JPH01264277A - Power switch - Google Patents

Power switch

Info

Publication number
JPH01264277A
JPH01264277A JP63091498A JP9149888A JPH01264277A JP H01264277 A JPH01264277 A JP H01264277A JP 63091498 A JP63091498 A JP 63091498A JP 9149888 A JP9149888 A JP 9149888A JP H01264277 A JPH01264277 A JP H01264277A
Authority
JP
Japan
Prior art keywords
superconductor
circuit
power switch
current
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63091498A
Other languages
Japanese (ja)
Inventor
Hisashi Soma
相馬 尚志
Hiromi Tokoi
博見 床井
Mitsuo Hayashibara
光男 林原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63091498A priority Critical patent/JPH01264277A/en
Publication of JPH01264277A publication Critical patent/JPH01264277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To obtain a circuit breaker which is more simple in construction, by using a superconductor which is movable to a switching place of a circuit. CONSTITUTION:When an abnormality takes place and an overcurrent yields in an electric circuit or a load apparatus, the heating value of heating resistance 10 which is provided in the electric circuit by approaching a superconductor 1 increases and then, the temperature of the superconductor 1 rises. When its temperature exceeds a critical temperature, the superconductor 1 makes a transition from a superconducting state to a normal conducting one. Further, even when a large current exceeding a critical current density flows in the superconductor 1 because of a short circuit trouble and the like, its conductor is transited to the normal conducting state in the same way. If transited to the normal conducting state, the repulsive force between the superconductor 1 and a permanent magnet 2 disappears and only the restoring force of a spring 4 acts upon the superconductor 1. As a result, the superconductor 1 moves in the left direction and is tripped from contact points 3. Then, the current is cut off and a breaking indication 6 comes out at once.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気回路の開閉機構に係り、特に、負荷側で
短絡などの事故が発生した場合に、その過電流をしゃ断
して、電路や機器を保護するのに好適なしゃ断器に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a switching mechanism for electric circuits, and in particular, when an accident such as a short circuit occurs on the load side, the overcurrent is cut off and the electric circuit is switched off. This invention relates to a circuit breaker suitable for protecting equipment.

〔従来の技術〕[Conventional technology]

従来のしゃ断器については、「現代の配電技術JP11
2〜P119(電気書院 1972年発行)に記載され
ている。従来のしゃ断器で、過電流発生時に接点同士を
引きはずす自動引きはずし装置は、バイメタルと電磁石
を組み合せた熱動電磁形、及びオイルダッシュポットと
電磁石を組合せた完全電磁形とに大別される。以下、熱
動電磁形のしや断器を例に、その動作原理を説明する。
Regarding conventional circuit breakers, see “Modern Power Distribution Technology JP11
2 to P119 (Denki Shoin, published in 1972). Conventional circuit breaker automatic trip devices that trip the contacts when an overcurrent occurs are broadly divided into thermal electromagnetic types that combine bimetals and electromagnets, and fully electromagnetic types that combine oil dashpots and electromagnets. . The principle of operation will be explained below using a thermal electromagnetic type circuit breaker as an example.

しゃ断器は、電動機の起動電流のように、定格電流の数
倍に達する電流が短時間流れた場合には動作せず、長時
間の過電流はしゃ断(時延引きはずし)して電路や負荷
機器を保護する必要がある。また、短絡電流のような大
電流(一般には定格電流の十倍以上)が流れた場合には
、瞬時に電流をしゃ断(瞬時引きはずし)する必要があ
る。熱動電磁形のしゃ断器では、時延引きはずしにバイ
メタルを。
A circuit breaker will not operate if a current several times the rated current flows for a short period of time, such as the starting current of a motor, and will cut off (time-delayed tripping) in the case of a long-term overcurrent and disconnect the circuit or load. Equipment needs to be protected. Furthermore, when a large current (generally ten times the rated current or more) such as a short circuit current flows, it is necessary to instantly cut off the current (instantaneous tripping). For thermal electromagnetic circuit breakers, use bimetal for time-delayed tripping.

瞬時引きはずしには電磁石を用いる。すなわち、定格電
流の十倍を越えるような大電流が流れた場合には、電磁
石と可動の鉄心との吸引力により鉄心を動かし、接点同
士を引きはずし、電流をしゃ断する。これより小さな過
電流では、バイメタルの近くに設けた加熱抵抗の発熱に
よるバイメタルのわん曲作用を利用して接点を開放する
構造とする。
An electromagnet is used for instantaneous tripping. That is, when a large current exceeding ten times the rated current flows, the magnetic force between the electromagnet and the movable iron core moves the iron core, tripping the contacts and cutting off the current. If the overcurrent is smaller than this, the contact is opened using the bending effect of the bimetal due to the heat generated by the heating resistor installed near the bimetal.

超電導体を用いた開閉装置には、超電導コイル用の永久
電流スイッチが挙げられる。超電導コイルに永久電流を
流すには、コイル全体が超電導体で閉じた回路を形成す
る必要がある。従って、超電導コイルから永久電流を取
り出したり、超電導コイル内へ電流を導入するには超電
導コイルの一部を常電導状態へ遷移させる必要がある。
Switching devices using superconductors include persistent current switches for superconducting coils. To pass a persistent current through a superconducting coil, the entire coil must be made of superconductor to form a closed circuit. Therefore, in order to extract a persistent current from a superconducting coil or to introduce a current into a superconducting coil, it is necessary to transition a part of the superconducting coil to a normal conducting state.

永久電流スイッチは超電導コイルの一部に近接したヒー
タを設けて、常電導状態へ遷移させ、永久電流の出し入
れを可能とする機構である。この種の機構は、特開昭5
8−30173号、特開昭58−32479号、特開昭
60−100487号公報に開示されている。
A persistent current switch is a mechanism in which a heater is provided close to a part of a superconducting coil to cause the superconducting coil to transition to a normal conductive state, allowing persistent current to be put in and taken out. This type of mechanism was developed in Japanese Patent Application Publication No. 5
8-30173, JP-A-58-32479, and JP-A-60-100487.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

低圧屋内電路などに設けるしゃ断器の自動引きはずし装
置は、長時間過電流に対して働く時延引きはすしと短絡
電流のような大電流に対して働く瞬時引きはすしの二つ
の動作が必要となる。
Automatic tripping devices for circuit breakers installed in low-voltage indoor electrical circuits require two types of operation: delayed tripping, which works in response to long-term overcurrents, and instantaneous tripping, which works in response to large currents such as short-circuit currents. becomes.

従来技術の熱動電磁形は時延引きはずしにバイメタルを
、瞬時引きはずしに電磁石を用い、また。
The conventional thermal electromagnetic type uses a bimetal for delayed tripping and an electromagnet for instantaneous tripping.

完全電磁形は時延引きはずしにオイルダッシュポットを
、瞬時引きはずしには電磁石を用いており、構造が複雑
になるという問題点があった。
The fully electromagnetic type uses an oil dashpot for delayed tripping and an electromagnet for instantaneous tripping, which has the problem of a complicated structure.

本発明の目的は、構造がより簡単なしゃ断器を提供する
ことにある。
An object of the present invention is to provide a breaker with a simpler structure.

〔課題を解決するための手段〕[Means to solve the problem]

電気回路を開閉する接点間を移動し得る超電導体で電気
的に接続し、超電導体が超電導状態の場合には磁石との
反発力により接点に超電導体を押し付は通電状態にする
。超電導体が常電導に遷移した場合には、磁石との反発
力は消滅し、スプリングの復元力などにより、超電導体
を接点から引きはずし、過電流をしゃ断する。すなわち
、上記目的は、超電導体が超電導状態と常電導状態の間
を遷移することに起因した磁石との反発力の生成・消滅
を利用して回路の開閉をすることにより達成される。
The contacts that open and close the electric circuit are electrically connected by a movable superconductor, and when the superconductor is in a superconducting state, the superconductor is pressed against the contact by the repulsive force with the magnet, making it conductive. When the superconductor transitions to normal conductivity, the repulsive force with the magnet disappears, and the restoring force of the spring pulls the superconductor away from the contact, cutting off the overcurrent. That is, the above object is achieved by opening and closing the circuit by utilizing the generation and disappearance of repulsive force with the magnet caused by the superconductor transitioning between the superconducting state and the normal conducting state.

〔作用〕[Effect]

超電導体の基本的性質を第2図(a) 、 (b)  
により説明する。
The basic properties of superconductors are shown in Figure 2 (a) and (b).
This is explained by:

第2図(a)中■のように、超電導体は、臨界温度Tc
以下では超電導状態を示し、温度が上昇し、臨界温度T
c以上になると常電導状態へ遷移する。また、第2図(
a)中■のように、超電導体を流れる電流密度が臨界電
流密度Jc以下では超電導状態を示し、臨界電流密度J
cを超えると常電導状態へ遷移する。同様に、磁界につ
いても第2図■のように、臨界磁界Haを境にして超電
導状態から常電導状態へ遷移する。超電導状態では、超
電導体は完全反磁性を示し、磁石など磁界を発生するも
のと反発する。仮に1000ガウスの磁石を使用すれば
反発力は1d当り0.4N となり、40gのものを動
に逆って浮上できる。超電導体が超電導状態から常電導
状態に遷移すると、完全反磁性に起因する反発力は消滅
する。
As shown in Figure 2 (a), the superconductor has a critical temperature Tc
Below we show a superconducting state, the temperature increases and the critical temperature T
When the temperature exceeds c, the state transitions to a normal conduction state. Also, Figure 2 (
a) As shown in middle ■, when the current density flowing through the superconductor is less than the critical current density Jc, it exhibits a superconducting state, and the critical current density J
When the temperature exceeds c, the state transitions to a normal conduction state. Similarly, the magnetic field also transitions from the superconducting state to the normal conducting state with the critical magnetic field Ha as the boundary, as shown in Figure 2 (2). In the superconducting state, superconductors exhibit perfect diamagnetic properties and repel anything that generates a magnetic field, such as a magnet. If a 1000 gauss magnet is used, the repulsive force will be 0.4 N per d, and a 40 g object can levitate against the motion. When a superconductor transitions from a superconducting state to a normal conducting state, the repulsive force due to perfect diamagnetism disappears.

次に、本発明の動作原理を説明する。Next, the operating principle of the present invention will be explained.

電気回路を開閉する二つの接点間を電気的に接続する超
電導体は、電路に異常がない場合には、超電導状態を示
し、超電導体に近接して設けた磁石との反発力が、スプ
リングなどの引きはずし力に打ち勝ち、超電導体を接点
に押し付ける。従って、電流は、一方の端子から他方の
端子へ超電導体を介して流れる。電動機の超勤電流のよ
うな過電流が長時間電路に流れると、超電導体に近接し
て電路に設けた加熱抵抗が発熱し、超電導体の温度が上
昇する。超電導体の温度が臨界温度Tcを超えると超電
導状態から常電導状態へ遷移し、磁石との反発力は消滅
する。電路に短絡などの異常が生じ、大電流が流れた場
合には、超電導体を流れる電流密度が臨界電流密度Jc
を越える。従って、超電導状態から常電導状態へ遷移し
て磁石との反発力は消滅する。これら、温度上昇、電流
密度上昇に起因した反発力の消滅により、超電導体に引
きはずし力が働き、接点間を電気的に接続していた超電
導体は、接点から離れ電流をしゃ断する。この結果、過
電流時の電流しゃ断を従来のバイメタルと電磁石の組合
せから超電導体のみに簡略化できる。
A superconductor, which electrically connects two contacts that open and close an electric circuit, exhibits a superconducting state when there is no abnormality in the electrical circuit, and the repulsive force from a magnet placed close to the superconductor causes a spring, etc. The superconductor is pressed against the contact by overcoming the pulling force of the superconductor. Current therefore flows from one terminal to the other through the superconductor. When an overcurrent such as an overtime current of an electric motor flows in an electric circuit for a long time, a heating resistor provided in the electric circuit close to a superconductor generates heat, and the temperature of the superconductor rises. When the temperature of the superconductor exceeds the critical temperature Tc, it transitions from a superconducting state to a normal conducting state, and the repulsive force with the magnet disappears. When an abnormality such as a short circuit occurs in the electrical circuit and a large current flows, the current density flowing through the superconductor becomes the critical current density Jc.
exceed. Therefore, the state transitions from the superconducting state to the normal conducting state, and the repulsive force with the magnet disappears. As the repulsion force disappears due to the rise in temperature and current density, a tripping force acts on the superconductor, and the superconductor that was electrically connecting the contacts separates from the contacts and cuts off the current. As a result, current interruption during overcurrent can be simplified from the conventional combination of a bimetal and an electromagnet to only a superconductor.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図(a) 、 (b) 
、 (C)により説明する。第1図(a)は、電路や負
荷機器に異常がなく、超電導体1が超電導状態の場合を
示す。超電導体1は、軸11を介してしゃ新表示6と固
定されており、圧縮されたスプリング4が元へ戻ろうと
する左方向の力を受ける。また、超電導状態では超電導
体1は完全反磁性を示し、ケース9に固定された永久磁
石2との反発による右方向の力を受ける。この永久磁石
2との反発力がスプリング4の復元力より大きいため、
超電導体1は互いに電気絶縁された一対の接点3に押し
付けられる。従って、接点間は超電導体1により電気的
に接続され、電流は、超電導体1を介して電源側端子1
2と負荷側端子13間を流れる。
An embodiment of the present invention will be described below as shown in FIGS. 1(a) and 1(b).
, (C). FIG. 1(a) shows a case where there is no abnormality in the electric circuit or load equipment and the superconductor 1 is in a superconducting state. The superconductor 1 is fixed to the new display 6 via a shaft 11, and receives a leftward force that causes the compressed spring 4 to return to its original state. Further, in the superconducting state, the superconductor 1 exhibits complete diamagnetic property and receives a rightward force due to repulsion from the permanent magnet 2 fixed to the case 9. Since the repulsive force with this permanent magnet 2 is larger than the restoring force of the spring 4,
The superconductor 1 is pressed against a pair of contacts 3 that are electrically insulated from each other. Therefore, the contacts are electrically connected by the superconductor 1, and the current flows through the superconductor 1 to the power supply side terminal 1.
2 and the load side terminal 13.

電路や負荷機器に異常が起こり、過電流が発生した場合
、超電導体1に近接して電路に設けた加熱抵抗10の発
熱量が増大し、超電導体1の温度が上昇する。超電導体
1の温度が臨界温度を超えると超電導体1は、超電導状
態から常電導状態へ遷移する。また、短絡事故などによ
り超電導体1に臨界電流密度を超える大電流が流れても
同様に常電導状態に遷移する。常電導状態に遷移すると
超電導体1と永久磁石2の間の反発力は消滅し、スプリ
ング4の復元力のみが超電導体1に働く。
When an abnormality occurs in the electric circuit or load equipment and an overcurrent occurs, the amount of heat generated by the heating resistor 10 provided in the electric circuit in close proximity to the superconductor 1 increases, and the temperature of the superconductor 1 rises. When the temperature of the superconductor 1 exceeds the critical temperature, the superconductor 1 transitions from a superconducting state to a normal conducting state. Further, even if a large current exceeding the critical current density flows through the superconductor 1 due to a short circuit accident or the like, the superconductor 1 similarly transitions to the normal conducting state. When the superconductor 1 transitions to a normal conductive state, the repulsive force between the superconductor 1 and the permanent magnet 2 disappears, and only the restoring force of the spring 4 acts on the superconductor 1.

その結果、超電導体1は左方向へ移動し、接点3から引
きはずされ、第1図(b)のように、電流はしゃ断され
しゃ新表示6がとび出す。電流しゃ断による温度低下な
どにより、超電導体1は常電導状態から超電導状態へ遷
移し、再び、永久磁石2との間に反発力が働く。この力
により、超電導体1が接点3と接触し電源が自動復帰す
るのを防ぐ必要がある。そこで1時計回りの回転力をも
つばね7を回転軸に設けたストッパ8と軸11に設けた
切りかきにより超電導体1を固定する構造とした。電源
を再投入する場合は、スイッチ5を反時計回りに回転さ
せ、ストッパをはずす。ストッパが解除されると、超電
導体1は永久磁石2との反発力により右方向へ移動し、
接点3に押し付けられ、第2図(a)の通電状態にもど
る。
As a result, the superconductor 1 moves to the left and is separated from the contact 3, and as shown in FIG. 1(b), the current is cut off and a new display 6 pops out. The superconductor 1 transits from a normal conducting state to a superconducting state due to a temperature drop due to current interruption, and a repulsive force acts between it and the permanent magnet 2 again. It is necessary to prevent the superconductor 1 from coming into contact with the contact point 3 due to this force and from automatically returning the power supply. Therefore, a structure was adopted in which the superconductor 1 is fixed by a stopper 8 in which a spring 7 having one clockwise rotational force is provided on the rotating shaft and a notch provided in the shaft 11. To turn on the power again, rotate switch 5 counterclockwise to remove the stopper. When the stopper is released, the superconductor 1 moves to the right due to the repulsive force with the permanent magnet 2,
It is pressed against the contact 3 and returns to the energized state shown in FIG. 2(a).

第3図に本実施例の電流としゃ断動作時間の関係を示す
0本発明は、超電導体を流れる電流が臨界電流密度を越
え、常電導状態に遷移するのを利用して、瞬時引きはず
し、超電導体の温度が臨界温度を越え常電導状態に遷移
するのを利用して時延引きはすしを行なう。すなわち、
瞬時引きはずしの場合、電路を流れる電流が設定値Ic
(一般には定格電流の十倍前後)に達すると超電導体の
臨界電流密度になるように超電導体の電路面積を設定し
た。
Figure 3 shows the relationship between the current and the cutoff operation time in this example.The present invention utilizes the fact that the current flowing through a superconductor exceeds a critical current density and transitions to a normal conduction state. Time-deferred sushi is performed by utilizing the fact that the temperature of the superconductor exceeds a critical temperature and transitions to a normal conductive state. That is,
In the case of instantaneous tripping, the current flowing through the circuit is equal to the set value Ic
The circuit area of the superconductor was set so that the critical current density of the superconductor is reached when the current density reaches the critical current density (generally about 10 times the rated current).

Jc ここで、Sは超電導体の電路面積、Jcは超電導体の臨
界電流密度、Icは瞬時引きはずしの設定電流である。
Jc Here, S is the circuit area of the superconductor, Jc is the critical current density of the superconductor, and Ic is the set current for instantaneous tripping.

また、設定値Ic以下の過電流では、超電導体の近傍に
設けた加熱抵抗により超電導体の温度を臨界温度以上に
上昇させて時延引きはすしを行なう。加熱抵抗による単
位時間当りの発熱量Qは次式で与えられる。
In addition, when the overcurrent is below the set value Ic, the temperature of the superconductor is raised to a critical temperature or higher using a heating resistor provided near the superconductor, thereby performing a time delay. The amount of heat generated per unit time Q by the heating resistor is given by the following equation.

Q=RI” ここでRは加熱抵抗の抵抗値、工は加熱抵抗を流れる電
流である。従って、過電流が大きくなるほど超電導体の
温度上昇が速くなり、短時間でのしゃ断が可能となる。
Q=RI" Here, R is the resistance value of the heating resistor, and Δ is the current flowing through the heating resistor. Therefore, the larger the overcurrent, the faster the temperature rise of the superconductor, and it becomes possible to shut off the superconductor in a short time.

本発明により、従来のバイメタルと電磁石を組み合わせ
た熱動電磁形の基本部品数二十個に比べ十五個に部品数
を低減でき。
According to the present invention, the number of basic parts can be reduced to 15 compared to the 20 basic parts of a conventional thermal electromagnetic type that combines a bimetal and an electromagnet.

構造の簡略化が図れる。また、超電導体の電路面積、加
熱抵抗の抵抗値の変更により、しゃ断容量の変更が簡単
にできる。
The structure can be simplified. Furthermore, the breaking capacity can be easily changed by changing the area of the superconductor circuit and the resistance value of the heating resistor.

本発明では、永久磁石を用い、超電導体との反発力を惹
起させたが、永久磁石の代りに電磁石を用いることもで
きる。
In the present invention, a permanent magnet is used to induce a repulsive force with the superconductor, but an electromagnet can also be used instead of the permanent magnet.

本発明では、過電流発生時の超電導体と接点と。In the present invention, a superconductor and a contact point when an overcurrent occurs.

の引きはずしにスプリングの復元力を用いたが。The restoring force of the spring was used to remove the .

他の力を使用することもできる。その例を、第4図に示
す。第4図(C) 、 (d)は、永久磁石と強磁性体
14との吸引力を利用したもので左が超電導状態、右が
常電導状態を示す。超電導体1と強磁性体14は接着さ
れた構造となっている。超電導状態では、超電導体は完
全反磁性を示し、磁束が透過しないため、永久磁石2と
強磁性体14との吸引力は非常に小さい。従って、超電
導体1は永久磁石2との反発により接点3に押し付けら
れる。
Other forces can also be used. An example is shown in FIG. Figures 4(C) and 4(d) utilize the attractive force between the permanent magnet and the ferromagnetic material 14, and the left side shows the superconducting state and the right side shows the normal conducting state. The superconductor 1 and the ferromagnetic material 14 have a bonded structure. In the superconducting state, the superconductor exhibits complete diamagnetic properties and no magnetic flux passes through it, so the attractive force between the permanent magnet 2 and the ferromagnetic material 14 is very small. Therefore, the superconductor 1 is pressed against the contact point 3 due to the repulsion from the permanent magnet 2.

過電流により常電導状態に遷移すると反発力は消滅し超
電導体1中を磁石が透過するようになる。
When the superconductor 1 transitions to a normal conducting state due to an overcurrent, the repulsive force disappears and the magnet begins to pass through the superconductor 1.

従って、永久磁石2と強磁性体14の間に吸収力が働き
、超電導体1は接点3から引きはずされ、電流はしゃ断
される。
Therefore, an absorbing force acts between the permanent magnet 2 and the ferromagnetic material 14, the superconductor 1 is separated from the contact 3, and the current is cut off.

第4図(e) 、 (f)は、重力を引きはずしに利用
だもので(e)が超電導状態、(f)が常電導状態であ
る。超電導状態では、超電導体1と永久磁石2の反発力
は重力を上回り、超電導体1は接点3に押し付けられる
。過電流などにより常電導状態に遷移すると反発力は消
滅し、重力のみが働くため、超電導体は落下し接点を開
放する。
Figures 4(e) and 4(f) use gravity for tripping, with (e) being a superconducting state and (f) being a normal conducting state. In the superconducting state, the repulsive force between the superconductor 1 and the permanent magnet 2 exceeds gravity, and the superconductor 1 is pressed against the contact point 3. When the superconductor transitions to a normal conducting state due to an overcurrent, etc., the repulsive force disappears and only gravity acts, causing the superconductor to fall and open the contacts.

第5図に本発明の他の実施例を示す。本発明は第1図に
示したしゃ新機構に加え漏洩電流を検出する零相変流器
により構成した。零相変流器は鉄心15及び鉄心に巻い
た二次巻線16からなる。
FIG. 5 shows another embodiment of the invention. In addition to the isolation mechanism shown in FIG. 1, the present invention includes a zero-phase current transformer for detecting leakage current. The zero-phase current transformer consists of an iron core 15 and a secondary winding 16 wound around the iron core.

漏電が発生すると往路電流と帰路電流の差に帰因した磁
束が鉄心15に発生し、二次巻線16に電圧が誘起され
る。この零相変流器の二次側出力を直接、あるいは、増
幅して、超電導体を常電導状態へ遷移させるのに用いる
。第5図(a)は、零相変流器の二次側にコイル17を
接続し、第1図に示したしゃ新機構の超電導体1の近傍
に接続したものである。漏電の発生により、零相変流器
の二次側に設けたコイル17に電流が流れ磁界を発生さ
せる。この磁界が超電導体1は常電導状態に遷移し、接
点3は開放され、lt流はしゃ断される。
When a leakage occurs, magnetic flux due to the difference between the forward current and the return current is generated in the iron core 15, and a voltage is induced in the secondary winding 16. The secondary output of this zero-phase current transformer is used directly or amplified to transition the superconductor to a normal conducting state. FIG. 5(a) shows a coil 17 connected to the secondary side of a zero-phase current transformer and connected near the superconductor 1 of the switching mechanism shown in FIG. Due to the occurrence of electrical leakage, current flows through the coil 17 provided on the secondary side of the zero-phase current transformer, generating a magnetic field. This magnetic field causes the superconductor 1 to transition to a normal conducting state, the contact 3 is opened, and the lt current is cut off.

第5図(b)は、(a)のコイルの代りに加熱抵抗1o
を設けたものである。漏電発生時には、加熱抵抗10に
電流が流れ超電導体の温度を臨界温度以上に上昇させる
。従って、超電導体1は、常電導状態となり、永久磁石
2との反発力は消滅し接点3は開放される。本発明によ
り、漏電しゃ断器の構造の簡略化が図れる。
Fig. 5(b) shows a heating resistor of 1o instead of the coil in (a).
It has been established. When a current leakage occurs, current flows through the heating resistor 10 to raise the temperature of the superconductor above the critical temperature. Therefore, the superconductor 1 becomes a normal conductor, the repulsive force with the permanent magnet 2 disappears, and the contact 3 is opened. According to the present invention, the structure of the earth leakage breaker can be simplified.

第6図に本発明の他の実施例を示す。本実施例は、恒温
槽など雰囲気温度を一定に保つ用途に用いる回路の開閉
装置である。恒温槽24内に超電導体1、−及び、永久
磁石2を設け、接点3間を電気的に接続する導体22は
軸11により超電導体1と固定する。超電導体1が超電
導状態では、永久磁石2との反発力により超電導体1は
浮上し、超電導体1と固定された導体22は接点3に密
着し、加熱器23に電流が流れ、雰囲気温度が上昇する
。雰囲気温度が超電導体1の臨界温度を越えると、永久
磁石2との反発力は消滅し、動により超電導体は落下し
、接点3は開放され雰囲気温度は低下する。接点3の開
閉により、雰囲気温度は、超電導体1の臨界温度に保た
れる。冷却器の温調は、加熱器23とは逆で、超電導体
1の臨界温度以下で働く反発力により接点を開放し、臨
界温度を越えて反発力がなくなると接点を閉じる。本発
明では、臨界温度の異なる超電導体を用いて雰囲気温度
の設定値を変えることができる。また、同一の超電導体
を用いる場合でも、コイルなどを用いて超電導体に磁場
をかけることにより臨界温度を変更でき、雰囲気温度の
設定値を変えられる。
FIG. 6 shows another embodiment of the invention. This embodiment is a circuit opening/closing device used in applications such as thermostats to maintain a constant ambient temperature. The superconductors 1, - and the permanent magnets 2 are provided in a constant temperature bath 24, and a conductor 22 that electrically connects the contacts 3 is fixed to the superconductor 1 by a shaft 11. When the superconductor 1 is in a superconducting state, the superconductor 1 levitates due to the repulsive force with the permanent magnet 2, the superconductor 1 and the fixed conductor 22 come into close contact with the contact 3, current flows to the heater 23, and the ambient temperature decreases. Rise. When the ambient temperature exceeds the critical temperature of the superconductor 1, the repulsive force with the permanent magnet 2 disappears, the superconductor falls due to the movement, the contact 3 is opened, and the ambient temperature decreases. By opening and closing the contacts 3, the ambient temperature is maintained at the critical temperature of the superconductor 1. The temperature control of the cooler is the opposite of that of the heater 23, in that the contacts are opened by the repulsive force acting below the critical temperature of the superconductor 1, and the contacts are closed when the critical temperature is exceeded and the repulsive force disappears. In the present invention, the set value of the ambient temperature can be changed using superconductors having different critical temperatures. Furthermore, even when using the same superconductor, the critical temperature can be changed by applying a magnetic field to the superconductor using a coil or the like, and the set value of the ambient temperature can be changed.

本実施例により温度センサなしで恒温槽などの温度調節
が可能となる。
This embodiment makes it possible to adjust the temperature of a constant temperature bath or the like without a temperature sensor.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の熱動電磁型の基本部品数を少な
くすることができ、超電導体の電路面積・加熱抵抗の抵
抗値の変更により、しゃ断器のしや断容量を容易に変え
られる。
According to the present invention, the number of basic components of the conventional thermal electromagnetic type can be reduced, and the shear and breaking capacity of the breaker can be easily changed by changing the circuit area of the superconductor and the resistance value of the heating resistor. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b) 、 (c)は本発明の一実施
例のしゃ断器の断面図であり、第1図(a)は超電導状
態の時を示し、第1図(b)は常電導状態の時を示し、
第1図(C)は等価回路を示す図、第2図(a)は超電
導体の電流密度と温度、第2図(b)は磁束密度と温度
の関係を示すグラフ図、第3図は本発明の一実施例のし
ゃ断器の動作特性図、第4図(8)〜(f)は超電導体
の常電導遷移時の動作の説明図、第5図(a)は本発明
の一実施例の漏電しゃ断器の回路図、第5図(b)は本
発明の他の実施例による漏電しゃ断器の回路図、第6図
は本発明の一実施例の温度調節用電力開閉器の回路図で
ある。 1・・・超電導体、2・・・永久磁石、3・・・接点、
4・・・スプリング、5・・・スイッチ、6・・・しゃ
新表示、7・・・回転用ばね、8・・・ストッパー、9
・・・ケース、10・・・加熱抵抗、11・・・軸、1
2・・・電源側端子、13・・・負荷側端子、14・・
・磁性体、15・・・鉄心、16・・・二次巻線、17
・・・コイル、18・・・負荷、19・・・変圧器、2
0・・・漏電しゃ断器、21・・・アース、22・・・
導体、23・・・加熱抵抗、24・・・恒温槽。 第1図 1゜ (C)   j 第2図 (久) C 1/J−ン 扉界 第3図 I     Ic 電鹿 第4図 (α)(6] t4         /4 第5図 (t2.ン 1″l
FIGS. 1(a), (b), and (c) are cross-sectional views of a breaker according to an embodiment of the present invention, with FIG. 1(a) showing the superconducting state, and FIG. 1(b) indicates the normal conduction state,
Figure 1 (C) is a diagram showing an equivalent circuit, Figure 2 (a) is a graph diagram showing the relationship between current density and temperature of a superconductor, Figure 2 (b) is a graph diagram showing the relationship between magnetic flux density and temperature, and Figure 3 is a diagram showing the relationship between magnetic flux density and temperature. An operational characteristic diagram of a breaker according to an embodiment of the present invention, Figures 4 (8) to (f) are explanatory diagrams of the operation of a superconductor during normal conduction transition, and Figure 5 (a) is an embodiment of the present invention. A circuit diagram of an earth leakage breaker according to an example, FIG. 5(b) is a circuit diagram of an earth leakage breaker according to another embodiment of the present invention, and FIG. 6 is a circuit diagram of a temperature control power switch according to an embodiment of the present invention. It is a diagram. 1... Superconductor, 2... Permanent magnet, 3... Contact,
4...Spring, 5...Switch, 6...New display, 7...Rotation spring, 8...Stopper, 9
...Case, 10...Heating resistance, 11...Shaft, 1
2... Power supply side terminal, 13... Load side terminal, 14...
・Magnetic material, 15... Iron core, 16... Secondary winding, 17
...Coil, 18...Load, 19...Transformer, 2
0...Earth leakage breaker, 21...Earth, 22...
Conductor, 23... Heating resistance, 24... Constant temperature oven. Figure 1 1゜(C) j Figure 2 (Ku) C 1/J-n door world Figure 3 I Ic Denka Figure 4 (α) (6] t4 /4 Figure 5 (t2.n1 ″l

Claims (1)

【特許請求の範囲】 1、回路を開閉する接点を持つ電気回路において、前記
回路の開閉箇所に移動し得る超電導体を用いたことを特
徴とする電気回路。 2、回路を開閉する接点を持つ電力開閉器において、 前記回路の開閉箇所に移動し得る超電導体を用いたこと
を特徴とする電力開閉器。 3、特許請求の範囲第2項において、 前記超電導体と近接して磁石を設け、前記磁石と前記超
電導体の反発力の有無を利用して回路を開閉することを
特徴とする電力開閉器。 4、特許請求の範囲第3項において、 前記超電導体に近接した回路に抵抗体を設けたことを特
徴とする電力開閉器。 5、特許請求の範囲第3項において、 零相変流器及び前記零相変流器の二次側にコイルおよび
/または抵抗体を設け、前記コイルおよび/または前記
抵抗体を前記超電導体に近接して配置したことを特徴と
する電力開閉器。 6、特許請求の範囲第4項または第5項において、前記
接点と前記超電導体の電気的な隔絶にスプリングの復元
力を用いることを特徴とする電力開閉器。 7、特許請求の範囲第4項または第5項において、前記
超電導体に強磁性体を接続し、前記強磁性体と前記磁石
の間の吸収力により、前記接点と超電導体を電気的に隔
絶することを特徴とする電力開閉器。 8、特許請求の範囲第4項または第5項において、重力
方向に対して上から前記接点、前記超電導体、前記磁石
の順に配置し、重力により前記接点と前記超電導体を電
気的に隔絶することを特徴とする電力開閉器。 9、特許請求の範囲第6項、第7項または第8項におい
て、 前記接点と前記超電導体の電気的隔絶時に、前記超電導
体を固定する手段及び固定を解除する手段を設けたこと
を特徴とする電力開閉器。 10、温度を一定に保持する空間に超電導体を設け、前
記超電導体と磁石の反発力の有無を検知して、前記空間
での熱の発生・除去を制御することを特徴とする温度調
節器。
[Scope of Claims] 1. An electric circuit having contacts for opening and closing the circuit, characterized in that a superconductor that can move to the opening and closing points of the circuit is used. 2. A power switch having contacts for opening and closing a circuit, characterized in that a superconductor that can move to the opening/closing point of the circuit is used. 3. A power switch according to claim 2, characterized in that a magnet is provided in close proximity to the superconductor, and the circuit is opened and closed by utilizing the presence or absence of a repulsive force between the magnet and the superconductor. 4. A power switch according to claim 3, characterized in that a resistor is provided in a circuit close to the superconductor. 5. In claim 3, a zero-phase current transformer and a coil and/or a resistor are provided on the secondary side of the zero-phase current transformer, and the coil and/or the resistor are connected to the superconductor. A power switch characterized by being placed close to each other. 6. A power switch according to claim 4 or 5, characterized in that the restoring force of a spring is used to electrically isolate the contact and the superconductor. 7. Claim 4 or 5, wherein a ferromagnetic material is connected to the superconductor, and the contact and the superconductor are electrically isolated by an absorbing force between the ferromagnetic material and the magnet. A power switch characterized by: 8. In claim 4 or 5, the contact, the superconductor, and the magnet are arranged in this order from above in the direction of gravity, and the contact and the superconductor are electrically isolated by gravity. A power switch characterized by: 9. Claim 6, 7 or 8, characterized in that when the contact and the superconductor are electrically isolated, means for fixing the superconductor and means for releasing the fixation are provided. power switch. 10. A temperature regulator, characterized in that a superconductor is provided in a space that maintains a constant temperature, and the generation and removal of heat in the space is controlled by detecting the presence or absence of a repulsive force between the superconductor and a magnet. .
JP63091498A 1988-04-15 1988-04-15 Power switch Pending JPH01264277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63091498A JPH01264277A (en) 1988-04-15 1988-04-15 Power switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63091498A JPH01264277A (en) 1988-04-15 1988-04-15 Power switch

Publications (1)

Publication Number Publication Date
JPH01264277A true JPH01264277A (en) 1989-10-20

Family

ID=14028077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63091498A Pending JPH01264277A (en) 1988-04-15 1988-04-15 Power switch

Country Status (1)

Country Link
JP (1) JPH01264277A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298875A (en) * 1991-05-22 1994-03-29 International Business Machines Corporation Controllable levitation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298875A (en) * 1991-05-22 1994-03-29 International Business Machines Corporation Controllable levitation device

Similar Documents

Publication Publication Date Title
KR910002243B1 (en) Switching device for a protection apparatus
JP3004387B2 (en) Instantaneous trip device of circuit breaker
CN102339677B (en) Contact protection circuit and high voltage relay comprising the same
KR20170116048A (en) Circuit breaker and method of operation thereof
US20110248815A1 (en) Method For Expanding The Adjustment Range of Overload Protection Devices, Associated Overload Protection Devices, and Their Use
WO2014063802A1 (en) Fault current limiter arrangement
KR890001721B1 (en) Trip assembly for a circuit breaker
KR0163421B1 (en) Trip device for an electrical switch and an electrical switch with device
US3258562A (en) Electric circuit protective device with energy diverting means
US4077026A (en) Integral motor controller
US9355803B2 (en) Actuator with thermomagnetic shunt, especially for triggering a circuit breaker
US9324529B2 (en) Current direction sensitive circuit interrupter
US6469600B1 (en) Remote control circuit breaker with a by-pass lead
JPH0586052B2 (en)
KR910008011B1 (en) Circuit breaker over current tripping devices
US5684443A (en) False-trip-resistant circuit breaker
GB2063566A (en) Automatic circuit breaker
US4229775A (en) Circuit breaker magnetic trip device with time delay
JPH01264277A (en) Power switch
EP2136382B1 (en) Apparatus for automatic disconnection of current limiter
SU1003190A1 (en) Automatic switch disconnector
RU2160478C2 (en) Dynamically disconnected single-phase ac circuit breaker
Gupta et al. Testing Topologies to Overcome Fault in Micro-Grid Connected System
US3949239A (en) Circuit for actuating a monostable or bistable inductive device
CN112382548A (en) Electromagnetic tripping device for direct current circuit breaker