装置。
[Claims] 1. A container (1) equipped with a liquid inlet (1a) and a liquid outlet (1b) is provided, and a liquid inlet (1a) in the container (1) is provided.
) A sterilizer in which an ion exchanger bonded with metal ions is arranged on the liquid contact surface in the flow path from the liquid outlet (1b) to the liquid outlet (1b). 2. The sterilizer according to claim 1, wherein the liquid contact surface is a granular surface of a granular layer (3) that subdivides the flow path into a large number of liquid passages. 3. The sterilizer according to claim 1, wherein the liquid contact surface is a surface of a porous body (3') having a large number of liquid passage holes arranged in the flow path.
JP9498288A 1988-04-18 1988-04-18 Sterilizing device Pending JPH01266895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9498288A JPH01266895A (en) 1988-04-18 1988-04-18 Sterilizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9498288A JPH01266895A (en) 1988-04-18 1988-04-18 Sterilizing device

Publications (1)

Publication Number Publication Date
JPH01266895A true JPH01266895A (en) 1989-10-24

Family

ID=14125107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9498288A Pending JPH01266895A (en) 1988-04-18 1988-04-18 Sterilizing device

Country Status (1)

Country Link
JP (1) JPH01266895A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07148487A (en) * 1993-11-30 1995-06-13 Nishi Nippon Sangyo Kk Preparation of water quality-modifier wherein natural zeolite is used as raw material
JP2011500306A (en) * 2007-10-10 2011-01-06 ポリマーズ シーアールシー リミテッド Antibacterial membrane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172099A (en) * 1984-09-18 1986-04-14 Keiyoo:Kk Agent for preventing degradation of liquid such as water-soluble metal working fluid, water, etc.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172099A (en) * 1984-09-18 1986-04-14 Keiyoo:Kk Agent for preventing degradation of liquid such as water-soluble metal working fluid, water, etc.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07148487A (en) * 1993-11-30 1995-06-13 Nishi Nippon Sangyo Kk Preparation of water quality-modifier wherein natural zeolite is used as raw material
JP2011500306A (en) * 2007-10-10 2011-01-06 ポリマーズ シーアールシー リミテッド Antibacterial membrane

Similar Documents

Publication Publication Date Title
US7163709B2 (en) Composition for disinfection of plants, animals, humans, byproducts of plants and animals and articles infected with pathogens and method of producing and application of same
CN107406280A (en) Plasma-activated water
US20100012593A1 (en) Process for treating water
JP2012239938A (en) Water-quality improvement apparatus, water-quality improving method and metal ion water generator
US20220040348A1 (en) Method, apparatus and system for disinfecting air and/or surfaces
US6716340B2 (en) Water treatment system
US6630106B1 (en) Compositions and methods for controlling microorganism growth in water processing systems
JPH01266895A (en) Sterilizing device
US7419607B2 (en) Anti-biofilm forming structure and method of manufacturing the same
US20110129545A1 (en) Method of protecting vascular plants against pathogens
KR100376913B1 (en) Preparation method of chlorine dioxide, an apparatus used therefor and uses thereof
CN109907058A (en) A kind of compound non-oxide Biocidal algae-killing agent for processing cycle cooling water
DE68906048T2 (en) MACHINE PART FOR LIQUID TREATMENT SYSTEMS.
JP2024518673A (en) Electrically activated superoxide water and its synthesis method
CN101531431B (en) Composite and separable physical disinfection device of barreled drinking water
JP2821857B2 (en) Sterilization method of liquid by metal ions, sterilization apparatus therefor, method of producing sterilant and production apparatus thereof
JP3392754B2 (en) Ozone sterilizer for cooling tower
JPS62215507A (en) Prevention of putrefaction of liquid such as water-soluble working oil, water or the like
US20100224572A1 (en) Water Treatment Device and Method
KR20040085107A (en) Nano silver contain water dispenser water tank
KR20010069645A (en) Sterilization of water using the particles coated with silver
JP2002361231A (en) Device for manufacturing purified water
JP3953971B2 (en) Cu ion mineral sterilizing water generator and method of using Cu ion mineral sterilizing water generator
JPH02290289A (en) Water activating and sterilizing apparatus
JP2525033B2 (en) Membrane separation device