JPH01262986A - Method and apparatus for treating waste water containing hydrogen peroxide - Google Patents
Method and apparatus for treating waste water containing hydrogen peroxideInfo
- Publication number
- JPH01262986A JPH01262986A JP8961988A JP8961988A JPH01262986A JP H01262986 A JPH01262986 A JP H01262986A JP 8961988 A JP8961988 A JP 8961988A JP 8961988 A JP8961988 A JP 8961988A JP H01262986 A JPH01262986 A JP H01262986A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- hydrogen peroxide
- conductive
- conductive porous
- porous particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 239000002351 wastewater Substances 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims description 15
- 239000002245 particle Substances 0.000 claims abstract description 53
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 238000005868 electrolysis reaction Methods 0.000 claims description 5
- 150000003623 transition metal compounds Chemical class 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 239000003575 carbonaceous material Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 238000004065 wastewater treatment Methods 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- 239000000571 coke Substances 0.000 abstract description 9
- 238000000354 decomposition reaction Methods 0.000 abstract description 6
- 239000000741 silica gel Substances 0.000 abstract description 6
- 229910002027 silica gel Inorganic materials 0.000 abstract description 6
- 238000012856 packing Methods 0.000 abstract 1
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000003421 catalytic decomposition reaction Methods 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- GFHNAMRJFCEERV-UHFFFAOYSA-L cobalt chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Co+2] GFHNAMRJFCEERV-UHFFFAOYSA-L 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003657 drainage water Substances 0.000 description 1
- -1 ferrite Chemical class 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は過酸化水素含有排水の処理方法および装置に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for treating wastewater containing hydrogen peroxide.
C従来の技術〕
排水中の過酸化水素の除去法として、二酸化マンガン等
の金属酸化物を触媒とする接触分解、或いは還元剤を用
いる還元分解が一般的である。C. Prior Art] As a method for removing hydrogen peroxide from wastewater, catalytic decomposition using a metal oxide such as manganese dioxide as a catalyst, or reductive decomposition using a reducing agent is generally used.
しかしながら、これらの除去法には各々不都合があり、
例えば、二酸化マンガン等の触媒を用いる接触分解法に
ついては、処理原水中の過酸化水素濃度の変化に対し7
て、排水の流通速度を調節する必要がある。しかし排水
量は生産工程等の関係で変化させることが困難な場合が
多いので、実際的には排水処理設備の能力に余裕を持た
(る必要を生しる。However, each of these removal methods has its disadvantages.
For example, in the catalytic cracking method using a catalyst such as manganese dioxide, the
Therefore, it is necessary to adjust the flow rate of wastewater. However, it is often difficult to change the amount of wastewater due to production processes, etc., so in practice it is necessary to have some margin in the capacity of wastewater treatment equipment.
また、還元剤による還元分解法については、排水中の過
酸化水素濃度に応し、還元剤の使用量を調節することに
よって対応が可能であり、還元剤として、例えば排煙脱
硫から副生ずる亜硫酸塩の如き安価な還元剤が入手でき
る場合は経済的にもメリットのある方法ではあるが、−
1’G的にそういった立地条件に恵まれない場合にはコ
スト高となる。In addition, regarding the reductive decomposition method using a reducing agent, it is possible to respond by adjusting the amount of reducing agent used depending on the hydrogen peroxide concentration in the wastewater. Although it is an economically advantageous method if an inexpensive reducing agent such as salt is available,
If 1'G is not blessed with such locational conditions, the cost will be high.
また、有機物を含有する排水を処理するため電解処理す
る方法が特公昭53−35867号公報に記載されてい
るが、過酸化水素含有排水の処理については教えていな
い。Furthermore, Japanese Patent Publication No. 53-35867 describes an electrolytic treatment method for treating wastewater containing organic matter, but does not teach about the treatment of wastewater containing hydrogen peroxide.
〔発明が解決しようとする課題]
本発明はこれらの問題点、即ち、排水中の過酸化水素濃
度に効率的に即応が可能で、且つ、立地条件に関係無く
適用できる経済的な処理方法を提供しようとするもので
ある。[Problems to be Solved by the Invention] The present invention solves these problems by providing an economical treatment method that can efficiently and quickly respond to the hydrogen peroxide concentration in wastewater and that can be applied regardless of location conditions. This is what we are trying to provide.
〔課題を解決するための手段]
本発明はシリカゲル等の非導電性多孔質粒子とコークス
等の導電性粒子の混合物の充填層に排水と電流を流すこ
とにより過酸化水素を分解除去するものである。[Means for Solving the Problems] The present invention decomposes and removes hydrogen peroxide by passing drainage and electric current through a packed bed of a mixture of non-conductive porous particles such as silica gel and conductive particles such as coke. be.
本発明の方法に使用する非導電性多孔質粒子としては吸
着性能を有するものであって、使用条件下において溶解
したりしないものであれば格別の制限はないがシリカ、
アルミナ、シリカ−アルミナ、チタニア等の無機多孔質
粒子が好ましく、より好ましくはシリカ又はアルミナで
ある。また、これらの粒子にコバルト、鉄、ニッケル、
マンガン等の遷移金属の化合物を少量含有せしめたもの
は過酸化水素の分解能力がより優れる。非導電性多孔質
粒子は比表面積カ月On? / g以上、好ましくは5
0ボ/g以上、より好ましくは100n(/g以上であ
ることが吸着性能の点から望ましい。The non-conductive porous particles used in the method of the present invention are not particularly limited as long as they have adsorption properties and do not dissolve under the conditions of use, but silica,
Inorganic porous particles such as alumina, silica-alumina, and titania are preferred, and silica or alumina is more preferred. These particles also contain cobalt, iron, nickel,
Those containing a small amount of transition metal compounds such as manganese have better ability to decompose hydrogen peroxide. Non-conductive porous particles have a specific surface area of On? /g or more, preferably 5
It is desirable from the point of view of adsorption performance that it is 0 n(/g or more), more preferably 100 n(/g or more).
また、粒径は排水の流水に対し限度以上の圧力を員失を
生じない限り、小さい方が有利であるが、好ましくは1
〜10wmである。In addition, the smaller the particle size is, the more advantageous it is, unless pressure exceeding the limit is applied to the flowing wastewater.
~10 wm.
また、導電性粒子としては、使用条件下において溶解し
たりしないものであれば格別の制限はないが、炭素質、
フェライト等の金属酸化物、ステンレススチール等の金
属等の粒子が好ましく、より好ましくはコークス、活性
炭等の炭素質材料である。導電性粒子は多孔質である必
要は必ずしもないが、非導電性多孔質材料と同様に吸着
性能を有するものであれば、過酸化水素の分解能力がよ
り向上する。更に、前述のような遷移金属の化合物を少
量含有せしめればより向上する。また、粒径については
非導電性多孔質粒子と同様な範囲が好ましい。There are no particular restrictions on conductive particles as long as they do not dissolve under the conditions of use, but carbonaceous,
Particles of metal oxides such as ferrite, metals such as stainless steel are preferred, and carbonaceous materials such as coke and activated carbon are more preferred. The conductive particles do not necessarily have to be porous, but if they have adsorption performance similar to non-conductive porous materials, the ability to decompose hydrogen peroxide will be further improved. Furthermore, if a small amount of a transition metal compound such as that mentioned above is contained, further improvement can be achieved. Further, the particle size is preferably in the same range as the non-conductive porous particles.
導電性粒子と非導電性多孔質粒子を混合して充填層を形
成する。混合割合は導電性粒子が相互に接触して一つの
大きな導電体となることが防止できる割合の非導電性多
孔質粒子を混合する必要があるが、非導電性多孔質粒子
が多すぎても電流効率が低下するので、導電性粒子1$
ff1部に対し非導電性多孔質粒子0.1〜10容量部
、好ましくは0.5〜2容量部の範囲が望ましい。充填
層は1層であっても複数層であっても差し支えない。A packed layer is formed by mixing conductive particles and non-conductive porous particles. It is necessary to mix the non-conductive porous particles at a mixing ratio that prevents the conductive particles from coming into contact with each other and forming one large conductor, but if there are too many non-conductive porous particles, Since the current efficiency decreases, conductive particles 1$
It is desirable that the non-conductive porous particles be used in a range of 0.1 to 10 parts by volume, preferably 0.5 to 2 parts by volume, per part of ff. The filling layer may be one layer or multiple layers.
充填層は一対の主電極間の対向空間に設ける。The filling layer is provided in the opposing space between the pair of main electrodes.
そして、主電極は排水中に浸る位置に配置すると共に、
一方の電極は充填層の一端に接することが望ましい、更
に、この場合(−)極を充填層の一端に接する極とすれ
ば、電極の消耗を減少させることができるだけでなく、
電流効率も向上する。Then, the main electrode is placed in a position where it is immersed in the drainage water, and
It is desirable that one electrode be in contact with one end of the filling layer.Furthermore, in this case, if the (-) pole is a pole in contact with one end of the filling layer, not only can wear of the electrode be reduced, but also
Current efficiency is also improved.
主電極の材質は(+)極側は耐食性に優れる炭素電極が
好ましいが、(=)極側は金属電極であ−。The material of the main electrode is preferably a carbon electrode with excellent corrosion resistance on the (+) side, but a metal electrode on the (=) side.
でも差し支えない。But it doesn't matter.
充填層、主電極が排水に浸るようにして電流を流すと、
電気分解が生じ、過酸化水素が分解、除去される。電流
は交流であると消費電力に対する過酸化水素の除去効率
が劣るので直流電流が好ましい。また、排水は連続的に
流すようにすれば、処理量の増大が達成される。なお、
排水の電気伝導度が低い場合は、無機塩類あるいはこれ
を含む排水又は海水を加えることがよい。When a current is applied with the filled bed and main electrode immersed in wastewater,
Electrolysis occurs and hydrogen peroxide is decomposed and removed. Direct current is preferable since the hydrogen peroxide removal efficiency is poor relative to the power consumption when alternating current is used. Moreover, if the wastewater is made to flow continuously, an increase in the throughput can be achieved. In addition,
If the electrical conductivity of the wastewater is low, it is advisable to add inorganic salts or wastewater containing them or seawater.
本発明の装置を図面により説明する。The apparatus of the present invention will be explained with reference to the drawings.
図面においてl及び2は一対の主電極を示し、各電極1
.2の対向空間3を構成するカラム4内に導電性粒子と
非導電性多孔質粒子の混合物の充填層5が設けられてい
る。In the drawings, l and 2 indicate a pair of main electrodes, each electrode 1
.. A packed bed 5 of a mixture of conductive particles and non-conductive porous particles is provided in a column 4 constituting the opposing space 3 of the two.
電極1.2は例えば炭素電極で構成されており、例えば
電極1を(+)極、電極2を(−)極として使用される
。The electrodes 1.2 are made of, for example, carbon electrodes, and are used, for example, with electrode 1 as the (+) pole and electrode 2 as the (-) pole.
本発明方法では、例えば、主電極間に電圧をかけつつ、
電極l又は2および充填層5より下にある人ロアからそ
れらより上にある出口8に向かって過酸化水素含有排水
を通過させることによって過酸化水素を分解除去する。In the method of the present invention, for example, while applying a voltage between the main electrodes,
Hydrogen peroxide is decomposed and removed by passing the hydrogen peroxide-containing waste water from the manlow below the electrodes 1 or 2 and the packed bed 5 towards the outlet 8 above them.
〔作用)
本発明では主電極間に導電性粒子と非導電性多孔質粒子
を充填したため、導電性粒子が複極として働き、電流効
率を高めるものと考えられる。また、非導電性多孔質粒
子は多孔質であって吸着性能を有するため、過酸化水素
の滞留時間を高め過酸化水素の分解率を高めるものと考
えられる。そして、非導電性多孔質粒子による過酸化水
素の接触分解作用、電解作用による過酸化水素の直接的
な分解作用あるいは電解で発生する発生期の水素ガスに
よる還元作用等が共同して過酸化水素の分解に寄与する
ものと考えられる。更に遷移金属化合物を導電性粒子又
は非導電性多孔質粒子に含有させることによって電気分
解以外の接触分解等の作用が生ずるものと考えられる。[Function] In the present invention, since conductive particles and non-conductive porous particles are filled between the main electrodes, it is thought that the conductive particles act as bipolar poles and increase current efficiency. Furthermore, since the non-conductive porous particles are porous and have adsorption performance, they are thought to increase the residence time of hydrogen peroxide and increase the decomposition rate of hydrogen peroxide. Then, the catalytic decomposition of hydrogen peroxide by non-conductive porous particles, the direct decomposition of hydrogen peroxide by electrolysis, or the reduction by the nascent hydrogen gas generated by electrolysis, etc. It is thought that this contributes to the decomposition of Furthermore, it is believed that by incorporating a transition metal compound into conductive particles or non-conductive porous particles, effects such as catalytic decomposition other than electrolysis occur.
以下、本発明を実施例を挙げて更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.
実施例1〜5
第1図に示す炭素電極を有するガラス製カラムに、導電
性粒子としての細粒コークス(粒径2.8〜4.0+u
+ )と、非導電性多孔質粒子としての、コバルトでブ
ルーに着色した乾燥用のシリカゲル(粒径3.0〜6.
0ms )を当容積づつ均一混合t7たものを2種の粒
子が偏在しないように注意しなからカラムに充填した。Examples 1 to 5 Fine coke as conductive particles (particle size 2.8 to 4.0
+) and drying silica gel colored blue with cobalt as non-conductive porous particles (particle size 3.0-6.
0 ms) was uniformly mixed in equal volumes t7 and packed into a column, taking care not to unevenly distribute the two types of particles.
この装置を用いて第1表に示す電解条件で過酸化水素含
有排水を処理したところ、第1表に示す結果が得られた
。When hydrogen peroxide-containing wastewater was treated using this apparatus under the electrolytic conditions shown in Table 1, the results shown in Table 1 were obtained.
第1表の実施例1から過酸化水素の分解量は電気化学的
理論量の約20倍に相当することが分かる。It can be seen from Example 1 in Table 1 that the amount of hydrogen peroxide decomposed is approximately 20 times the electrochemically theoretical amount.
第1表
実施例6
非導電性多孔質粒子として、粒状白色シリカゲルに塩化
コバルト6水塩を水溶液で5 wt、%添加、150°
Cで乾燥した後水洗、可溶分を溶出したコバルト含有シ
リカゲル20容量部と実施例1と同じコークス50B:
fi部を混合したものを充填した以外は実施例1と同様
に装置を設定した。Table 1 Example 6 As non-conductive porous particles, 5 wt% cobalt chloride hexahydrate was added as an aqueous solution to granular white silica gel, 150°
20 parts by volume of cobalt-containing silica gel from which the soluble content was eluted by washing with water after drying with C and coke 50B as in Example 1:
The apparatus was set up in the same manner as in Example 1, except that the mixture of fi parts was filled.
該装置を用いて第2表に示す電解条件でi!5酸化水素
含有排水を処理したところ、第2表に示す結果が得られ
た。i! using this device under the electrolytic conditions shown in Table 2. When hydrogen pentoxide-containing wastewater was treated, the results shown in Table 2 were obtained.
第2表
比較例1〜4
実施例1と同し装置において、充填層を形成する粒子と
して、
比較例1:コークス/白色シリカゲル
比較例2:コークス/水砕スラグ
比較例3:コークス/イソライト煉瓦破砕粒比較例4:
コークス/イソライト煉瓦破砕粒を使用して、同様に過
酸化水素の除去を行った。Table 2 Comparative Examples 1 to 4 In the same equipment as Example 1, as particles forming the packed bed, Comparative Example 1: Coke/white silica gel Comparative Example 2: Coke/Granulated slag Comparative Example 3: Coke/Isolite brick Crushed grain comparison example 4:
Hydrogen peroxide removal was similarly carried out using crushed coke/isolite brick granules.
結果を第3表に示す。The results are shown in Table 3.
第3表
[発明の効果]
以上説明した如く、本発明方法又は装置によれば排水中
の過酸化水素濃度に効率的に即応が可能で、且つ、立地
条件に関係無く適用できる経済的な過酸化水素の排除が
可能である。Table 3 [Effects of the Invention] As explained above, according to the method or apparatus of the present invention, it is possible to efficiently and immediately respond to the hydrogen peroxide concentration in wastewater, and it is an economical solution that can be applied regardless of location conditions. It is possible to eliminate hydrogen oxide.
更に、非導電性多孔質粒子に遷移金属化合物を含有させ
たものを用いれば、より電流効率が向上する。Furthermore, if non-conductive porous particles containing a transition metal compound are used, the current efficiency is further improved.
第1図は本発明装置を説明する説明図である。 1.2・・・主電掻、5・・・充填層 第1図 FIG. 1 is an explanatory diagram illustrating the apparatus of the present invention. 1.2...Main electric scraper, 5...Filled layer Figure 1
Claims (4)
性多孔質粒子および導電性粒子の混合物の充填層を設け
ると共に、該充填層の一端と一方の主電極と接触させて
なる過酸化水素含有排水の処理装置。(1) A filled layer of a mixture of non-conductive porous particles and conductive particles is provided in the opposing space between at least one pair of main electrodes, and one end of the filled layer is brought into contact with one of the main electrodes. Hydrogen-containing wastewater treatment equipment.
性多孔質粒子および導電性粒子の混合物の充填層を設け
、ここに過酸化水素を含有する排水を流通させて電気分
解することを特徴とする過酸化水素含有排水の処理方法
。(2) A packed bed of a mixture of non-conductive porous particles and conductive particles is provided in the opposing space between at least one pair of main electrodes, and wastewater containing hydrogen peroxide is passed through this layer for electrolysis. Characteristic method for treating wastewater containing hydrogen peroxide.
、導電性粒子が炭素質材料である請求項2記載の処理方
法。(3) The treatment method according to claim 2, wherein the non-conductive porous particles are silica or alumina, and the conductive particles are a carbonaceous material.
合物を含有させたものである請求項2または3記載の処
理方法。(4) The treatment method according to claim 2 or 3, wherein the non-conductive porous particles or the conductive particles contain a transition metal compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8961988A JPH01262986A (en) | 1988-04-12 | 1988-04-12 | Method and apparatus for treating waste water containing hydrogen peroxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8961988A JPH01262986A (en) | 1988-04-12 | 1988-04-12 | Method and apparatus for treating waste water containing hydrogen peroxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01262986A true JPH01262986A (en) | 1989-10-19 |
Family
ID=13975771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8961988A Pending JPH01262986A (en) | 1988-04-12 | 1988-04-12 | Method and apparatus for treating waste water containing hydrogen peroxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01262986A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6913742B2 (en) | 2000-05-08 | 2005-07-05 | Tosoh Corporation | Process for the purification of inorganic salt containing organic material and purified salt for electrolysis of sodium chloride |
CN103241807A (en) * | 2013-05-15 | 2013-08-14 | 常州工学院 | Composite particle electrode for bipolar three-dimensional electrode reactor and preparation method of electrode |
-
1988
- 1988-04-12 JP JP8961988A patent/JPH01262986A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6913742B2 (en) | 2000-05-08 | 2005-07-05 | Tosoh Corporation | Process for the purification of inorganic salt containing organic material and purified salt for electrolysis of sodium chloride |
CN103241807A (en) * | 2013-05-15 | 2013-08-14 | 常州工学院 | Composite particle electrode for bipolar three-dimensional electrode reactor and preparation method of electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Efficient degradation of 2, 4-dichlorophenol in aqueous solution by peroxymonosulfate activated with magnetic spinel FeCo2O4 nanoparticles | |
CN105884100B (en) | A kind of processing method of heavy metal wastewater thereby | |
Lin et al. | Feasibility of using nanoscale zero-valent iron and persulfate to degrade sulfamethazine in aqueous solutions | |
CN105731624B (en) | Method for treating reverse osmosis concentrated water by utilizing heterogeneous Fenton-like reaction catalytic oxidation | |
US3793173A (en) | Wastewater treatment using electrolysis with activated carbon cathode | |
Huang et al. | Persulfate/electrochemical/FeCl2 system for the degradation of phenol adsorbed on granular activated carbon and adsorbent regeneration | |
CN101139150A (en) | Preoxidized-composite electrolyzing method for removing arsenic in groundwater | |
CN105016431A (en) | Method and apparatus for removal and recovering of heavy metal ions from wastewater | |
CN103754990A (en) | Bipolar three-dimension electrode coupling treatment device for treatment of non-biodegradable organic wastewater | |
Asghar et al. | Comparative adsorption–regeneration performance for newly developed carbonaceous adsorbent | |
RU2088538C1 (en) | Method of cleaning stream | |
Kuang et al. | Construction and optimization of an iron particle–zeolite packing electrochemical–adsorption system for the simultaneous removal of nitrate and by-products | |
Jin et al. | Insights into the electro-hybrid ozonation-coagulation process–Significance of connection configurations and electrode types | |
US3788967A (en) | Wastewater treatment using electrolysis with activated carbon cathode | |
CN108423772A (en) | A kind of device and method based on negative and positive the two poles of the earth Synergistic degradation nitrate that Zero-valent iron-carrying nano compound resin is catalyst | |
CN113493237B (en) | Preparation of modified nano-iron and method for treating high-concentration nitrate wastewater by using modified nano-iron | |
CN110002546A (en) | A kind of activation (Cu-Fe-Ce)/Al2O3The preparation and its application of nano-particle electrode | |
JPH01262986A (en) | Method and apparatus for treating waste water containing hydrogen peroxide | |
TWI637917B (en) | Fluoride removal method of flue-gas desulfurization wastewater and fluoride removal system thereof | |
CN103041775A (en) | Graphene oxidation reactor based on graphene macro-body and application of graphene oxidation reactor | |
CN1247466C (en) | Technique for treating water using magnetic absorbent | |
IE43862B1 (en) | Removal of mercury | |
JPS6244995B2 (en) | ||
Chen et al. | Electrochemical removal of nitrate using Co/Ni bimetallic electrode: High N2 selectivity and long-term stability | |
JP3942949B2 (en) | Method and apparatus for reducing nitrogen compounds in wastewater to nitrogen gas |