JPH01263921A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH01263921A
JPH01263921A JP9231088A JP9231088A JPH01263921A JP H01263921 A JPH01263921 A JP H01263921A JP 9231088 A JP9231088 A JP 9231088A JP 9231088 A JP9231088 A JP 9231088A JP H01263921 A JPH01263921 A JP H01263921A
Authority
JP
Japan
Prior art keywords
iron
nickel
aluminum
layer
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9231088A
Other languages
Japanese (ja)
Inventor
Satsuki Nagayama
五月 長山
Tadao Tokushima
忠夫 徳島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP9231088A priority Critical patent/JPH01263921A/en
Publication of JPH01263921A publication Critical patent/JPH01263921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve an overwrite characteristic and the packing density of iron to the upper part of fine pores by packing nickel or nickel alloy to the branch part on the bottom side of the fine pores of the anodized film formed on the surface of aluminum or aluminum alloy and iron into the upper part on the front layer side. CONSTITUTION:The anodized film 2 is formed on the surface of the aluminum layer 1 and the part of the film 2 in contact with the aluminum layer 1 is a semiconductive barrier layer 3 of a thin layer. The many fine pores 4... are above the barrier layer 3. Each of the pores 4 consists of the upper part 4a on the medium surface layer side, the branch part 4b on the bottom layer side and the intermediate part 4c connecting the upper part 4a and the branch part 4b. The nickel or nickel alloy 5 having low coercive force is packed in the branch part 4b and the intermediate part 4c and the iron 6 having a high saturation magnetic density is packed in the upper part 4a. The coercive force over the entire part of the magnetic material packed in the fine pores is thereby maintained at about >=1,000oersted being desirable, by which the good overwrite characteristic is obtd. and the packing density of the iron is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、特に垂直磁気記録に好適な磁気記録媒体(
以下、単に媒体を呼ぶ。)に関し、アルミニウムまたは
アルミニウム合金の陽極酸化皮膜の徴罰几の底側の分枝
部に保磁力の低いニッケルまたはニッケル合金を、表層
側の上部に飽和磁気密度の高い鉄を充填することにより
、媒体のオーバーライド特性を向上させるようにしたも
のである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a magnetic recording medium (particularly suitable for perpendicular magnetic recording).
Hereafter, we will simply refer to the medium. ), by filling the bottom branch of the anodic oxide film of aluminum or aluminum alloy with nickel or nickel alloy with low coercive force, and filling the upper part of the surface layer with iron with high saturation magnetic density. This is designed to improve the override characteristics of the medium.

〔従来の技術〕[Conventional technology]

従来より、アルミニウムまたはアルミニウム合金に陽極
酸化処理を施し、その陽極酸化皮膜の微細孔中に鉄(F
e )などの磁性体を充填してなる媒体が、特に垂直磁
気記録方式に好適であるとして知られている(例えば、
特公昭51−21562号公報参照)。
Conventionally, aluminum or aluminum alloys are anodized and iron (F) is added into the micropores of the anodized film.
Media filled with a magnetic material such as e) are known to be particularly suitable for perpendicular magnetic recording (for example,
(See Japanese Patent Publication No. 51-21562).

また、陽極酸化皮膜の微細孔の底側の下部に銅(Cu 
)やスズ(Sn )などの非磁性体を充填し、これの上
部に鉄などの磁性体を充填してなる媒体も知られている
In addition, copper (Cu) is added to the bottom of the micropores of the anodic oxide film.
), tin (Sn), or other non-magnetic material, and the upper part thereof is filled with a magnetic material such as iron.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、鉄を充填した媒体では、媒体としての保
磁力(HC)が大きくなりすぎてオーバーライド特性が
−30〜−35dBと低下する問題がある。
However, a medium filled with iron has a problem in that the coercive force (HC) of the medium becomes too large and the override characteristic deteriorates to -30 to -35 dB.

一方、銅やスズなどの非磁性体を下部に充填し、この上
に鉄などの磁性体を充填した媒体では、オーバーライド
特性は良好であるが、非磁性体上に鉄などの磁性体を充
填する際、スポーリング<rどの原因により、磁性体の
充填率が低くなる欠点があり、かつ読み出し電f[も低
手づる欠点もある。
On the other hand, a medium in which a non-magnetic material such as copper or tin is filled at the bottom and a magnetic material such as iron is filled on top has good override characteristics, but a magnetic material such as iron is filled on top of the non-magnetic material. When doing so, there is a drawback that the filling rate of the magnetic material is low due to spalling < r, and there is also a drawback that the readout current f[ is low.

〔課題を解決するための手段〕[Means to solve the problem]

この発明では、陽極酸化皮膜の微細孔の底側の分枝部に
保磁力の低いニッケルまたはニッケル合金を充填し、表
層側の上部に飽和磁気密度の高い鉄を充填することをそ
の解決手段とした。
In this invention, the solution is to fill the bottom branch of the micropores in the anodic oxide film with nickel or nickel alloy, which has a low coercive force, and fill the upper part of the surface layer with iron, which has a high saturation magnetic density. did.

〔作 用〕[For production]

上記構成をとることにより、ram孔中に充填された磁
性体仝休としての保磁力が望ましい1000エルステツ
ド程度となって、良好なオーバーライド特性が14られ
、かつ鉄の充填率ら向上する。
By adopting the above configuration, the coercive force as a result of the magnetic material filled in the RAM hole is desirably about 1000 oersted, and good override characteristics are achieved, and the filling rate is improved compared to that of iron.

〔実施例〕〔Example〕

第1図は、この発明の媒体を模式的に示すものであって
、図中符号1は基板(丈ブストレート)をなすアルミニ
ウムまたはアルミニウム合金層である。このアルミニウ
ム層1の表面には陽i4i M化成膜2が形成されてい
る。この陽極酸化皮膜2は、硫酸電解浴、蓚酸電解浴な
どの゛11ffi解浴を使用する陽極酸化処理によって
、下地のアルミニウム層1に一体に形成さ°れたbので
ある。また、陽極酸化皮膜2のアルミニウム層1と接す
る部分は薄層の半34電性のバリヤ層3となっており、
このバリヤ層3の上方には、多数の微細孔4・・・が形
成されている。この微細孔4・・・は柱状の空胴であっ
【、その長手方向が媒体膜面に対して垂直方向になるよ
うに配置されている。また、微細孔4は、媒体表層側の
上部4aと、底層側の分枝部4bと、1部4aと分枝部
4bとを連結づる中間部4cとがらなっている。1部4
aは、内径が約30〜5Qnmの直管状であり、その深
さが最終仕上り状態(研削後)において1〜2μm程度
とされ、かつその孔間隔が中心間距離で90〜120n
m稈度のものである。また、分枝部4bは、1一部4a
の底部から底層側に向けて3〜5本に枝分れしたもので
あって、その内径が約10〜30nlll、深さが約0
.5〜1μm1各分校の孔間隔が中心間距離で5O−1
0Or+m程度となっている。
FIG. 1 schematically shows the medium of the present invention, and reference numeral 1 in the figure is an aluminum or aluminum alloy layer forming a substrate (long substrate). A positive i4iM chemical film 2 is formed on the surface of this aluminum layer 1. This anodic oxide film 2 is integrally formed on the underlying aluminum layer 1 by anodizing treatment using a 11ffi bath such as a sulfuric acid electrolytic bath or an oxalic acid electrolytic bath. In addition, the part of the anodic oxide film 2 in contact with the aluminum layer 1 is a thin semi-conductive barrier layer 3.
A large number of fine holes 4 are formed above this barrier layer 3. The micropores 4 are columnar cavities and are arranged so that their longitudinal direction is perpendicular to the surface of the medium film. Further, the micropore 4 has an upper part 4a on the medium surface side, a branch part 4b on the bottom layer side, and an intermediate part 4c connecting the first part 4a and the branch part 4b. Part 1 4
a has a straight tube shape with an inner diameter of about 30 to 5 Qnm, a depth of about 1 to 2 μm in the final finished state (after grinding), and a center-to-center distance of 90 to 120 nm.
It is of m culm degree. In addition, the branch portion 4b has one part 4a.
It branches into 3 to 5 branches from the bottom toward the bottom layer, with an inner diameter of about 10 to 30 nllll and a depth of about 0.
.. 5~1μm1 The hole spacing of each branch is 5O-1 in center-to-center distance.
It is approximately 0Or+m.

このような形状を有する微細孔4を形成するには、陽極
酸化処理時の電解電圧を処理途中において降圧すること
により可能である。陽極酸化処理によって形成される微
細孔の間隔は、一般に電解電圧に比例し、am W?’
七圧が+i’X くなると間隔が広くなり、逆に単位面
積当りの微細孔数は減少する。
The micropores 4 having such a shape can be formed by lowering the electrolytic voltage during the anodizing process during the process. The distance between the micropores formed by anodizing is generally proportional to the electrolytic voltage, am W? '
When the pressure increases to +i'X, the spacing becomes wider, and conversely, the number of micropores per unit area decreases.

また、微細孔の深さ“は電解時間に市比例することが知
られている。
It is also known that the depth of micropores is proportional to the electrolysis time.

よって、例えば初めに電解電圧40〜60Vで電解を進
め、ついぐ電解°セ1[を10〜30Vに降下させれば
、第1図に示すような分枝部4bを有する微細孔4を形
成づることができる。
Therefore, for example, by first proceeding with electrolysis at an electrolytic voltage of 40 to 60 V and then lowering the electrolytic voltage to 10 to 30 V, micropores 4 having branched portions 4b as shown in FIG. 1 are formed. can be written.

ぞして、このような微細孔4の分枝部4bおよび中間部
4Cには、保磁力の低いニッケルまたはニッケル合金5
が充填されている。ここで用いられるニッケル合金とし
ては、ニッケル峨が60徂吊%以」のものが用いられる
。また、上部4aには飽和磁気密度が高い鉄6が充填さ
れている。ニッケルまたはニッケル合金5および鉄6の
充填は、陽極酸化処理後、初めにニッケル塩単独電解浴
またはニッケル塩とその他の金属塩とからなる混合塩電
解浴を用いて電解してニッケルまたはニッケル合金を分
枝部4bおよび中間部4cに電析し、ついで鉄塩単独電
解浴を用いて電解して、鉄を上部4aに電析することに
よって行われ、それぞれの電解時間を調節することによ
って、それぞれの充填厚さ(充填端)を制御することが
できる。また、これらの電析は微細孔4の最深部、すな
わちパリX7層3に近い部分からλ1」るため、分枝部
4bの底部にもニッケルまたはニッケル合金5が確実に
充填される。
Therefore, nickel or nickel alloy 5 with low coercive force is applied to the branch portion 4b and intermediate portion 4C of such micropores 4.
is filled. The nickel alloy used here has a nickel value of 60% or more. Further, the upper portion 4a is filled with iron 6 having a high saturation magnetic density. To fill nickel or nickel alloy 5 and iron 6, after anodizing treatment, nickel or nickel alloy is first electrolyzed using a nickel salt single electrolytic bath or a mixed salt electrolytic bath consisting of nickel salt and other metal salts. Electrodeposition is performed on the branch portion 4b and intermediate portion 4c, and then electrolysis is performed using an iron salt-only electrolytic bath to deposit iron on the upper portion 4a, and by adjusting the electrolysis time of each The filling thickness (filling edge) can be controlled. In addition, since these electrodepositions start from the deepest part of the micropores 4, that is, from the part close to the Paris X7 layer 3, the nickel or nickel alloy 5 is reliably filled into the bottom of the branched part 4b.

また、第1図において、Ll+12十13は初めの陽極
酸化皮膜2の厚さを示し、通常3〜6μ肌程度とされ、
L 2 +13はニッケルまたはニッケル合金5および
鉄6を充填後、表面研削した後の陽極酸化皮膜2の厚さ
を示し、通常2〜3μm程度とされ、し4はバリヤ層3
の厚みを示す。
In addition, in FIG. 1, Ll+12+13 indicates the initial thickness of the anodic oxide film 2, which is usually about 3 to 6 μm thick,
L 2 +13 indicates the thickness of the anodic oxide film 2 after filling with nickel or nickel alloy 5 and iron 6 and surface grinding, which is usually about 2 to 3 μm;
Indicates the thickness of

このような構造の媒体にあっては、内径の細い分枝部4
bに、保磁力の低いニッケルまたはニッケル合金5が充
填され、内径の太い上部4aに飽和磁気密度の高い鉄6
が充填されているため、微細孔4に充填された磁性体全
体として保磁力が約10000 e以下となり、良好な
オーバーライド特性を示す。また、微細孔4の上部4a
への鉄6の充填が確実に行われ、鉄6が充填されない空
孔の発生がほとんどなくなる。
In a medium with such a structure, the branch portion 4 with a small inner diameter
nickel or nickel alloy 5 with low coercive force is filled in b, and iron 6 with high saturation magnetic density is filled in the upper part 4a with a thick inner diameter.
, the coercive force of the entire magnetic material filled in the micropores 4 is approximately 10,000 e or less, exhibiting good override characteristics. In addition, the upper part 4a of the micropore 4
The iron 6 is reliably filled, and the occurrence of voids that are not filled with the iron 6 is almost eliminated.

(実験例1) 以下、実験例を示して作用効果を明確にする。(Experiment example 1) Below, we will show experimental examples to clarify the effects.

4MO−96Aj合金製基板について以下の処理を施し
、この発明の媒体を製造した。
A 4MO-96Aj alloy substrate was subjected to the following treatments to produce a medium of the present invention.

■前処理;脱脂、アルカリエツチング、スマット除ム ■陽極酸化;3%蓚酸浴、20℃、直流48V定電圧′
Jヒ解、陽極酸化皮膜厚さ3μm ■微細孔拡人:1%リン酸浴、30℃、定電流60m1
/ 6m2にて直流48Vから20Vまで降圧後、直流
20Vにて3分 量定電圧電解 ■第1電解;浴組成 スルファミン酸ニッケル0.2シ
ル/J ホウ酸    30g/j 1)H4,0,30℃、変形交流電解2分間 ■第2電解;浴組成 5A酸第1鉄アンモニウム0.2
モル/J ホウ酸    30y/、、f pl+ 4.0.30℃、変形交流電解、微細孔表面に
露出Jるまでの析出 ■研 削;陽極酸化皮膜を表面がら2μTrL研削■保
aII!J形成;5iQ2をスパッタにより厚ざ50n
mに被覆 ■v4)It IIQ形成:フロロカーボン系潤滑剤を
スピンコードによって塗布 以上のようにして得られた媒体について、オーバーライ
ド特性(0/W)を測定した。
■Pretreatment: Degreasing, alkaline etching, smut removal ■Anodizing: 3% oxalic acid bath, 20℃, DC 48V constant voltage'
J Hyde, anodic oxide film thickness 3μm ■ Micropore expansion: 1% phosphoric acid bath, 30℃, constant current 60m1
/ After stepping down the voltage from DC 48V to 20V in 6 m2, constant voltage electrolysis in 3 portions at DC 20V ■First electrolysis; Bath composition Nickel sulfamate 0.2 sil/J Boric acid 30 g/j 1) H4, 0, 30℃ , modified AC electrolysis for 2 minutes ■Second electrolysis; Bath composition 5A ferrous ammonium acid 0.2
Mol/J Boric acid 30y/,, f pl+ 4.0.30℃, modified AC electrolysis, precipitation until exposed on the surface of micropores ■Grinding; 2 μTrL grinding of the anodic oxide film from the surface ■Keep a II! J formation: 5iQ2 with a thickness of 50n by sputtering
v4) Formation of It IIQ: Applying a fluorocarbon lubricant using a spin cord The override characteristic (0/W) of the medium obtained in the above manner was measured.

比較のため、第1電解を省略し、微細孔の分枝部にも鉄
を電析、充填した媒体を作成し、A−パーライト特性を
測定した。
For comparison, a medium was prepared in which the first electrolysis was omitted and iron was electrodeposited and filled in the branched portions of the micropores, and the A-pearlite characteristics were measured.

結果を第2図に示す。第2図は、書き込みヘッド電流と
オーバーライド特性との関係を表したグラフであり、書
き込みヘッド電流の増加に伴ってこの発明の媒体ではオ
ーバーライド特性がよくなり一40dB程度の値をとる
。一方、鉄だけを充填した媒体では、−35dB程度ま
でしか低下せず、A−パーライト特性が良好ではないこ
とがわかる。
The results are shown in Figure 2. FIG. 2 is a graph showing the relationship between the write head current and the override characteristic. As the write head current increases, the override characteristic of the medium of the present invention improves and takes a value of about -40 dB. On the other hand, in the case of a medium filled with only iron, the decrease was only down to about -35 dB, indicating that the A-pearlite characteristics were not good.

(実験例2) 第1電解において、その電解浴組成を変化させて微細孔
の分枝部および中間部にそれぞれ鉄、銅、スズ、ニッケ
ルを充填した媒体を作成し、微細孔の」上部に電析され
た鉄の充填率を測定した。鉄の充填率の測定は、研削後
の媒体を顕微鏡で観察して行い、中位面積当りの全微細
孔数に鉄の充填されていない空の微細孔数の百分率で表
わした。
(Experiment Example 2) In the first electrolysis, the electrolytic bath composition was changed to create a medium filled with iron, copper, tin, and nickel in the branch and intermediate parts of the micropores, and The filling rate of the deposited iron was measured. The iron filling rate was measured by observing the medium after grinding with a microscope, and was expressed as the percentage of the number of empty micropores not filled with iron to the total number of micropores per medium area.

結果を第1表に示した。第1表より銅などの非磁性体を
分枝部および中間部に充填したものでは、スポーリング
などによって上部への鉄の充填率が低下するが、ニッケ
ルを充填したものではこのような不都合が生じないこと
がわかる。
The results are shown in Table 1. Table 1 shows that when the branch parts and intermediate parts are filled with non-magnetic material such as copper, the filling rate of iron in the upper part decreases due to spalling, etc., but when filled with nickel, this problem does not occur. It turns out that this does not occur.

第    1    表 〔発明の効果〕 以上説明したように、この発明の磁気記録媒体は、アル
ミニウムまたはアルミニウム合金表面に形成された陽極
酸化皮膜の微細孔の底側の分枝部にニッケルまたはニッ
ケル合金を、表層側の上部に鉄を充填してなるものであ
るので、オーバーライド特性が良好であるとともに微細
孔の上部への鉄の充填も良好なものとなる。
Table 1 [Effects of the Invention] As explained above, the magnetic recording medium of the present invention has nickel or a nickel alloy applied to the bottom branch of the micropores of the anodic oxide film formed on the surface of aluminum or aluminum alloy. Since the upper part of the surface layer side is filled with iron, the override characteristic is good and the upper part of the micropores is also filled with iron.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の磁気記録媒体の一例を模式的に示
した断面図、 第2図は、実賎例における磁気記録媒体のオーバーライ
ド特性を示すグラフである。 1・・・・・・アルミニウム層、 2・・・・・・陽極酸化皮膜、 4・・・・・・微細孔、 4a・・・・・・上部、 4b・・・・・・分枝部、 5・・・・・・ニッケルまたはニッケル合金、6・・・
・・・鉄。
FIG. 1 is a cross-sectional view schematically showing an example of the magnetic recording medium of the present invention, and FIG. 2 is a graph showing the override characteristics of the magnetic recording medium in an actual example. DESCRIPTION OF SYMBOLS 1... Aluminum layer, 2... Anodic oxide film, 4... Fine pores, 4a... Upper part, 4b... Branch part , 5...nickel or nickel alloy, 6...
···iron.

Claims (1)

【特許請求の範囲】[Claims] アルミニウムまたはアルミニウム合金表面に形成された
陽極酸化皮膜の微細孔の底側の分枝部にニッケルまたは
ニッケル合金を、表層側の上部に鉄を充填してなる磁気
記録媒体。
A magnetic recording medium in which nickel or a nickel alloy is filled in the bottom branch of micropores in an anodic oxide film formed on the surface of aluminum or an aluminum alloy, and iron is filled in the upper part of the surface layer.
JP9231088A 1988-04-14 1988-04-14 Magnetic recording medium Pending JPH01263921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9231088A JPH01263921A (en) 1988-04-14 1988-04-14 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9231088A JPH01263921A (en) 1988-04-14 1988-04-14 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01263921A true JPH01263921A (en) 1989-10-20

Family

ID=14050829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9231088A Pending JPH01263921A (en) 1988-04-14 1988-04-14 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01263921A (en)

Similar Documents

Publication Publication Date Title
US4548682A (en) Process of producing magnetic recording media
US4109287A (en) Process for recording information or sound and process for preparation of recording materials used therefor
CN100371989C (en) Soft magnetic thin film and magnetic recording head
JP2002175621A (en) Magnetic recording medium and manufacturing method therefor
JP2923790B2 (en) Magnetic recording media
JP5459938B2 (en) Method for controlling magnetic properties of electroplated layer, method for electroplating magnetic layer, method for producing magnetic layer, and method for producing magnetic head
US20020154443A1 (en) Soft magnetic film having high saturation magnetic flux density, thin film magnetic head using the same, and methods of producing the soft magnetic film and the thin film magnetic head
GB2392922A (en) Soft magnetic film and thin film magnetic head using it
JPH0727663B2 (en) Magneto-optical recording medium and manufacturing method thereof
US20080197021A1 (en) Method to make superior soft (low Hk), high moment magnetic film and its application in writer heads
JPH04214203A (en) Magnetic-film laminated body and magnetic recording head utilizing this body
JPH01263921A (en) Magnetic recording medium
JPH02500069A (en) magnetic recording material
US20030085131A1 (en) Electro-deposition of high saturation magnetization Fe-Ni-Co films
JPS63167409A (en) Magnetic recording medium
JPS62298021A (en) Magnetic recording medium
JPS62125526A (en) Magnetic recording medium
JPH0430325A (en) Production of magnetic disk substrate
JPH0345449B2 (en)
JPS61204837A (en) Production of magnetic recording medium
JPH03230319A (en) Magnetic recording medium and its production
JPS63187415A (en) Magnetic recording medium and its production
JPS62291721A (en) Magnetic recording medium and its manufacture
JPS62134818A (en) Magnetic recording medium
JPH01188695A (en) Method for plating anodic oxide film of aluminum with alloy