JPH01265971A - Blood purification device - Google Patents

Blood purification device

Info

Publication number
JPH01265971A
JPH01265971A JP63092855A JP9285588A JPH01265971A JP H01265971 A JPH01265971 A JP H01265971A JP 63092855 A JP63092855 A JP 63092855A JP 9285588 A JP9285588 A JP 9285588A JP H01265971 A JPH01265971 A JP H01265971A
Authority
JP
Japan
Prior art keywords
blood
plasma
membrane
purification device
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63092855A
Other languages
Japanese (ja)
Inventor
Tadashi Samejima
正 鮫島
Shinichiro Kuroda
黒田 慎一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP63092855A priority Critical patent/JPH01265971A/en
Priority to KR1019890004985A priority patent/KR890017169A/en
Priority to CA000596922A priority patent/CA1324370C/en
Priority to AU33087/89A priority patent/AU629206B2/en
Publication of JPH01265971A publication Critical patent/JPH01265971A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

PURPOSE:To make it possible to adsorb and remove a cause substance from the blood highly efficiently by leading the blood to a mixer through a plasma separator and a plasma purifier, and mixing it with a concentrated blood. CONSTITUTION:The blood removed from a human body or from a blood container is led in to a plasma separator 4 from a blood leading-in port 1, and separated into a concentrated blood component and a plasma component. The separated plasma is led in to a plasma purifier 7 through a plasma separation circuit, and adsorbed and processed by an adsorption material stored in the purifier 7. The purified plasma processed in the plasma purifier 7 is mixed again with the concentrated blood from the plasma separator 4 in a mixer, and after that, returned to the human body or the blood container.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は血液中から病因物質を高い選択性を持って吸着
分離する血液浄化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a blood purification device that adsorbs and separates pathogenic substances from blood with high selectivity.

〔従来の技術] 近年1体液中の特定成分が重篤の症状を惹起する疾患の
治療法として血漿交換療法が行なわれている。この療法
は病因物質の透析が困難な場合に特に効果的で、重症筋
無力症、関節リウマチ、紅斑性独特等の自己免疫疾患、
糸球体腎炎、気管支喘息、多発性神経炎等の免疫関連疾
患、臓器移植に伴なう拒絶反応、肝不全、高血圧、癌疾
患などにおいて適応されている。
[Prior Art] In recent years, plasma exchange therapy has been used as a treatment for diseases in which a specific component in a body fluid causes severe symptoms. This therapy is particularly effective in cases where dialysis of the pathogenic substance is difficult, including autoimmune diseases such as myasthenia gravis, rheumatoid arthritis, and erythema
It is indicated for immune-related diseases such as glomerulonephritis, bronchial asthma, and polyneuritis, rejection reactions associated with organ transplants, liver failure, hypertension, and cancer diseases.

しかしながら、この血漿交換療法は血漿成分の全てを無
差別に除去するため、病因物質となる免疫グロブリン、
フィブリノーゲン、免疫複合体等を除去するのみならず
アルブミンその他の有用成゛分をも喪失してしまう問題
がある。加太で補充液としての血漿や血漿製剤の不足、
血清肝炎、AIDS、アレルギー症の併発、副作用など
といった多くの問題が指摘されている。このため、病因
物質となる免疫グロブリン、フィブリノーゲン、免疫複
合体等の大分子量の蛋白質を選択的に除去し、アルブミ
ンその他の有用成分を含む自己浄化血漿を再び患者に返
還する自己血漿浄化方法が研究され、また実施されるよ
うになっている。
However, because this plasma exchange therapy indiscriminately removes all plasma components, immunoglobulins, which are pathogenic substances,
There is a problem in that not only fibrinogen, immune complexes, etc. are removed, but also albumin and other useful components are lost. Lack of plasma and plasma preparations as replacement fluid in Kada;
Many problems have been pointed out, including serum hepatitis, AIDS, co-occurrence of allergic diseases, and side effects. For this reason, research is underway into a self-plasma purification method that selectively removes large molecular weight proteins such as immunoglobulin, fibrinogen, and immune complexes, which are pathogenic substances, and returns self-purified plasma containing albumin and other useful components to the patient. It has been implemented and is being implemented again.

このような自己血漿浄化方法において用いられる吸着材
としては、従来、多孔性樹脂(例えば、スチレンジビニ
ルベンゼン共重合体であるアンバーライトX A D 
−4[Amberlite XAD−4]、ロームアン
ド ハース社製)、イオン交換体(例えばカルボキシメ
チルセルロース、ジエチルアミノエチルアガロース等)
、無機多孔体(例久ば、多孔質ガラス、セラミックス等
)ならびにアフィニティ吸着材などが知られている。し
かしながら、従来用られる多孔性樹脂やイオン交換体は
、吸着能が小さいのみならず吸着特異性が低いため体液
中のアルブミン等をも吸着するため、治療効果が不十分
なだけでな(、安全性にも問題がある。また、無機多孔
体は吸着能および吸着特性については比較的良好である
ものの未だ実用的には不十分である。さらにアフィニテ
ィ吸着材は優れた吸着能および吸着特性を有し体液浄化
用吸着材として有望視されているが、生物学的相互作用
を利用した生物学的アフィニティ吸着材は、DNA、プ
ロティンA等の生理活性高分子をリガンド(目的とする
病因物質と親和性を持つ物質)として用いるため原料が
高価でかつ入手が困難であり、リガンドの安定性が乏し
く、かつ、リガンド本来の生理作用による副作用の発生
や、リガンドが溶出した場合には抗原性による副作用の
発生などの危険性があった。
Conventionally, adsorbents used in such self-plasma purification methods include porous resins (for example, Amberlite X A D, which is a styrene divinylbenzene copolymer)
-4 [Amberlite
, inorganic porous materials (for example, porous glass, ceramics, etc.), and affinity adsorbents are known. However, conventionally used porous resins and ion exchangers not only have low adsorption capacity but also have low adsorption specificity, so they adsorb albumin, etc. in body fluids, so they not only have insufficient therapeutic effects (but are also safe). In addition, although inorganic porous materials have relatively good adsorption capacity and properties, they are still insufficient for practical use.Furthermore, affinity adsorbents have excellent adsorption capacity and properties. However, biological affinity adsorbents that utilize biological interactions have been shown to be promising as adsorbents for purifying body fluids. Because the raw materials are expensive and difficult to obtain, the stability of the ligand is poor, and side effects may occur due to the inherent physiological effects of the ligand, or side effects due to antigenicity if the ligand is eluted. There was a risk of the occurrence of

本発明者らは、これらの欠点を解決するために鋭意研究
の結果、不溶性担体に複素環式化合物またはジペプチド
あるいはその誘導体を結合してなる吸着材を流体の導出
入口を有する容器内に充填してなる吸着装置が、アルブ
ミンをほとんど吸着せず、病因物質、特に免疫グロブリ
ンまたは免疫複合体を選択的に吸着することを見いだし
、すでにこれに基づ(発明について特許出願をした(例
えば、特開昭61−45773号、特開昭62−536
69号)。
In order to solve these drawbacks, the present inventors have conducted extensive research and have found that an adsorbent consisting of an insoluble carrier bound to a heterocyclic compound, a dipeptide, or a derivative thereof is filled into a container having a fluid inlet/outlet. discovered that an adsorption device consisting of No. 61-45773, Japanese Patent Application Publication No. 62-536
No. 69).

しかしながら、血液中の病因物質を効率よく除去するた
めに、該装置中に不溶性担体を高密度に充填した吸着装
置に血液を直接流入した場合には、血球成分の付着等の
原因により、圧力損失の上昇、血液流路の閉塞が起こり
、効率よく病因物質を除去することはできなかった。
However, in order to efficiently remove pathogenic substances from blood, when blood is directly flowed into an adsorption device that is densely packed with insoluble carriers, pressure loss occurs due to adhesion of blood cell components, etc. This resulted in an increase in blood flow rate and blockage of the blood flow path, making it impossible to efficiently remove the pathogenic substance.

そこで、本発明者らは、血液を血漿分離装置で分離した
後、分離した血漿を吸着装置で浄化することにより、血
球成分を損傷することなく、効率よく病因物質を除去で
きることを見い出した。
Therefore, the present inventors have discovered that by separating blood with a plasma separator and then purifying the separated plasma with an adsorption device, pathogenic substances can be efficiently removed without damaging blood cell components.

従来より、上記目的に使用できる血漿分離装置としては
、遠心分離による装置と、多孔性濾過膜を用いた装置が
知られている。遠心分離による装置は、血漿流路への血
球成分の混入を完全に防ぐことができず、また装置が高
価であり、他の装置との接続が繁雑であるという難点が
ある。一方、多孔性濾過膜を用いた装置としては、中空
糸型のものと、平11 Mのものが知られている。平板
状の濾過膜を用いる平膜型は、中空糸濾過膜を用いる中
空糸型と比較して膜の選択範囲がより広範であり、膜性
能の安定性が高(、かつ濾過モジュール′の形状を広範
に選べることから、小型で高性能の血漿分離装置を具現
化することが期待できる。
Conventionally, devices using centrifugation and devices using porous filtration membranes have been known as plasma separation devices that can be used for the above purpose. Devices using centrifugation have drawbacks in that they cannot completely prevent blood cell components from entering the plasma flow path, are expensive, and are complicated to connect with other devices. On the other hand, as devices using porous filtration membranes, a hollow fiber type and a Hei 11M type are known. The flat membrane type, which uses a flat plate-shaped filtration membrane, has a wider selection range of membranes than the hollow fiber type, which uses a hollow fiber filtration membrane, and has high stability in membrane performance (and the shape of the filtration module Since a wide range of plasma separation devices can be selected, it is expected that a compact and high-performance plasma separation device will be realized.

しかし、平膜型の場合、濾過モジエール構造において最
も重要な血液の薄層流路を、高度に均一かつ安定化させ
た状態で、しかも装置の小型化を達成しながら、濾過膜
に接して設けることが難しく、その実現が困難であると
されていた。この問題を解決する方法として、表面に凹
凸を有する血液流路規制板を濾過膜の一面に設けて、き
わめて精度のよい厚さの血液流路を形成し、良好な血漿
分離能を発揮する旨の提案がなされている。(特開昭5
7−25857号) [発明が解決すべき課題] このような、小型かつ高性能の血漿分離装置を用いるこ
とによって、該血漿分離装置により分離された血漿を前
記吸着装置によって高効率に浄化でき、体外循Tiff
1が少な(患者への負担の少ない血液浄化装置を具現化
することが期待できるが、前記提案の血漿分離装置を用
いた血液浄化装置においても、未だ充分な性能を有する
ものとはい^ず、さらに小型かつ高性能の浄化装置の開
発が望まれていた。
However, in the case of the flat membrane type, the thin layer flow path for blood, which is the most important part of the filtration module structure, is provided in contact with the filtration membrane in a highly uniform and stable state, while also achieving miniaturization of the device. It was considered difficult to achieve this goal. As a method to solve this problem, a blood flow path regulating plate with an uneven surface is provided on one side of the filtration membrane to form a blood flow path with an extremely precise thickness and achieve good plasma separation performance. proposals have been made. (Unexamined Japanese Patent Publication No. 5
No. 7-25857) [Problems to be Solved by the Invention] By using such a small and high-performance plasma separator, the plasma separated by the plasma separator can be purified with high efficiency by the adsorption device, Extracorporeal circulation Tiff
1 (It is expected that a blood purification device with less burden on patients will be realized, but even blood purification devices using the plasma separation device proposed above do not yet have sufficient performance. There was a desire to develop a more compact and high-performance purification device.

本発明は上記実情に鑑みてなされたもので、その目的は
、血液中から高効率に病因物質を吸着除去でき、患者へ
の肉体的負担の少ない小型かつ高性能な血液浄化装置を
提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a small and high-performance blood purification device that can highly efficiently adsorb and remove pathogenic substances from blood and place less physical burden on patients. It is in.

[課題を解決するための手段] 上記従来の問題点を解決する本発明の血液浄化装置は、
血液導入口と血液導出口を有し、前記血液導入口から導
入した血液を浄化して前記血液導出口から導出させる血
液浄化装置であって、前記血液導入口から導入した血液
を1111縮血液と血漿に分離する血漿分離器と、 該血漿分離器により分離された血漿を浄化する血漿浄化
器と、 前記濃縮血液と前記血漿浄化器により浄化された血漿と
を混合する混合器と、 前記血液を前記血液導入口から前記血漿分離器及び前記
混合器を経て前記血液導出口へ導出させる血液流通回路
と。
[Means for Solving the Problems] The blood purification device of the present invention that solves the above conventional problems has the following features:
A blood purification device having a blood inlet and a blood outlet, the blood introduced from the blood inlet being purified and drawn out from the blood outlet, wherein the blood introduced from the blood inlet is converted into 1111 condensed blood. a plasma separator that separates the blood into plasma; a plasma purifier that purifies the plasma separated by the plasma separator; a mixer that mixes the concentrated blood and the plasma purified by the plasma purifier; a blood circulation circuit that leads the blood from the blood inlet through the plasma separator and the mixer to the blood outlet;

一前記血漿分離器において分離された血漿を前記血漿浄
化器を経て前記混合器に流入させる血漿分離回路とを備
^たことを要旨とする。
The present invention is characterized in that it includes a plasma separation circuit that causes the plasma separated in the plasma separator to flow into the mixer via the plasma purifier.

[作用] 上記構成により、本発明の血液浄化装置においては、人
体または血液容器から脱血された血液は、血液導入口よ
り装置内に導入された後、血漿分離器の血液流入口より
当該分離器内に導入され、濃縮血液成分と血漿成分とに
分離される。血漿分離器の血漿流出口より流出された血
漿は、血漿分離回路を通って血漿浄化器へ導入され、該
浄化器に収容された吸着材で吸着処理される。血漿浄化
器で処理された浄化血漿は、混合器において血漿分離器
の血液流出口より導出された濃縮血液と再び混合された
後に血液導出口より人体または血液容器に戻される。
[Function] With the above configuration, in the blood purification device of the present invention, blood removed from a human body or a blood container is introduced into the device from the blood inlet, and then separated from the blood inlet of the plasma separator. The blood is introduced into the vessel and separated into concentrated blood components and plasma components. Plasma flowing out from the plasma outlet of the plasma separator is introduced into the plasma purifier through a plasma separation circuit, and is adsorbed by an adsorbent contained in the purifier. The purified plasma processed in the plasma purifier is mixed again with concentrated blood drawn out from the blood outlet of the plasma separator in the mixer, and then returned to the human body or the blood container through the blood outlet.

[実施例] 以下、図面を参照して本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例に係る血液浄化装置の全体構
成を示すものである1図中、lは人体又は血液容器から
血液が導入される血液導入口であり、この血液導入口l
から導入された血液は血液ポンプ2及びチャンバー3を
介して血漿分離器4の血液流入口4aに送られるように
なっている、血漿分離器4は流入した血液を濾過するこ
とにより血漿の一部を分離し、濾過後の濃縮血液を血液
流出口4bから流出させると共に、分離した血漿成分を
血漿流出口4cかも流出させるものである。血漿流出口
4Cより流出された血漿成分は血漿ポンプ5及びチャン
バー6を介して血漿浄化器7に送られるようになってい
る。この血漿浄化器7は血漿導入ロアaより導入した血
漿を浄化して血漿導出ロアbより導出させるものである
。血漿流出ロアbより導出された浄化血漿は混合器8の
一方の流入口に流入されるようになっている。この混合
器8の他方の流入口には血漿分離器4の血液流出口4b
から流出した濃縮血液が流入されるようになっており、
該混合器8は流入した濃縮血液と浄化された血漿成分を
混合して血液導出口10に送り出すようになっている。
FIG. 1 shows the overall configuration of a blood purification device according to an embodiment of the present invention. In FIG. 1, l is a blood introduction port through which blood is introduced from the human body or a blood container;
The blood introduced from the blood pump 2 and the chamber 3 are sent to the blood inlet 4a of the plasma separator 4. The concentrated blood after filtration is allowed to flow out from the blood outflow port 4b, and the separated plasma component is also allowed to flow out from the plasma outflow port 4c. Plasma components flowing out from the plasma outlet 4C are sent to a plasma purifier 7 via a plasma pump 5 and a chamber 6. This plasma purifier 7 purifies the plasma introduced from the plasma introducing lower a and causes the purified plasma to be discharged from the plasma deriving lower b. The purified plasma drawn out from the plasma outflow lower b is adapted to flow into one inlet of the mixer 8. The other inlet of this mixer 8 has a blood outlet 4b of the plasma separator 4.
Concentrated blood flowing out from the tube is allowed to flow in,
The mixer 8 mixes the inflowing concentrated blood and purified plasma components and sends the mixture to the blood outlet 10.

血液導出口lOの前段には恒温槽9が設けられ、この恒
温槽9により流通する血液を一定温度に保つようになっ
ている。なお、上記血液導入口1.チャンバー3、血漿
分離器4、混合器8、恒温槽9及び血液導出口lOから
なる血液流通回路の駆動は血液ポンプ2により、また、
血漿分離器4、チャンバー6、血漿浄化器7及び混合器
8かもなる血漿流通回路の駆動は血漿ポンプ5によりそ
れぞれなされるようになっている。なお、血漿ポンプ5
の駆動力が強くなりすぎると、血漿分離器4がら血漿流
出口4cへの吸引力が強くなり、そのため血球が破壊さ
れ溶血することになるので、血漿ポンプ5の駆動力が血
液ポンプ2の駆動力よりも小さ(なるように制御する必
要がある。
A constant temperature bath 9 is provided upstream of the blood outlet lO, and this constant temperature bath 9 keeps the circulating blood at a constant temperature. Note that the blood introduction port 1. A blood circulation circuit consisting of a chamber 3, a plasma separator 4, a mixer 8, a constant temperature bath 9, and a blood outlet lO is driven by a blood pump 2, and
A plasma distribution circuit including a plasma separator 4, a chamber 6, a plasma purifier 7, and a mixer 8 is driven by a plasma pump 5, respectively. In addition, plasma pump 5
If the driving force of the plasma pump 5 becomes too strong, the suction force from the plasma separator 4 to the plasma outlet 4c will become strong, which will destroy blood cells and cause hemolysis. It must be controlled so that it is smaller than the force.

上記構成の血液浄化装置においては、人体または血液容
器から脱血された血液は、血液導入口1より回路内に導
入され血液ポンプ2、チャンバー3を通り血漿分離器4
の血液流入口4a内に導入され、血球を含む濃縮血液成
分と血漿成分とに分離される。血漿分離器4の血漿流出
口4cより流出された血漿は、血漿ポンプ5及びチャン
バー6を通って血漿浄化器7へ血漿導入ロアaより導入
され、該浄化器7内の吸着材で吸着処理された後、血漿
導出ロアbより流出される。血漿浄化器7で処理された
浄化血漿は、混合器8において血漿分離器4の血液流出
口4bより流出された濃縮血液成分と再び混合された後
、恒温槽9を通って血液導出口lOより人体または血液
容器に戻される。
In the blood purification device configured as described above, blood removed from the human body or blood container is introduced into the circuit from the blood inlet 1, passes through the blood pump 2, chamber 3, and plasma separator 4.
The blood is introduced into the blood inlet 4a and separated into concentrated blood components containing blood cells and plasma components. Plasma flowing out from the plasma outlet 4c of the plasma separator 4 passes through the plasma pump 5 and chamber 6, is introduced into the plasma purifier 7 from the plasma introduction lower a, and is adsorbed by the adsorbent in the purifier 7. After that, the plasma is discharged from the plasma outlet lower b. The purified plasma processed in the plasma purifier 7 is mixed again with the concentrated blood components flowing out from the blood outlet 4b of the plasma separator 4 in the mixer 8, and then passes through a constant temperature bath 9 and is sent through the blood outlet IO. returned to the human body or blood container.

第2図は上記血漿分離器4の具体的構成を示す分解斜視
図である。該血漿分離器4は、血液流入口4a及び血液
流出口4b及び血漿流出口4cを有する円筒体11に押
子12をO−リング13を介して挿入して構成されてお
り、この中に突状部付の濾過膜17、平板状の流路規制
体20及び血漿の流路を確保するための血漿流路形成体
16を一体にして収納するものである。
FIG. 2 is an exploded perspective view showing the specific structure of the plasma separator 4. As shown in FIG. The plasma separator 4 is constructed by inserting a pusher 12 through an O-ring 13 into a cylindrical body 11 having a blood inlet 4a, a blood outlet 4b, and a plasma outlet 4c. A filtration membrane 17 with a shaped part, a flat flow path regulating body 20, and a plasma flow path forming body 16 for securing a flow path for plasma are housed together.

即ち中心に開口部14及び周辺付近に血漿通過孔15を
備えたスクリーンメツシュあるいは不織布よりなる円形
状の血漿流路形成体16の上下をそれぞれ突状部付で円
形の濾過11117で挟装し、その周縁及び中央開口部
の周縁をシールして、膜ユニット18となす、そして、
この膜ユニット18と、該ユニット18に対応した中央
開口部14及び血漿通過孔15を備え、該血漿通過孔1
5の外周にシール材19を貼着させた平板状の流路規制
体20が交互に配設され、シール材19で膜ユニット1
8と流路規制体20とが一体に接合されている。これら
の濾過11117と血漿流路形成体16からなる膜ユニ
ット18.流路規制体20を複数段重ね合せて血漿分離
器4が組立てられる。第3図はその組立状態を示す断面
図である。
That is, a circular plasma flow channel forming body 16 made of a screen mesh or nonwoven fabric with an opening 14 in the center and plasma passage holes 15 near the periphery is sandwiched between circular filters 11117 with protrusions at the top and bottom, respectively. , sealing its periphery and the periphery of the central opening to form a membrane unit 18;
This membrane unit 18 is provided with a central opening 14 and a plasma passage hole 15 corresponding to the unit 18, and the plasma passage hole 1
Flat flow path regulators 20 with sealing material 19 pasted on the outer periphery of the membrane units 1 and 5 are alternately arranged.
8 and the flow path regulating body 20 are integrally joined. Membrane unit 18 consisting of these filtration 11117 and plasma flow path forming body 16. The plasma separator 4 is assembled by stacking a plurality of flow path regulators 20 one on top of the other. FIG. 3 is a sectional view showing the assembled state.

上記血漿分離器4において、血液流入口4aより流入さ
れた血液は、第4図に示された濾過膜17と流路規制体
20との間で形成される血液流路を通過する間に濾過膜
17により濾過される。
In the plasma separator 4, the blood flowing in from the blood inlet 4a is filtered while passing through the blood flow path formed between the filtration membrane 17 and the flow path regulator 20 shown in FIG. It is filtered by membrane 17.

濾過11117の個々の突部17aは、その上部に設け
られた流路規制体20とによって、該濾過膜17を支え
て変形を防止し、突部17a間の間隙において、血液の
流通路を確保するものである。
Each protrusion 17a of the filtration 11117 supports the filtration membrane 17 and prevents deformation by the flow path regulating body 20 provided on the upper part thereof, and secures a blood flow path in the gap between the protrusions 17a. It is something to do.

この突部17aは高さHが20〜200μm、底部直径
Rが100〜1oooμm、突部17aの頂点の間隔り
が300〜2000μmで、突部17aの膜表面全体に
対する占有面積が3〜20%であることが好ましい、さ
らに好ましくは高さHが50〜1100u、底部直径R
が200〜500μm、突部17aの頂点の間隔りが5
00〜1000μmで、突部17aの膜表面全体に対す
る占有面積が5〜15%であることが望ましい、また流
路規制体20はブリネル硬さ10以上の硬質な材質から
なり、厚さTが10〜200μmさらに20〜50μm
であることが好ましい、この理由は以下の通りである。
The protrusions 17a have a height H of 20 to 200 μm, a bottom diameter R of 100 to 100 μm, an interval between the apexes of the protrusions 17a of 300 to 2000 μm, and an area occupied by the protrusions 17a relative to the entire film surface. It is preferable that the height H is 50 to 1100u, and the bottom diameter R is more preferably
is 200 to 500 μm, and the interval between the peaks of the protrusions 17a is 5
00 to 1000 μm, and the area occupied by the protrusion 17a to the entire membrane surface is preferably 5 to 15%, and the flow path regulator 20 is made of a hard material with a Brinell hardness of 10 or more, and the thickness T is 10 ~200μm further 20-50μm
The reason why it is preferable is as follows.

即ち本発明者は、小型かつ高性能な新規な平膜型血漿分
離装置の構造を鋭意研究した結果、先ず従来の突部を有
した血液流路規制板を廃し、かわりに濾過膜表面に突状
部を形成させることにより、モジュールの小型化を達成
しうろことを見出した。さらにこの濾過膜を使用した血
液濾過装置の構造を研究した結果、該突状部付の濾過膜
の上部に硬質の流路規制体を設け、突状部の形状を上記
のごと(設定することにより、高度に均一かつ安定化し
た薄層血液流路の形成を可能とし、高い血液濾過性能が
得られることを見出した。
That is, as a result of intensive research into the structure of a new compact and high-performance flat membrane type plasma separation device, the present inventor first eliminated the conventional blood flow path regulating plate with protrusions and instead created a structure with protrusions on the surface of the filtration membrane. We have discovered that by forming shaped parts, we can achieve miniaturization of the module. Furthermore, as a result of researching the structure of a blood filtration device using this filtration membrane, we found that a hard flow path regulator was installed on the top of the filtration membrane with the protrusions, and the shape of the protrusions was set as described above. We have discovered that this enables the formation of a highly uniform and stable thin-layer blood flow path, resulting in high blood filtration performance.

濾過膜17aの表面上の個々の突部17aの高さは血液
流路の厚みを規定する重要な因子である。濾過工学的な
見地からみて、突部17aの高さが20μm未満では、
血液流路厚が薄くなりすぎて、高い圧力損失を生じてし
まい、また200μmを越^るとせん断速度を大きくす
ることができず、十分な血液濾過が得られない。
The height of each protrusion 17a on the surface of the filter membrane 17a is an important factor that defines the thickness of the blood flow path. From the viewpoint of filtration engineering, if the height of the protrusion 17a is less than 20 μm,
If the blood flow channel thickness becomes too thin, high pressure loss will occur, and if it exceeds 200 μm, the shear rate cannot be increased and sufficient blood filtration cannot be obtained.

以上のことから、突部17aの高さは20〜200um
であることが好ましい、この高さは、一定であることが
望ましいが必ずしも限定されるものではなく、血液の流
れ方向に沿って高さが段階的に変化してもよい。
From the above, the height of the protrusion 17a is 20 to 200 um.
The height is preferably constant, but is not necessarily limited, and the height may vary stepwise along the blood flow direction.

また1個々の突部17aの間隔は、均一かつ安定化した
血液流路を形成するために、最も重要な因子の一つであ
ることが判明した。即ち突部17aの間隔が300μm
未満では、有効膜面積の減少や、過度の圧力損失増加を
ひきおこし、逆に2000μmを越^ると、膜の微小な
ユガミ、タワミが生じて、均一かつ安定化した血液流路
の確保が困難となり、十分な性能が得られない、このこ
とより突部17aの間隔は、300〜2000μmが好
ましく、特に500〜1000μmが好ましい、突部1
7aの分布状態は、濾過pJJ l 7 aの全面にわ
たって均一であることが望ましいが、均一な血液の流れ
を疎外するものでなければ特に限定されるものではない
It has also been found that the distance between the individual protrusions 17a is one of the most important factors for forming a uniform and stable blood flow path. That is, the interval between the protrusions 17a is 300 μm.
If it is less than 2,000 μm, it will cause a decrease in the effective membrane area and an excessive increase in pressure loss, while if it exceeds 2,000 μm, the membrane will become slightly distorted and sag, making it difficult to ensure a uniform and stable blood flow path. Therefore, the interval between the protrusions 17a is preferably 300 to 2000 μm, particularly preferably 500 to 1000 μm.
The distribution state of 7a is desirably uniform over the entire surface of the filtration pJJ l 7a, but is not particularly limited as long as it does not disturb uniform blood flow.

突部17aの底部直径は、100μm未満では均一な血
液流路を支持形成することが難しく、また1000μm
を越えると占有面積が大きくなりすぎることより、10
0〜1000μmが好ましく、特に200〜500μm
が好ましい。
If the bottom diameter of the protrusion 17a is less than 100 μm, it is difficult to support and form a uniform blood flow path;
If the area exceeds 10, the occupied area becomes too large.
0 to 1000 μm is preferable, especially 200 to 500 μm
is preferred.

さらに突部17aの占有面積は、3%未満では均一な血
液流路を支持形成することが難しく、また20%をこえ
ると、十分な有効濾過面積を得るためには、装置の大型
化を必要としてしまうことより、3〜20%が好ましく
、特に5〜15%が好ましい。
Furthermore, if the area occupied by the protrusion 17a is less than 3%, it is difficult to support and form a uniform blood flow path, and if it exceeds 20%, it is necessary to increase the size of the device in order to obtain a sufficient effective filtration area. It is preferably 3 to 20%, particularly preferably 5 to 15%.

突部17aの高さH1底部直径R1頂点間隔りは、投影
機により該濾過1i17の切片を100倍に拡大投影し
て求め、また突部17aの占有面積は各測定値より求め
た。
The height H1, the bottom diameter R1, and the distance between the apexes of the protrusion 17a were determined by projecting a section of the filtration 1i17 enlarged 100 times using a projector, and the area occupied by the protrusion 17a was determined from each measured value.

上記濾過膜17の製造方法としては、ilJ!過嗅製膜
時に突部パターンを凹版として刻みこんだ金属ロール上
にて濾過膜を製膜させ、膜表面に濾過膜材質と同一の材
質からなる突状部を形成させる方法や、突部パターンを
凹版として刻みこんだ金属ロールの該凹部に樹脂をつけ
、これを平滑な濾過膜上に転写する方法、あるいはスク
リーン印刷用版を用い、紫外線あるいは電子線硬化型樹
脂を用いて、平滑な濾過膜上に突部パターンを印刷し、
その後紫外線あるいは電子線を照射して、これを硬化せ
しめる方法等が挙げられるが、特に限定されるものでは
ない。
As a method for manufacturing the above-mentioned filtration membrane 17, ilJ! A method in which a filtration membrane is formed on a metal roll on which a protrusion pattern is carved as an intaglio at the time of membrane formation, and protrusions made of the same material as the filtration membrane is formed on the membrane surface, and a protrusion pattern. A method of applying resin to the recesses of a metal roll carved as an intaglio plate and transferring it onto a smooth filtration membrane, or using a screen printing plate and ultraviolet or electron beam curing resin to create a smooth filtration film. Print a protrusion pattern on the membrane,
Examples include, but are not limited to, a method of curing the material by subsequently irradiating it with ultraviolet rays or electron beams.

rffi路規制体20は、高度に均一かつ安定化した薄
層血液流路形成のためには、硬質のものであることが好
ましい、ここで言う硬質の材質とは、膜表面の突状体と
接触した時、事実上へこみ等の変形を起さないものを指
し、ブリネル硬さ10以上のものをいう、この範囲のブ
リネル硬さをもつ材質としては、ポリエチレン、ポリプ
ロピレン、ポリエステル、ポリカーボネート等があげら
れる。
The rffi path regulator 20 is preferably made of a hard material in order to form a highly uniform and stable thin-layer blood flow path. Materials with Brinell hardness in this range include polyethylene, polypropylene, polyester, polycarbonate, etc., and refer to materials that do not cause deformation such as dents when they come into contact, and have a Brinell hardness of 10 or more. It will be done.

ここで、ブリネル硬さの測定方法はJISZ2243に
従った次式によって求められる。
Here, the Brinell hardness is determined by the following equation according to JIS Z2243.

ワ πDh Hl: ブリネル硬さ(kg/mm2)P : 鋼球の
重さ <kg) D : 也球の径  (m m ) d : くぼみの直径(mm) h : くぼみの深さ(mm) また流路規制体20の厚みは、10μm未満では、均一
な血液流路を支持形成することが難しく、200μmを
越えると、装置の大型化を必要としてしまうことより、
10〜200μmが好ましく、特に20〜50μmが好
ましい。
WaπDh Hl: Brinell hardness (kg/mm2) P: Weight of steel ball <kg) D: Diameter of ball (mm) d: Diameter of depression (mm) h: Depth of depression (mm) If the thickness of the flow path regulator 20 is less than 10 μm, it will be difficult to support and form a uniform blood flow path, and if it exceeds 200 μm, the device will need to be larger.
The thickness is preferably 10 to 200 μm, particularly preferably 20 to 50 μm.

また、上記血漿分離器4において、高度に均一かつ安定
化した薄層血液流路を形成するための、他の必要条件と
して、膜ユニットにユガミ、シワがなく、十分な平面性
が維持されていなければならないことが判明した。具体
的には、濾過11117の材質は血液に対して適合性に
すぐれたポリプロピレン、ポリエチレン等のポリオレフ
ィンであり、該材質からなる濾過膜同士を接合させ、膜
ユニットを形成させるにあたって、ヒートシール法では
、シール部分の濾過膜材質樹脂をほぼ完全に?8融させ
るため、シール部分の寸法収縮を生じ、その結果膜ユニ
ットの平面性がそこなわれ、十分な濾過性能が得られな
いのに対し、超音波融着法では、濾過膜同志の接触面近
傍のみが溶融しただけで十分なシール強度が得られ、か
つ膜ユニットの平面性も十分に維持され、結果としてす
ぐれた濾過性能を発揮するに至るのである。
In addition, in order to form a highly uniform and stable thin-layer blood flow path in the plasma separator 4, another necessary condition is that the membrane unit is free from distortion and wrinkles and maintains sufficient flatness. It turned out that it had to be. Specifically, the material of the filtration 11117 is polyolefin, such as polypropylene or polyethylene, which has excellent compatibility with blood, and when filtration membranes made of these materials are bonded together to form a membrane unit, the heat seal method is not used. , Is the filtration membrane material resin in the seal part almost completely? 8. Due to the fusion process, the dimensions of the seal part shrink, resulting in loss of flatness of the membrane unit and insufficient filtration performance.In contrast, in the ultrasonic welding method, the contact surface between the filtration membranes is Sufficient sealing strength can be obtained by melting only the vicinity, and the flatness of the membrane unit is also sufficiently maintained, resulting in excellent filtration performance.

また、第5図は前記の血漿浄化器7を桟式的に示す断面
図である1本血漿浄化器7は、血漿導入ロアaおよび血
漿導出ロアbを備えてなる円筒容器21に粒子状の吸着
材22が充填されており、該吸着材22は、血漿導入ロ
アaおよび血漿導出ロアbの近傍に設けられたフィルタ
ー23.24により円筒容器21内に保持されている。
FIG. 5 is a sectional view showing the plasma purifier 7 in a cross-sectional view. The single plasma purifier 7 collects particles in a cylindrical container 21 comprising a plasma introduction lower a and a plasma outlet lower b. The cylindrical container 21 is filled with an adsorbent 22, which is held in the cylindrical container 21 by filters 23 and 24 provided near the plasma introduction lower a and the plasma removal lower b.

この血漿浄化器7において円筒容器21を構成する材質
としては、ポリプロピレン、ポリカーボネート、ポリス
チレン、ポリメチルメタクリレート等の合成樹脂、ガラ
スおよびステンレス等の金属などが使用できるが、オー
トクレーブ滅菌が可能で取り扱いやすいポリプロピレン
やポリカーボネート等が特に好ましい、またこの血漿浄
化器7にカラムの出入口と吸着材を充填した吸着材層と
の間には、血漿成分は通過するが吸着材は通過できない
網目を有するフィルターを備えていることが好ましく、
このフィルターを構成する材質としては、生理学的に不
活性で強度の高いものであればよいが、特にポリエステ
ル、ポリアミドであることが好ましい。
The material constituting the cylindrical container 21 in this plasma purifier 7 can be synthetic resins such as polypropylene, polycarbonate, polystyrene, polymethyl methacrylate, glass, metals such as stainless steel, etc., but polypropylene, which can be autoclaved and is easy to handle, is used. The plasma purifier 7 is provided with a filter having a mesh that allows plasma components to pass through but not the adsorbent. It is preferable that
The material constituting this filter may be any physiologically inert and strong material, but polyester and polyamide are particularly preferred.

次に、上記血漿浄化器7に充填収容される吸着材22に
ついて説明する。該吸着材22は、不溶性担体に複素I
M式化合物またはジペプチドあるいはその誘導体を結合
していることを特徴としている。?i!素TTJ式化合
物としては、環中に異種原子としてlまたは2以上の酸
素、イ才つまたは(および)窒素原子を有する単環およ
び縮合環系複素■1式化合物が好ましい、このような化
合物の例を挙げれば次の通りである。即ち、フランとそ
の誘導体、チオフェンとその誘導体およびジチオラン誘
導体、ビロールとその誘導体、アゾール類、ピリジンと
その誘導体、キノリンとその関連化合物、アクリジンと
その関連化合物、ピリミジンとその関連化合物、ピラジ
ンとその関連化合物、とラン及びピロンとその関連化合
物、フェノキサジン、フェノチアジン、プテリン及びア
ロキサジン化合物、プリン塩基、核酸、ヘミン、クロロ
フィル、ビタミンB1.、フタロシアニン、アルカロイ
ド等が挙げられる。これら多数の複素環式化合物におい
て、その分子中にスルホンアミド基を有するいわゆるサ
ルファ剤と呼ばれる化合物が好ましい。
Next, the adsorbent 22 filled and housed in the plasma purifier 7 will be explained. The adsorbent 22 contains complex I on an insoluble carrier.
It is characterized by binding a compound of formula M or a dipeptide or a derivative thereof. ? i! As the elementary TTJ compound, monocyclic and fused ring heterocompounds having 1 or more oxygen, nitrogen or (and) nitrogen atoms as heteroatoms in the ring are preferable. Examples are as follows. Namely, furan and its derivatives, thiophene and its derivatives and dithiolane derivatives, virol and its derivatives, azoles, pyridine and its derivatives, quinoline and its related compounds, acridine and its related compounds, pyrimidine and its related compounds, pyrazine and its related compounds. Compounds, andran and pyrone and related compounds, phenoxazine, phenothiazine, pterin and alloxazine compounds, purine bases, nucleic acids, hemin, chlorophyll, vitamin B1. , phthalocyanine, alkaloid, etc. Among these many heterocyclic compounds, compounds called so-called sulfa drugs having a sulfonamide group in their molecules are preferred.

また、ジペプチドあるいはその誘導体とは、同種あるい
は異種の2個のアミノ酸が互いに一方のカルボキシル基
と他方のアミノ基との間で脱水して酸アミド結合すなわ
ちペプチド結合することによって形成された化合物ある
いはその誘導体である。このようなジペプチドあるいは
その誘導体として好ましくはアスパラギン酸、グルタミ
ン酸、アスパラギン、グルタミンなどのような酸性アミ
ノ酸と、フェニルアラニン、チロシン、ショートチロシ
ン、スリナミンなどの芳香工Mアミノ酸またはトリプト
ファン、プロリン、ヒドロキシプロリン、ヒスチジンな
どのような複素I皇アミノ酸とのジペプチドあるいはそ
の誘導体であり、特に好ましくはアスパラギン酸もしく
はグルタミン酸とフェニルアラニン、チロシン、トリプ
トファン、プロリンもしくはヒドロキシプロリンとのジ
ペプチドあるいはその誘導体である。これらのうちより
望ましいジペプチドあるいはその誘導体としてはアスパ
ラギン酸とフェニルアラニンとのジペプチドであるアス
パルチルフェニルアラニンおよびその誘導体が挙げられ
、特にアスパルチルフェニルアラニンメチルエステルが
好適なものである。
In addition, a dipeptide or a derivative thereof is a compound formed by dehydration of two amino acids of the same or different types to form an acid amide bond, that is, a peptide bond, between one carboxyl group and the other amino group, or a dipeptide or its derivative. It is a derivative. Such dipeptides or derivatives thereof are preferably acidic amino acids such as aspartic acid, glutamic acid, asparagine, glutamine, etc., aromatic amino acids such as phenylalanine, tyrosine, short tyrosine, surinamine, or tryptophan, proline, hydroxyproline, histidine, etc. Dipeptides with complex I-amino acids such as, or derivatives thereof, particularly preferred are dipeptides with aspartic acid or glutamic acid and phenylalanine, tyrosine, tryptophan, proline or hydroxyproline, or derivatives thereof. Among these, more preferred dipeptides or derivatives thereof include aspartyl phenylalanine, which is a dipeptide of aspartic acid and phenylalanine, and its derivatives, and aspartyl phenylalanine methyl ester is particularly preferred.

さらに、該吸着材22を構成する不溶性担体としては、
親水性のものであっても疎水性のものであってもよく、
例えば、アガロース系、デキストラン系、セルロース系
、ポリアクリルアミド系、ポリビニルアルコール系、ポ
リビニルピロリドン系、ポリアクリロニトリル系、スチ
レン−ジビニルベンゼン共重合体、ポリスチレン系、ア
クリル酸エステル系、メタクリル酸エステル系、ポリエ
チレン系、ポリプロピレン系、ポリ4−フッ化エチレン
系、エチレン−酢酸ビニル共重合体系、ポリアミド系、
ポリカーボネート系、ポリフッ化ビニリデン系、ポリビ
ニルホルマール系、ボリアリレート系、ポリエーテルス
ルフォン系などの有機高分子、ガラス系、アルミナ系、
チタン系、活性炭系、セラミックス系などの無機物や生
体由来の天然有機高分子であるコラーゲン、キトサン等
が用いられ得る。また通常、固定化酵素、アフィニティ
ークロマトグラフィーに用いられる公知の担体は特別の
限定なく用いることができる。このような水不溶性担体
の形態としては、特に限定されず、例えば、粒子状、u
a維状、中空糸状、膜状、平板状など各種の形状を用い
ることができるが、血液、血漿等の体液の通液性、浄化
材調整時の取扱いの簡便性などの点から、好ましくは、
粒子状、特に平均粒径が0.05〜5mmの粒子状のも
のが望ましい、なお平均粒径はJ I 5−Z−880
1に規定されるフルイを用いて分級した後、各級の上限
粒径と下限粒径の中間値を各級の粒径とし、そのff1
ffi平均として算出したものである。さらに粒子形状
は細胞に物理的なti傷を与^にくいことや均一な粒子
を得やすい等の点から球形のものが好ましい、また水不
溶性担体は、その表面に上記のような複素環式化合物ま
たはジペプチドあるいはその誘導体をより多量に保持す
ることができ、これによりさらに高い吸着効率を発揮さ
れるために、好ましくは、多孔性構造を有するものであ
ることが望ましく、さらに多孔体の有する細孔の平均孔
径が100〜5000人、特に200〜3000人の範
囲にあるものが望まれる。水不溶性担体が多孔性構造を
有する場合において、細孔の平均孔径を100〜500
0人とするのは、平均孔径が100人よりも小さいと体
液中の病因物質の細孔内への浸透拡散が阻害され吸着さ
れる病因物質の量が少なくなる恐れがあり、一方、平均
孔径が5000人よりも大きいと多孔体の強度が低下し
かつ表面積が減少するために実用的でなくなるためであ
る。なお、ここで言う平均孔径とは、多孔体に水銀を圧
入して侵入した水銀量から細孔の量を求め、さらに圧入
に要する圧力から孔径を求める水銀圧入ポロシメーター
によって測定された数値を指すものである。
Furthermore, as an insoluble carrier constituting the adsorbent 22,
It may be hydrophilic or hydrophobic,
For example, agarose-based, dextran-based, cellulose-based, polyacrylamide-based, polyvinyl alcohol-based, polyvinylpyrrolidone-based, polyacrylonitrile-based, styrene-divinylbenzene copolymer, polystyrene-based, acrylic ester-based, methacrylic ester-based, polyethylene-based , polypropylene, poly(4-fluoroethylene), ethylene-vinyl acetate copolymer, polyamide,
Organic polymers such as polycarbonate, polyvinylidene fluoride, polyvinyl formal, polyarylate, polyethersulfone, glass, alumina,
Inorganic materials such as titanium-based, activated carbon-based, and ceramic-based materials, and natural organic polymers derived from living organisms such as collagen and chitosan may be used. Furthermore, immobilized enzymes and known carriers used in affinity chromatography can be used without any particular limitations. The form of such water-insoluble carrier is not particularly limited, and for example, particulate, u
Various shapes such as filamentous, hollow fiber, membrane, and flat plate shapes can be used, but from the viewpoint of fluid permeability for body fluids such as blood and plasma, and ease of handling when preparing the purification material, it is preferable. ,
Particulates, especially those with an average particle size of 0.05 to 5 mm are preferable, and the average particle size is J I 5-Z-880.
After classification using the sieve specified in 1, the intermediate value between the upper limit particle size and the lower limit particle size of each grade is taken as the particle size of each grade, and its ff1
It is calculated as an ffi average. Further, the particle shape is preferably spherical because it is difficult to cause physical damage to cells and it is easy to obtain uniform particles. In order to be able to retain a larger amount of the dipeptide or its derivative, and thereby exhibit even higher adsorption efficiency, it is preferable that the material has a porous structure, and the pores of the porous material can be further improved. It is desirable that the average pore diameter is in the range of 100 to 5,000 pores, particularly 200 to 3,000 pores. When the water-insoluble carrier has a porous structure, the average pore diameter of the pores is 100 to 500.
The reason why the average pore size is smaller than 100 is because if the average pore size is smaller than 100, the permeation and diffusion of pathogenic substances in body fluids into the pores may be inhibited and the amount of adsorbed pathogenic substances may be reduced. This is because if the number is larger than 5,000, the strength of the porous body decreases and the surface area decreases, making it impractical. Note that the average pore diameter referred to here refers to the value measured by a mercury intrusion porosimeter, which calculates the amount of pores by injecting mercury into a porous body and calculating the pore size from the amount of mercury that entered, and then the pore diameter from the pressure required for intrusion. It is.

このような点を考慮に入れて、水不溶性担体として特に
好ましいものとしては、多孔性アクリル酸エステル系粒
子および多孔性キトサン粒子を挙げることができる。
Taking these points into consideration, particularly preferred water-insoluble carriers include porous acrylic ester particles and porous chitosan particles.

本実施例において用いられる吸着材22において、複素
環式化合物またはジペプチドあるいはその誘導体を水不
溶性担体表面に固定化する方法としては、共有結合、イ
オン結合、物理的吸着、包埋あるいは担体表面への沈殿
不溶化などあらゆる公知の方法を用いることができるが
、固定化されたリガンドの溶出性からみて、共有結合に
より固定、不溶化して用いるのが好ましい、そのため−
般に、固定化酵素、アフィニティークロマトグラフィー
の分野で用いられる公知の不溶性担体の活性化法および
リガンドの固定化方法が好ましく用いられ得る。
In the adsorbent 22 used in this example, methods for immobilizing the heterocyclic compound, dipeptide, or its derivative on the surface of the water-insoluble carrier include covalent bonding, ionic bonding, physical adsorption, embedding, or immobilization on the surface of the carrier. All known methods such as precipitation and insolubilization can be used, but in view of the elution properties of the immobilized ligand, it is preferable to use the immobilized ligand by covalent bonding and insolubilization.
In general, known methods for activating immobilized enzymes, insoluble carriers, and immobilization of ligands used in the field of affinity chromatography can be preferably used.

次に、前述の混合器8は、浄化された血漿と前記血漿分
離器4によって濃縮された血液とを混合するためのもの
である。混合は撹拌などによって完全に行なうことが望
ましいが、チャンバーやY字管など2つの異なる流体が
合流するものであっても充分にその目的を達することが
できる。
Next, the mixer 8 mentioned above is for mixing the purified plasma and the blood concentrated by the plasma separator 4. Although it is desirable to completely mix the mixture by stirring or the like, a chamber or a Y-tube where two different fluids meet can also sufficiently achieve the purpose.

なお、本実施例の血液浄化装置が対象とする被吸着物質
である病因物質とは、体液中に含まれる有害なタンパク
質であるが、より詳しく述べると、通常の免疫グロブリ
ン(I gA、I gD。
Note that the pathogenic substance, which is the adsorbed substance targeted by the blood purification device of this embodiment, is a harmful protein contained in body fluids. .

IgE、IgG、rgM)、  リウマチ因子、あるい
は抗核抗体、抗DNA抗体、抗リンパ球抗体、抗赤血球
抗体、抗血小板抗体、抗アセチルコリンレセプター抗体
、抗大腸抗体、抗腎糸球体。
IgE, IgG, rgM), rheumatoid factor, or anti-nuclear antibody, anti-DNA antibody, anti-lymphocyte antibody, anti-erythrocyte antibody, anti-platelet antibody, anti-acetylcholine receptor antibody, anti-colon antibody, anti-renal glomerulus antibody.

肺基底膜抗体、抗表皮軒細胞間デスモゾーム抗体、抗イ
ンスリンレセプター抗体、抗ミニリン抗体、抗血友病第
■因子抗体などの自己抗体、免疫グロブリンの還元生成
物、免疫グロブリン間または免疫グロブリンと他の物質
(特に抗原および抗原様物質)との複合物、リンフ才力
イン、補体。
Autoantibodies such as lung basement membrane antibodies, anti-epidermal intercellular desmosomal antibodies, anti-insulin receptor antibodies, anti-minilin antibodies, anti-hemophilia factor II antibodies, reduction products of immunoglobulins, between immunoglobulins, or between immunoglobulins and others complexes with substances (especially antigens and antigen-like substances), lymphocytes, complements.

フィブリノーゲン等が含まれるものである。This includes fibrinogen and the like.

次に、実験例を示して本発明をさらに具体的に説明する
Next, the present invention will be explained in more detail by showing experimental examples.

(実験例1) 血漿分離器4において用いた濾過膜17は平均孔径0−
06μm、膜厚130μmのポリプロピレン調子ffQ
の血液接触面上に、スクリーン版を用いて紫外線硬化型
樹脂(大日本インク社製、商品名:グイキュアMV)を
所定のバクーンにて印刷し、直ちに該濾過膜に紫外線を
照射して紫外線硬化型樹脂を膜面上に付着硬化させるこ
とにより表1に示すような高さ、底部、直径、間隙、占
有面積の均一な突部17aを形成せしめたものである。
(Experimental Example 1) The filtration membrane 17 used in the plasma separator 4 has an average pore diameter of 0-
06μm, film thickness 130μm polypropylene toneffQ
On the blood-contacting surface of the membrane, an ultraviolet curable resin (manufactured by Dainippon Ink Co., Ltd., product name: Guicure MV) is printed using a screen plate, and the filtration membrane is immediately irradiated with ultraviolet rays to cure the ultraviolet curable resin. By adhering and curing mold resin on the film surface, protrusions 17a having uniform height, bottom, diameter, gap, and occupied area as shown in Table 1 are formed.

濾過膜17の外径は102mm、中央部開口部は22m
mであり、血漿流路形成体16としてはポリエステル製
で目開き290μm、厚さ135μmのスクリーンメツ
シュを2枚重ねて用いた。lIlユニット18の形成は
、ヒートシール法(140°C,2秒)あるいは超音波
融着法(ブランリン製、超音波ウェルターモデル870
0使用)によった、流路規制体20の外径は102mm
、中央部開口径は22mmであり、材質及びブリネル硬
さは表1に示した通りである。さらに第3図に示したよ
うに上部膜ユニットと流路規制体20を、シール材19
としてホットメルト接着剤(東亜合成工業社製: PP
ET−1009)を用いて交互に積層し、ポリカーボネ
ート製の円筒容2311に収納した後、シリコンゴム製
O−リング13を介してポリカーボネート製の押子12
を挿入して血漿分離器4として実験に供した。
The outer diameter of the filtration membrane 17 is 102 mm, and the central opening is 22 m.
As the plasma flow path forming body 16, two screen meshes made of polyester having an opening of 290 μm and a thickness of 135 μm were used. The lIl unit 18 can be formed using a heat sealing method (140°C, 2 seconds) or an ultrasonic welding method (Branlin, Ultrasonic Welter Model 870).
0 use), the outer diameter of the flow path regulator 20 is 102 mm.
The central opening diameter was 22 mm, and the materials and Brinell hardness were as shown in Table 1. Furthermore, as shown in FIG.
Hot melt adhesive (manufactured by Toagosei Kogyo Co., Ltd.: PP
ET-1009) and housed in a polycarbonate cylindrical container 2311, a polycarbonate pusher 12 is inserted through a silicone rubber O-ring 13.
was inserted and used as plasma separator 4 for the experiment.

また、血漿浄化器7において用いた吸着材22は、以下
のようにして調製した。まず、0.1Mリン酸緩衝液(
pH7,4)にグルタルアルデヒドを5 (W/V)%
濃度となるように溶解した。
Further, the adsorbent 22 used in the plasma purifier 7 was prepared as follows. First, 0.1M phosphate buffer (
Add 5% (W/V) glutaraldehyde to pH 7.4)
It was dissolved to give the same concentration.

このグルタルアルデヒド水溶液に多孔性キトサンビーズ
(富士紡績製、キトパールBCW3003)を0.2〜
0.4g (fi潤重重ff1/mI2の割合で加λ、
脱気した後に、ブラッドミキサー(萱垣医理科工業製、
BM−101型)を使用して室温にて一晩撹拌した0次
に、得られた反応物を蒸留水で洗浄した後、ジメチルホ
ルムアミド(DMF)と0.1M炭酸緩衝液(pl−1
10)との混液(2: 3)に溶解した0、1Mスルフ
ァチアゾ−ル溶液を加久て脱気し、ブラッドミキサーを
用いて室温で一晩攪拌した。そして、蒸留水で洗浄した
後、未反応のアルデヒド基をブロッキングするために1
Mモノエタノールアミン(pH8,O)を添加して脱気
し、ブラッドミキサーで一晩撹拌した。これを蒸留水で
洗浄した後に1 (W/V)%水素化ホウ素ナトリウム
の0.1Mリン酸緩衝液(pH7,4)溶液に浸して室
温にて3時間ときどき攪拌を加えながら反応させた。こ
の反応によってグルタルアルデヒドのアルデヒド基と、
キトサンおよびスルファチアゾールのアミノ基との反応
によって生じたアゾメチン結合を還元して安定化させた
。さらに、蒸留水、0.5M塩化ナトリウムを含むpH
4,0,0,02M酢酸緩衝液、pH10,0,2M炭
酸緩衝液で緑り返し洗浄して吸着材22を調製した。
Porous chitosan beads (manufactured by Fujibo Co., Ltd., Chitopearl BCW3003) were added to this glutaraldehyde aqueous solution from 0.2 to
0.4g (added at the rate of fi wet weight ff1/mI2,
After degassing, use a blood mixer (manufactured by Kayagaki Irika Kogyo,
Next, the resulting reaction product was washed with distilled water and mixed with dimethylformamide (DMF) and 0.1M carbonate buffer (PL-1).
A solution of 0.1 M sulfathiazole dissolved in a mixture (2:3) with 10) was degassed and stirred overnight at room temperature using a blood mixer. After washing with distilled water, 1
M monoethanolamine (pH 8, O) was added to degas the mixture, and the mixture was stirred overnight in a blood mixer. After washing this with distilled water, it was immersed in a 1 (W/V)% sodium borohydride solution in 0.1M phosphate buffer (pH 7,4) and allowed to react at room temperature for 3 hours with occasional stirring. Through this reaction, the aldehyde group of glutaraldehyde,
The azomethine bonds generated by the reaction with the amino groups of chitosan and sulfathiazole were reduced and stabilized. Additionally, distilled water, pH containing 0.5M sodium chloride
The adsorbent material 22 was prepared by washing with 4,0,0,02M acetate buffer and pH10,0,2M carbonate buffer.

上記のようにして調製した吸着材100gを生理食塩水
中で脱気した後、両端にポリエステルメツシュ(225
メツシユ)を接着したポリカーボネート製の円筒容器2
1に充填収容し、これを血5r!浄化器7として血液浄
化実験に供した。
After degassing 100 g of the adsorbent prepared as described above in physiological saline, polyester mesh (225
Polycarbonate cylindrical container 2 with mesh attached
Fill and store it in 1, and add 5r of blood! It was used as purifier 7 in a blood purification experiment.

以上のような各装置を使用して、第1図に示した血液浄
化装置を組み立てた。この装置により、ヘマトクリット
値40%、温度37°Cの抗凝固剤CACD液〕を添加
した血液を毎分50mεの流量で2時間流入させ、血漿
濾過流filQ、を測定した。また1本装置使用前後で
の血漿タンパク質濃度を測定して、その差より各血漿タ
ンパク質の吸着率を算出した。また、装置の大きさを示
す数値として、血漿分離装置の血液側ブライミング量P
vを測定した。これらの結果を表1に示す。
The blood purification device shown in FIG. 1 was assembled using each of the devices described above. Using this device, blood to which anticoagulant CACD solution with a hematocrit value of 40% and a temperature of 37° C. was added was allowed to flow in at a flow rate of 50 mε per minute for 2 hours, and the plasma filtration flow filQ was measured. In addition, the plasma protein concentration before and after using one device was measured, and the adsorption rate of each plasma protein was calculated from the difference. In addition, as a numerical value indicating the size of the device, the blood side briming amount P of the plasma separator is
v was measured. These results are shown in Table 1.

(実験例2) 吸着材22の調製において、ジメチルホルムアミド(D
MF)と0.1M炭酸緩衝液(pH1O)との混液(2
: 3)に溶解した0、1Mスルファチアゾール溶液を
用いる代りに、0.1M炭酸緩衝液(pH10)に溶解
した0、05Mアスバチルフェニルアラニンメチルエス
テル(味の素社製、アスパルテーム)溶液を用いる以外
は実験例1と同様にして血液浄化実験を行った。結果を
表1に示す。
(Experimental Example 2) In preparing the adsorbent 22, dimethylformamide (D
MF) and 0.1M carbonate buffer (pH 1O) (2
Except that instead of using a 0.1 M sulfathiazole solution dissolved in 3), a 0.05 M asbatyl phenylalanine methyl ester (manufactured by Ajinomoto Co., Ltd., aspartame) solution dissolved in a 0.1 M carbonate buffer (pH 10) was used. A blood purification experiment was conducted in the same manner as in Experimental Example 1. The results are shown in Table 1.

(実験例3) 実験例1において使用した血漿分離器4の代りに第6図
に示すような突状部なしの濾過膜25を用いて膜ユニッ
トを形成し、ポリプロピレン製の流路規制板26(突部
高さ85μm、突部底直径300μm、突部間隙750
μm、総厚み800μm)を用いた血漿分離器27を使
用する以外は、実験例1と同様にして血液浄化実験を行
なった。結果を表1に示す。
(Experimental Example 3) Instead of the plasma separator 4 used in Experimental Example 1, a membrane unit was formed using a filtration membrane 25 without protrusions as shown in FIG. 6, and a flow path regulating plate 26 made of polypropylene was used. (Protrusion height 85μm, protrusion bottom diameter 300μm, protrusion gap 750μm)
A blood purification experiment was conducted in the same manner as in Experimental Example 1, except that a plasma separator 27 was used. The results are shown in Table 1.

(実験例4) 実験例1において使用した血漿分離器4の代りに第7図
に示すような突状部付の濾過膜28と突状部なしの濾過
11129とを接合した膜ユニットな流路規制体を用い
ることなく積層した構造を有する血漿分離器30を用い
る以外は実験例1と同様にして血液浄化実験を行った。
(Experimental Example 4) In place of the plasma separator 4 used in Experimental Example 1, a flow path is a membrane unit in which a filtration membrane 28 with protrusions and a filtration membrane 11129 without protrusions are joined as shown in FIG. A blood purification experiment was conducted in the same manner as in Experimental Example 1 except that a plasma separator 30 having a stacked structure was used without using a regulator.

結果を表1に示す。The results are shown in Table 1.

表1に示した結果から明らかなように、特に実験例1.
2で用いた血漿分離器4は、安定した高い血漿濾過量Q
、を供給でき、その結果、同一処理時間におけるIgG
およびIgMの吸着率が高くなることが示された。
As is clear from the results shown in Table 1, especially in Experimental Example 1.
The plasma separator 4 used in 2 has a stable and high plasma filtration rate Q.
, and as a result, IgG in the same processing time
It was shown that the adsorption rate of IgM and IgM was increased.

[発明の効果] 以上に説明したように本発明の血液浄化装置によれば、
その構成要素である血漿分離器の小型化を達成し、かつ
、高い血漿分離性能を引きだすことによって、血液浄化
装置全体の小型化が達成され、また病因物資の除去効率
を高めて血液の浄化時間を短縮することが可能となった
。この結果、血液の体外循環量が少なくてすみ、かつ体
外循環時間が短いため、人体への肉体的負担の少ない血
液浄化装置を提供することが可能となった。
[Effects of the Invention] As explained above, according to the blood purification device of the present invention,
By downsizing the plasma separator, which is a component of the device, and bringing out high plasma separation performance, the entire blood purification device can be downsized, and the removal efficiency of pathogenic materials can be increased, resulting in a reduction in blood purification time. It became possible to shorten the As a result, the amount of extracorporeal circulation of blood is small and the extracorporeal circulation time is short, making it possible to provide a blood purification device that places less physical burden on the human body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る血液浄化装置の全体構
成を示す図、第2図は本発明で用いられる血漿分離器を
示す分解斜視図、第3図は同装置の側断面図、第4図は
本発明で用いられる血漿分離器の血液流路を示す斜視図
、第5図は本発明で用いられる血漿浄化器の断面図、第
6図及び第7図はそれぞれ従来の血漿分離器を示す側断
面図である。 ■・・・血液導入口、  2・・・血液ポンプ、4・・
・血漿分離器、 5・・血漿ポンプ、7・・・血漿浄化
器、 8・・・混合器、10・・・血液導出口 出願人 テ ル モ 株 式 会 社 代理人 弁理士  朝 倉 勝 三 第1図 第4図
FIG. 1 is a diagram showing the overall configuration of a blood purification device according to an embodiment of the present invention, FIG. 2 is an exploded perspective view showing a plasma separator used in the present invention, and FIG. 3 is a side sectional view of the device. , FIG. 4 is a perspective view showing the blood flow path of the plasma separator used in the present invention, FIG. 5 is a sectional view of the plasma purifier used in the present invention, and FIGS. It is a side sectional view showing a separator. ■...Blood inlet, 2...Blood pump, 4...
・Plasma separator, 5. Plasma pump, 7. Plasma purifier, 8. Mixer, 10. Blood outlet Applicant Terumo Corporation Company Representative Patent Attorney Katsuzo Asakura Figure 1 Figure 4

Claims (8)

【特許請求の範囲】[Claims] (1)血液導入口と血液導出口を有し、前記血液導入口
から導入した血液を浄化して前記血液導出口から導出さ
せる血液浄化装置であって、 前記血液導入口から導入した血液を濃縮血液と血漿に分
離する血漿分離器と、 該血漿分離器により分離された血漿を浄化する血漿浄化
器と、 前記濃縮血液と前記血漿浄化器により浄化された血漿と
を混合する混合器と、 前記血液を前記血液導入口から前記血漿分離器及び前記
混合器を経て前記血液導出口へ導出させる血液流通回路
と、 前記血漿分離器において分離された血漿を前記血漿浄化
器を経て前記混合器に流入させる血漿分離回路とを備え
たことを特徴とする血液浄化装置。
(1) A blood purification device having a blood inlet port and a blood outlet port, purifying blood introduced from the blood inlet port and drawing it out from the blood outlet port, the blood purification device concentrating the blood introduced from the blood inlet port. a plasma separator that separates blood and plasma; a plasma purifier that purifies the plasma separated by the plasma separator; a mixer that mixes the concentrated blood and the plasma purified by the plasma purifier; a blood circulation circuit that leads blood from the blood inlet to the blood outlet via the plasma separator and the mixer; and a blood flow circuit that causes the plasma separated in the plasma separator to flow into the mixer via the plasma purifier. A blood purification device characterized by comprising a plasma separation circuit.
(2)前記血漿分離器が、血漿流路を形成する血漿流路
形成体の全面を濾過膜で被覆し該濾過膜の少なくとも1
ヶ所に第1の血漿流出口を設けた膜ユニットを平板状の
流路規制体を間に挟んで複数個重ね合わせ、これを前記
血液流通回路に連通する血液流入口と血液流出口及び前
記血漿分離回路に連通する第2の血漿流出口を有する容
器内に収納し、前記各膜ユニットの第1の血漿流出口を
該容器の第2の血漿流出口に連通させてなると共に、前
記濾過膜は前記流路規制体に面する表面に突状部を一体
に有し、該突状部により前記濾過膜と前記流路規制体と
の間に血液流路を形成してなり、前記容器の血液流入口
から流入する血液が前記血液流路を通り前記濾過膜で濾
過されて血液流出口に至る血液経路と、血液が前記濾過
膜で濾過されることにより前記濾過膜を介して前記膜ユ
ニット内に流入してなる血漿が前記膜ユニット内の血漿
流路を通過し、前記第1の血漿流出口を経て前記第2の
血漿流出口に至る血漿経路とを有する請求項1記載の血
液浄化装置。
(2) The plasma separator covers the entire surface of a plasma channel forming body forming a plasma channel with a filtration membrane, and at least one part of the filtration membrane
A plurality of membrane units each having a first plasma outflow port are stacked one on top of the other with a flat plate-like flow path regulating body in between, and these membrane units are connected to a blood inflow port and a blood outflow port communicating with the blood circulation circuit, and the blood plasma outflow port. The membrane unit is housed in a container having a second plasma outflow port communicating with the separation circuit, and the first plasma outflow port of each membrane unit is communicated with the second plasma outflow port of the container, and the filtration membrane has a projecting part integrally on the surface facing the flow path regulating body, and the projecting part forms a blood flow path between the filtration membrane and the flow path regulating body, and the container A blood path in which blood flows in from the blood inflow port passes through the blood flow path, is filtered by the filtration membrane, and reaches the blood outflow port; and a blood path through which the blood is filtered by the filtration membrane and passes through the filtration membrane to the membrane unit. 2. The blood purification device according to claim 1, further comprising a plasma path through which plasma flowing into the membrane unit passes through a plasma flow path in the membrane unit, passes through the first plasma outlet, and reaches the second plasma outlet. Device.
(3)前記濾過膜の突状部が独立した多数の突部である
請求項2記載の血液浄化装置。
(3) The blood purification device according to claim 2, wherein the protrusions of the filtration membrane are a number of independent protrusions.
(4)前記突状部の突部の高さが20〜200μm、底
部直径が100〜1000μm、突部の頂点の間隔が3
00〜2000μm、突部の膜表面全体に対する占有面
積が3〜20%である請求項3記載の血液浄化装置。
(4) The height of the protrusion of the protrusion is 20 to 200 μm, the bottom diameter is 100 to 1000 μm, and the interval between the apexes of the protrusion is 3
4. The blood purification device according to claim 3, wherein the protrusion has an area of 3 to 20% of the entire membrane surface.
(5)前記流路規制体のブリネル硬度が10以上であり
、厚さが10〜200μmである請求項2記載の血液浄
化装置。
(5) The blood purification device according to claim 2, wherein the flow path regulator has a Brinell hardness of 10 or more and a thickness of 10 to 200 μm.
(6)前記濾過膜がポリオレフィンからなる請求項2記
載の血液浄化装置。
(6) The blood purification device according to claim 2, wherein the filtration membrane is made of polyolefin.
(7)前記血漿浄化器が、不溶性担体に複素環式化合物
または、ジペプチドあるいはその誘導体を結合してなる
吸着材を血漿の導入口及び導出口を有する容器内に充填
収納してなる請求項1記載の血液浄化装置。
(7) Claim 1, wherein the plasma purifier is constructed by filling and storing an adsorbent formed by bonding a heterocyclic compound, a dipeptide, or a derivative thereof to an insoluble carrier in a container having an inlet and an outlet for plasma. Blood purification device as described.
(8)前記血漿浄化器が、膜により血漿成分を分画する
血漿濾過器である請求項1記載の血漿浄化装置。
(8) The plasma purification device according to claim 1, wherein the plasma purification device is a plasma filter that fractionates plasma components using a membrane.
JP63092855A 1988-04-15 1988-04-15 Blood purification device Pending JPH01265971A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63092855A JPH01265971A (en) 1988-04-15 1988-04-15 Blood purification device
KR1019890004985A KR890017169A (en) 1988-04-15 1989-04-15 Flow regulator
CA000596922A CA1324370C (en) 1988-04-15 1989-04-17 Flow control device
AU33087/89A AU629206B2 (en) 1988-04-15 1989-04-17 Flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63092855A JPH01265971A (en) 1988-04-15 1988-04-15 Blood purification device

Publications (1)

Publication Number Publication Date
JPH01265971A true JPH01265971A (en) 1989-10-24

Family

ID=14066044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63092855A Pending JPH01265971A (en) 1988-04-15 1988-04-15 Blood purification device

Country Status (1)

Country Link
JP (1) JPH01265971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508775A (en) * 1997-01-06 2001-07-03 セラス コーポレイション Method and apparatus for reducing small organic compounds from blood products
US9259525B2 (en) 1998-01-06 2016-02-16 Cerus Corporation Adsorbing pathogen-inactivating compounds with porous particles immobilized in a matrix

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508775A (en) * 1997-01-06 2001-07-03 セラス コーポレイション Method and apparatus for reducing small organic compounds from blood products
JP2010031049A (en) * 1997-01-06 2010-02-12 Cerus Corp Method and device for reduction of small organic compound from blood product
US9259525B2 (en) 1998-01-06 2016-02-16 Cerus Corporation Adsorbing pathogen-inactivating compounds with porous particles immobilized in a matrix

Similar Documents

Publication Publication Date Title
JP4117403B2 (en) Biopolymer isolation and purification method
EP0586268B1 (en) A pathogenic substance removing material and a blood filter comprising said material
US4361484A (en) Process for treating and/or removal of substances from liquid, especially whole blood
JP2008514424A5 (en)
US4725355A (en) Body fluid purification medium and apparatus
JP2009018177A (en) Material for selectively removing virus and leukocyte and use thereof
US8956535B2 (en) Single pass method and apparatus for separating a target molecule from a liquid mixture
JPH01265971A (en) Blood purification device
JP2814399B2 (en) Adsorber for whole blood processing
JPS59193135A (en) Adsorbing body
JPH025096B2 (en)
JPS59169532A (en) Adsorbing material of c-reactive protein
JPS6111054A (en) Blood purification system
JPH01104273A (en) Body fluid purifying material and apparatus
JPH0550301B2 (en)
JPH01158970A (en) Immunoglobulin adsorbing material for direct blood perfusion and adsorbing apparatus
JP2568846B2 (en) Myoglobin adsorbent
JPS6226073A (en) Method and apparatus for direct infusion and adsorption of blood
JPH0226988B2 (en)
JP4069811B2 (en) Filtration container, filtration apparatus and filtration method
JPS6125566A (en) Porous membrane
JP4443309B2 (en) Fibrinogen adsorbent III
JPH08173528A (en) Blood processing system
JPH07136257A (en) Blood purifying system
JPS6361023B2 (en)