JPH01263941A - Manufacture of magnetic recording medium - Google Patents

Manufacture of magnetic recording medium

Info

Publication number
JPH01263941A
JPH01263941A JP8924988A JP8924988A JPH01263941A JP H01263941 A JPH01263941 A JP H01263941A JP 8924988 A JP8924988 A JP 8924988A JP 8924988 A JP8924988 A JP 8924988A JP H01263941 A JPH01263941 A JP H01263941A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic recording
supporting body
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8924988A
Other languages
Japanese (ja)
Inventor
Shigeru Hashimoto
茂 橋本
Nobuyuki Hosoi
信幸 細井
Tomoko Yamamoto
倫子 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8924988A priority Critical patent/JPH01263941A/en
Publication of JPH01263941A publication Critical patent/JPH01263941A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To make the orientation of ferromagnetic particles into a circumference, and to obtain a disk magnetic recording medium at a excellent recording/ reproducing feature by using a rotary magnet moving with the conveyance of a supporting body. CONSTITUTION:After the coating processing of a non-magnetic supporting body 1, and before dry-setting a direction at >50rpm for the coated surface is applied by rotary magnets 5 and 6 in a relatively still condition with respect to the supporting body 1. Since the magnets 5 and 6 move at the same speed as the conveying speed of the supporting body 1, they are always in the still condition with respect to the supporting body,and the magnetic field to rotate in the circumferential direction can be applied to the supporting body as it is. Thus, the high magnetic recording medium at the same aspect ratio in the circumferential direction in the arbitrary position of the circumferential track can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、高密度記録に適した円盤状磁気記録媒体およ
びその製造方法に関するものである。
[Industrial Application Field] The present invention relates to a disc-shaped magnetic recording medium suitable for high-density recording and a method for manufacturing the same.

【従来の技術】[Conventional technology]

近年、コンピューターの大容量記憶媒体としてのフレキ
シブル・ディスクや、スチルビデオカメラ用の磁気シー
ト(ビデオフロッピー)等のように、可撓性円盤状磁気
記録媒体が盛んに使用されている。 フレキシブル・ディスクや磁気シートにかぎらず、磁気
テープも含めた磁気記録媒体は、磁気ヘッドが媒体上を
摺動し記録の読出しおよび書込みを行なう、したがって
これら磁気記録媒体の磁性層を塗布によって形成しよう
とする場合、磁性粉が、磁気ヘッドの摺動方向に沿って
配向されていることが好ましい、すなわち、磁気テープ
ではテープ走行方向、フレキシブルディスクや磁気シー
トでは円周方向に配向されていることが好ましい。 一般に、可撓性磁気記録媒体を磁性塗料の塗布により製
造する場合、ベースフィルムの厚さより僅かに広い隙間
を形成した2本の回転ローラー間を磁性塗料を乗せたベ
ースフィルムがくぐり抜ける。このため磁性粉は走行方
向に配向し、これを機械配向という、一般的に形状異方
性の大きい、即ち軸比の大きい磁性粉程、機械配向がか
かり易く、また、配向の結果大きい角型比が得られる。 磁気テープの場合、軸比の大きい磁性粉を用いて上記の
ように塗布したものを帯状に裁断すれば、機械配向によ
り、磁気ヘッド走行方向に配向された磁気テープとなる
。しかしながらこれを円盤状に打ち抜いてフレキシブル
・ディスクや磁気シートを作製した場合、磁気ヘッドは
円周に沿って摺動するのに対し、機械配向により残留磁
化が塗布方向の方が大きいため、エンベロープ波形が一
定とならず、周期的に出力が変動するという問題点があ
った。 この点を解決するために、後に示すように同心円状に配
向する方向もいくつか提案されてはいるが、未だ実用化
されておらず、現在市販されているフロッピーディスク
あるいはビデオフロッピーにおいては、塗布工程で機械
配向を弱める工夫をしたり、あるいは軸比の小さい磁性
粉を用いてエンベロープができるだけ平らになるように
している。しか□しながら、磁性粉が円周状に配向され
ていないため、角型比が悪くなり、残留磁化が磁気テー
プのように磁性粉を配向したものに比べて小さいという
問題点があった。従って、この円盤状磁気記録媒体にお
いては、充分な出力を得るためにトラック幅を広くする
必要があり、高密度化の妨げになっている。 例えばメタルテープを例にとると、メタル磁性粉の軸比
は5〜15程度に変えられるが、通常10前後のものが
用いられる。このような長針状の磁性粉な用いたテープ
の角型比は、無配向の場合で0.55前後のものが、機
械配向が加わることにより、塗工ラインの長手方向では
0.6〜0.65程度になる。さらに、特公昭34−2
536号に開示されているように、固化前の磁性塗料被
覆シートが同磁極を対向させた2本の板磁石の間を通過
するような装置を用いて磁場配向を付与すれば、角型比
は0.8〜0.85程度にまで上がる。一方、磁場配向
を抑制されたメタルビデオフロッピーの円周方向の角型
比は本質的には無配向のテープと同様で0.55〜0.
65程度で磁場配向を付与されたテープと比較すると出
力は3dB程低下する。 上述したような問題点を除き、円周状に配向された磁気
記録媒体としては、スピンコーティングにより得られる
ハードディスク等もある。しかし、スピンコーティング
の場合には支持体を円盤状に形成した後、個々の記録媒
体について一枚ずつコーティングを行なうため量産性に
乏しく、価格も高くなるという問題点があった。 外部から付与する磁場により円周状に配向する方法につ
いては特公昭40−23626号に開示されている。同
方法は、ベースフィルムに塗布された磁性塗料が固化し
ない状態において、回転式磁極面を接近させ、その回転
軸線を相対的に静止の状態に保ちながら磁性粉を同心円
状に配向した後離隔させる。同方法の実施例では、原反
の一方の側から回転磁場を付与しているが、テープの場
合について、先の特公昭34−2536号に示されてい
るように、対向して同磁極を有する回転磁極面を原反を
挟んだ反対側にも設置するほうが良い。その様な装置の
概念図が特開昭53−62505号に示されている。又
この他にも、上記技術と基本的に同類の関連技術がいく
つか知られていた。 (発明が解決しようとするB題〕 しかしながら、上記従来例では、機械配向の影響を充分
取り除くことができず、又配向戻りの現象も生じるため
円周方向の角型比があまり向上せず、エンベロープ出力
の変化量が10%以上ある場合や、円周方向の角型比が
低いため出力が充分得られない場合があった。 本発明は、上述のような問題を有する磁場付与の工程を
改良し円周状のトラックの任意の部位における円周方向
の角型比が等しく、かつ高い磁気記録媒体を製造する方
法を提供するものである。 (課題を解決するための手段) 本発明によれば、円盤状磁気記録媒体の製造方法におい
て、非磁性支持体の塗布処理1程後2塗膜面を乾燥固化
する11「に、該塗膜部に対して、50rpm以上で円
周方向に回転する磁場を該支持体と相対的に静止した状
態にある回転磁石により付与することにより、得られる
磁気記録媒体の円周方向の角型比を等しく、かつ、高く
することを可能としたものである。 円周方向に回転する磁場は磁性塗料塗布済支持体面の上
方および下方に設けられた回転している磁石によって発
生する。又、該磁石は該支持体の搬送速度と同じ速度で
移動しているため、常に支持体に対して静止している状
態であり、円周方向に回転する磁場をそのまま支持体に
付与することができる。磁石の移動速度は支持体のそれ
より速くとも、遅くとも上記のような効果は得られない
。効果的に磁場を支持体に付与する磁石の回転数は50
rpm以上であり、これを下まわる回転数では支持体上
に塗布されている磁性粉末を円周方向に配向させること
はできない。 該磁石としては、永久磁石、電磁石にいずれも用いるこ
とができ、その磁界の強さ、上下磁石の間隙及び磁場付
与時間等は、使用されている磁性粉末の種類、非磁性支
持体の厚み2幅、搬送速度等により適宜設定すればよい
。又磁石は支持体とともに移動するため、複数の磁石を
組み合せ連続的に移動させる方法をとることもできる。 磁石の形は、磁石のもれ磁界が、円盤状磁気記録媒体の
円周方向と一致するようなものがよく、具体的には扇形
したものを上下一対以上組み合せるものがよい。又、上
下の磁石は、S棒、NVjが支持体面に面しており、上
下の磁石は同極対向している必要がある。又、内周部の
磁場を、外周部の磁場より強くする手段としては、内周
部の上下磁石間距離を外周部より近づくよう磁石の形を
設計することにより、容易に達成される。内周部と外周
部の磁場の強さのバランスは適宜、磁性粒子の種類、円
盤状磁気記録媒体の使用トラックの直径等によって設定
すればよい。 高密度記録用に用いられるような軸比の大きい強磁性粒
子では、さらにその配向を調整することは困難となるが
、上述したような磁場を付与する方法によれば、強磁性
粒子でも円周方向に配向させることができ、特にHc 
1400Oe以上の磁性粒子が使用された場合に有効で
ある。 尚、磁性粒子を円周方向に配向させた後、打ち抜き以外
は、通常の製造方法と同様に行なうことができる。 打ち抜き方法としては、円周配向した際、インクジェッ
ト、レーザー、触針等でマーキングして、打ち抜く際、
そのマークを検出して、打ち抜いたり、打ち抜き前の支
持体の配向部分が通る部分に、記録ヘッドと再生ヘッド
を設置し、再生信号の出力により、配向部分を検出して
打ち抜くことも可能である。 以下に、具体的な実施例を挙げて説明する。 〔実施例〕 実施例1 針状のメタル磁性粉(Fe−Ni合金、長径0.25μ
m 、軸比8、Hc 1450Oe ) 100重■部
を、25重量部のバインダー(塩化ビニル−酢酸ビニル
−ビニルアルコール共重合体とポリウレタンニラストア
ーとの6:4混合物)、レシチン(分散剤J)1ffl
看部、α−アルミナ(研摩材、粒径0.4μ5)In重
量部および240重量部の溶剤(メチルエチルケトンと
トルエンとの1=1混合物)とともに分散混合し、次に
10重量部の3官能ポリイリシアネート架橋剤を加えて
、磁性塗料を得た。 これを乾燥厚3μ膿になるようにポリエステルフィルム
(厚み32μ鴎、幅150s■)上に塗布し、第1図及
び第2図に示したような装置を用い、該フィルムの搬送
速度:13cm/秒、回転の内周部の磁界3200Oe
、外周部の磁界2800Oe (平均印加磁界3KOe
)及び磁石の回転数は表1に示したように設定して、前
述(e)の方式により配向処理を行ない、カレンダー処
理、熱硬化処理を施した後、所定の径に打ち抜き、円盤
状磁気記録媒体(直径47mm)を得た。 その結果表1に示したように、回転数50rp11以上
で処理されたものは磁気特性に優れたものであった。 表1 実施例2 磁性粒子に粒状のメタル磁気粉(1300Oe)を用い
磁石の回転数を2000rpmとした以外は実施例1と
同様の方法で円盤状磁気記録媒体を得た。得られたもの
のモジュレーション及び角型比はそれぞれ0及び0.7
6であった。 実h6例3 実施例1で使用した磁石の代りに回転軸近くの内周部の
磁界3600Oe、外周部の磁界2800Oe(平均印
加磁界32000c) 、回転数2000rpmになる
ように磁石を設定し、この外は実施例工と同様の方法で
円盤状磁気記録媒体を得た。又比較例として磁石を移動
せず、固定して行い同様にして記録媒体を得た。それぞ
れの磁気特性は表2に示したようであり、移動しない固
定した磁石を用いたも〔発明の効果〕 以−ヒのように、支持体の搬送とともに移動する磁石を
用いることにより1強磁性粒子の配向を円周状にするこ
とができる結果、記録再生特性の良好な円盤状磁気記録
媒体を製造することが可能になる。
In recent years, flexible disk-shaped magnetic recording media have been widely used, such as flexible disks as large-capacity storage media for computers and magnetic sheets (video floppies) for still video cameras. In magnetic recording media, which include not only flexible disks and magnetic sheets but also magnetic tapes, a magnetic head slides over the medium to read and write records.Therefore, the magnetic layer of these magnetic recording media is formed by coating. In this case, it is preferable that the magnetic powder be oriented along the sliding direction of the magnetic head, that is, in the case of magnetic tape, it is preferably oriented in the tape running direction, and in the case of flexible disks and magnetic sheets, it is oriented in the circumferential direction. preferable. Generally, when a flexible magnetic recording medium is manufactured by applying magnetic paint, the base film carrying the magnetic paint passes between two rotating rollers with a gap slightly wider than the thickness of the base film. For this reason, magnetic powder is oriented in the running direction, and this is called mechanical orientation.Generally speaking, the larger the shape anisotropy, that is, the larger the axial ratio of magnetic powder, the easier it is to be mechanically oriented, and as a result of orientation, the larger the square shape. The ratio is obtained. In the case of a magnetic tape, if a magnetic powder with a large axial ratio is applied as described above and then cut into strips, the magnetic tape will be oriented in the running direction of the magnetic head due to mechanical orientation. However, when a flexible disk or magnetic sheet is made by punching this out into a disk shape, the magnetic head slides along the circumference, but due to mechanical orientation, the residual magnetization is larger in the coating direction, so the envelope waveform There was a problem that the output was not constant and the output fluctuated periodically. To solve this problem, several concentric orientation directions have been proposed as shown later, but they have not yet been put to practical use, and currently commercially available floppy disks and video floppies do not have They try to make the envelope as flat as possible by weakening the mechanical orientation during the process or by using magnetic powder with a small axial ratio. However, since the magnetic powder is not oriented in a circumferential manner, the squareness ratio is poor and the residual magnetization is smaller than that of a magnetic tape in which the magnetic powder is oriented. Therefore, in this disc-shaped magnetic recording medium, it is necessary to widen the track width in order to obtain sufficient output, which is an obstacle to increasing the recording density. For example, taking a metal tape as an example, the axial ratio of the metal magnetic powder can be varied from about 5 to about 15, but usually about 10 is used. The squareness ratio of the tape using such long needle-shaped magnetic powder is around 0.55 in the case of no orientation, but due to mechanical orientation, it increases to 0.6 to 0 in the longitudinal direction of the coating line. It will be about .65. In addition,
As disclosed in No. 536, if magnetic field orientation is applied using a device in which a magnetic paint coated sheet before solidification passes between two plate magnets with the same magnetic poles facing each other, the square ratio can be improved. increases to about 0.8 to 0.85. On the other hand, the squareness ratio in the circumferential direction of a metal video floppy whose magnetic field orientation is suppressed is essentially the same as that of a non-oriented tape, 0.55 to 0.
When compared with a tape to which magnetic field orientation is applied at about 65, the output decreases by about 3 dB. Except for the above-mentioned problems, examples of circumferentially oriented magnetic recording media include hard disks obtained by spin coating. However, in the case of spin coating, since the support is formed into a disk shape and each recording medium is coated one by one, there are problems in that mass production is poor and the cost is high. A method of circumferentially oriented by an externally applied magnetic field is disclosed in Japanese Patent Publication No. 40-23626. In this method, the rotating magnetic pole surfaces are brought close to each other before the magnetic paint applied to the base film solidifies, and the magnetic powder is orientated concentrically while keeping the axis of rotation relatively stationary, and then separated. . In the example of this method, a rotating magnetic field is applied from one side of the original fabric, but in the case of tape, as shown in the earlier Japanese Patent Publication No. 34-2536, the same magnetic poles are applied oppositely to each other. It is better to also install the rotating magnetic pole surface having the same structure on the opposite side of the original fabric. A conceptual diagram of such a device is shown in Japanese Patent Laid-Open No. 53-62505. In addition, several other related technologies that are basically similar to the above-mentioned technologies have been known. (Problem B to be solved by the invention) However, in the above conventional example, the influence of mechanical orientation cannot be sufficiently removed, and the phenomenon of reorientation also occurs, so the squareness ratio in the circumferential direction is not improved much. In some cases, the amount of change in the envelope output is 10% or more, and in some cases, the squareness ratio in the circumferential direction is low, resulting in insufficient output.The present invention solves the process of applying a magnetic field that has the above-mentioned problems. An object of the present invention is to provide an improved method for manufacturing a magnetic recording medium in which the squareness ratio in the circumferential direction at any part of a circumferential track is equal and high. According to the method for manufacturing a disc-shaped magnetic recording medium, after about 1 coating treatment of a non-magnetic support, the coated film surface is dried and solidified. By applying a rotating magnetic field using a rotating magnet that is stationary relative to the support, it is possible to make the squareness ratio of the resulting magnetic recording medium equal and high in the circumferential direction. The circumferentially rotating magnetic field is generated by rotating magnets placed above and below the surface of the magnetically coated support, and the magnets move at the same speed as the transport speed of the support. Therefore, it is always stationary relative to the support, and a circumferentially rotating magnetic field can be directly applied to the support.Even if the moving speed of the magnet is faster than that of the support, At the latest, the above effect cannot be obtained.The rotation speed of the magnet to effectively apply a magnetic field to the support is 50
rpm or more, and at rotation speeds below this, the magnetic powder coated on the support cannot be oriented in the circumferential direction. Both permanent magnets and electromagnets can be used as the magnet, and the strength of the magnetic field, the gap between the upper and lower magnets, the time for applying the magnetic field, etc. are determined by the type of magnetic powder used, the thickness of the non-magnetic support, etc. It may be set as appropriate depending on the width, conveyance speed, etc. Furthermore, since the magnet moves together with the support, it is also possible to combine a plurality of magnets and move them continuously. The shape of the magnet is preferably such that the leakage magnetic field of the magnet coincides with the circumferential direction of the disk-shaped magnetic recording medium, and specifically, it is preferable to combine at least one pair of upper and lower fan-shaped magnets. Further, the S rod and NVj of the upper and lower magnets must face the support surface, and the upper and lower magnets must have the same polarity and face each other. Further, as a means to make the magnetic field in the inner peripheral part stronger than the magnetic field in the outer peripheral part, this can be easily achieved by designing the shapes of the magnets so that the distance between the upper and lower magnets in the inner peripheral part is closer than that in the outer peripheral part. The balance between the strength of the magnetic fields at the inner circumferential portion and the outer circumferential portion may be appropriately set depending on the type of magnetic particles, the diameter of the track used in the disc-shaped magnetic recording medium, and the like. It is difficult to further adjust the orientation of ferromagnetic particles with a large axial ratio, such as those used for high-density recording, but by applying a magnetic field as described above, even ferromagnetic particles can be In particular, Hc
This is effective when magnetic particles of 1400 Oe or more are used. Incidentally, after the magnetic particles are oriented in the circumferential direction, the steps other than punching out can be performed in the same manner as in a normal manufacturing method. As for the punching method, when the material is oriented circumferentially, it is marked with an inkjet, laser, stylus, etc., and then punched out.
It is also possible to detect the mark and punch out, or to install a recording head and a reproducing head in the part of the support before punching where the oriented part passes through, and to detect the oriented part and punch out by outputting a reproduction signal. . Specific examples will be described below. [Example] Example 1 Acicular metal magnetic powder (Fe-Ni alloy, major diameter 0.25μ
m, axial ratio 8, Hc 1450 Oe) 100 parts by weight, 25 parts by weight of binder (6:4 mixture of vinyl chloride-vinyl acetate-vinyl alcohol copolymer and polyurethane nylon tor), lecithin (dispersant J) 1ffl
First, α-alumina (abrasive material, particle size 0.4μ5) was dispersed and mixed with parts by weight of In and 240 parts by weight of a solvent (a 1=1 mixture of methyl ethyl ketone and toluene), and then 10 parts by weight of trifunctional polyester. Irisyanate crosslinking agent was added to obtain a magnetic paint. This was applied to a polyester film (thickness: 32 μm, width: 150 seconds) to a dry thickness of 3 μm, and the film was transported at a speed of 13 cm/cm using the apparatus shown in Figures 1 and 2. Second, magnetic field of inner circumference of rotation 3200Oe
, magnetic field at the outer periphery 2800Oe (average applied magnetic field 3KOe
) and the rotational speed of the magnet are set as shown in Table 1, and the orientation treatment is carried out by the method (e) above, followed by calender treatment and thermosetting treatment. A recording medium (diameter 47 mm) was obtained. As shown in Table 1, those processed at a rotational speed of 50 rpm or more had excellent magnetic properties. Table 1 Example 2 A disk-shaped magnetic recording medium was obtained in the same manner as in Example 1, except that granular metal magnetic powder (1300 Oe) was used as the magnetic particles and the rotation speed of the magnet was 2000 rpm. The resulting modulation and squareness ratios are 0 and 0.7, respectively.
It was 6. Actual H6 Example 3 Instead of the magnet used in Example 1, set the magnet so that the magnetic field is 3600 Oe on the inner circumference near the rotating shaft, 2800 Oe on the outer circumference (average applied magnetic field 32000 c), and the rotation speed is 2000 rpm. A disk-shaped magnetic recording medium was obtained in the same manner as in the example. Further, as a comparative example, a recording medium was obtained in the same manner by fixing the magnet instead of moving it. The magnetic properties of each are shown in Table 2, and even if a fixed magnet that does not move is used [Effects of the Invention] As shown below, by using a magnet that moves as the support is conveyed, 1 ferromagnetic Since the grains can be oriented in a circumferential manner, it becomes possible to manufacture a disk-shaped magnetic recording medium with good recording and reproducing characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1,2.3で用いた円周方向配向装置を
示す模式側面図、第2図は実施例1゜2.3で用いた円
周方向配向磁石を示す模式斜視図である。 1:原反、 2.3=搬送ローラ、 4:yX反走行方向、 7.8:配向磁石保持走行装置回転方向、9.10:配
向磁石保持走行装置、 11、12:配向磁石、 13:配向磁石固定治具(非磁性)、 14:配向磁石回転方向、 15:配向磁石回転軸、 16:配向磁石着磁方向。
Figure 1 is a schematic side view showing the circumferential orientation device used in Examples 1 and 2.3, and Figure 2 is a schematic perspective view showing the circumferential orientation magnet used in Example 1.2.3. be. 1: Raw fabric, 2.3 = Conveyance roller, 4: YX counter-travel direction, 7.8: Orienting magnet holding traveling device rotation direction, 9.10: Orienting magnet holding traveling device, 11, 12: Orienting magnet, 13: Orienting magnet fixing jig (non-magnetic), 14: Orienting magnet rotation direction, 15: Orienting magnet rotation axis, 16: Orienting magnet magnetization direction.

Claims (1)

【特許請求の範囲】 1)一方向に走行する幅広の薄帯状非磁性支持体上に磁
性塗料を塗布して磁性層を形成し、乾燥、表面成形等の
工程を経た後、円盤状に打ち抜いてなる磁気記録媒体の
製造方法において、塗布工程後塗膜面が乾燥固化する前
に、該塗膜面に対して、50rpm以上で円周方向に回
転する磁場を該支持体と相対的に静止した状態にある回
転磁石によって付与することを特徴とする磁気記録媒体
の製造方法。 2)円周方向に回転する磁場が、外周部より内周部の方
が強いことを特徴とする請求項1に記載の磁気記録媒体
の製造方法。 3)前記磁性塗料に用いる磁性粒子のHcが1400O
e以上であることを特徴とする請求項1に記載の磁気記
録媒体の製造方法。
[Scope of Claims] 1) A magnetic coating is applied on a wide thin strip-shaped non-magnetic support that runs in one direction to form a magnetic layer, and after going through processes such as drying and surface shaping, it is punched out into a disk shape. In a method for producing a magnetic recording medium, after the coating step and before the coating surface dries and solidifies, a magnetic field rotating in the circumferential direction at 50 rpm or more is applied to the coating surface while keeping it stationary relative to the support. 1. A method for manufacturing a magnetic recording medium, characterized in that the magnetic recording medium is applied by a rotating magnet in a state of . 2) The method for manufacturing a magnetic recording medium according to claim 1, wherein the magnetic field rotating in the circumferential direction is stronger at the inner circumference than at the outer circumference. 3) Hc of the magnetic particles used in the magnetic paint is 1400O
2. The method for manufacturing a magnetic recording medium according to claim 1, wherein the magnetic recording medium is greater than or equal to e.
JP8924988A 1988-04-13 1988-04-13 Manufacture of magnetic recording medium Pending JPH01263941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8924988A JPH01263941A (en) 1988-04-13 1988-04-13 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8924988A JPH01263941A (en) 1988-04-13 1988-04-13 Manufacture of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01263941A true JPH01263941A (en) 1989-10-20

Family

ID=13965485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8924988A Pending JPH01263941A (en) 1988-04-13 1988-04-13 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01263941A (en)

Similar Documents

Publication Publication Date Title
US4518627A (en) Apparatus and method for disorienting magnetic particles in magnetic recording media
JPH0559490B2 (en)
US4923766A (en) Process for preparing magnetic recording
US4999217A (en) Process for producing magnetic recording medium
JPH01263941A (en) Manufacture of magnetic recording medium
JPS6334733A (en) Production of magnetic recording medium
JPH01169725A (en) Production of magnetic recording medium
JPH01264629A (en) Production of magnetic recording medium
JPS6334737A (en) Production of magnetic recording medium
JPS6334731A (en) Production of magnetic recording medium
JPH01264630A (en) Production of magnetic recording medium
JPH01169727A (en) Production of magnetic recording medium
JPH01169730A (en) Production of magnetic recording medium
JPS6334735A (en) Production of magnetic recording medium
JPH01169723A (en) Production of magnetic recording medium
JPH01169724A (en) Production of magnetic recording medium
JPH01169729A (en) Production of magnetic recording medium
JPH01169726A (en) Production of magnetic recording medium
JPH01169731A (en) Production of magnetic recording medium
JPS6146893B2 (en)
JPH0370854B2 (en)
JPS6146892B2 (en)
JPH01248321A (en) Production of magnetic recording medium
JPS62119733A (en) Manufacturing instrument for magnetic flux transmittivity filter and magnetic recording medium using said filter
JPS6334732A (en) Production of magnetic recording medium