JPH01262521A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JPH01262521A
JPH01262521A JP63092447A JP9244788A JPH01262521A JP H01262521 A JPH01262521 A JP H01262521A JP 63092447 A JP63092447 A JP 63092447A JP 9244788 A JP9244788 A JP 9244788A JP H01262521 A JPH01262521 A JP H01262521A
Authority
JP
Japan
Prior art keywords
light
scanned
hologram
scanning
scanning light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63092447A
Other languages
Japanese (ja)
Inventor
Fumiaki Takeuchi
文章 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63092447A priority Critical patent/JPH01262521A/en
Publication of JPH01262521A publication Critical patent/JPH01262521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To widen a range of a readable distance even in case a position of a body to be scanned is shifted in the optical axis direction of a scanning light by setting at least two kinds of focal distances of plural hologram lenses, and also, providing a light adjusting means for varying the intensity of the scanning light is accordance with the focal distance of the hologram lens. CONSTITUTION:A disk 11 in which plural hologram lenses 12-27 have been placed in the peripheral edge part is provided so as to be rotatable, and by radiating a light beam from a light source 28 to the hologram lens, the beam diameter of its light beam is reduced and becomes a scanning light 30, and by this scanning light 30, a body to be scanned 31 is scanned and read, at least two kinds of focal distances of plural hologram lenses 12-27 are set, and also, a light adjusting means 34 for varying the intensity of the scanning light 30 in accordance with the focal distances of the hologram lenses 12-27 is provided. In such a way, even in case a position of the body to be scanned 31 is shifted in the optical axis direction of the scanning light 30, a range of a readable distance can be widened.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、被走査体たる例えばバーコードを走査光によ
り走査して読取るようにした光走査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an optical scanning device that scans and reads an object to be scanned, such as a bar code, with scanning light.

(従来の技術) この種先走査装置の例として、従来より、第5図及び第
6図に示すものが供されている。この第5図において、
1は回転可能に設けられたポリゴンミラー、2はレーザ
光源等よりなる光源であり、光源2からの光ビームをポ
リゴンミラー1の反射面1aに反射させてその反射光を
走査光とし、この走査光により被走査体3を走査してそ
の表面に形成された図示しないバーコードを読取るよう
にしている。また、第6図において、4は上述のポリゴ
ンミラー1に代わるガルバノミラ−であり、光源2から
の光ビームをガルバノミラ−4の反射面4aに反射させ
てその反射光を走査光とし、この走査光により被走査体
3を走査して読取るようにしている。一方、近年におい
ては、第7図に示すように、回転可能に設けられた円板
5の周縁部に複数のホログラムレンズ6を配置し、光源
2がらの光ビームを上記ホログラムレンズ6に照射する
ことにより、その光ビームのビーム径を絞ったものを走
査光とし、このビーム径の小さい走査光によって被走査
体3を走査して読取るようにしている。この場合、走査
光のビーム径が小さいから、被走査体3としては走査パ
ターンが細かいものまで読取ることができる。
(Prior Art) As an example of this type of seed advance scanning device, those shown in FIGS. 5 and 6 have been provided. In this Figure 5,
1 is a rotatably provided polygon mirror, 2 is a light source such as a laser light source, and the light beam from the light source 2 is reflected on the reflective surface 1a of the polygon mirror 1, and the reflected light is used as scanning light. The object 3 to be scanned is scanned with light to read a bar code (not shown) formed on its surface. Further, in FIG. 6, 4 is a galvano mirror replacing the above-mentioned polygon mirror 1, and the light beam from the light source 2 is reflected on the reflective surface 4a of the galvano mirror 4, and the reflected light is used as scanning light. The object 3 to be scanned is scanned and read. On the other hand, in recent years, as shown in FIG. 7, a plurality of hologram lenses 6 are arranged around the peripheral edge of a rotatably provided disk 5, and the light beam from the light source 2 is irradiated onto the hologram lenses 6. As a result, the beam diameter of the light beam is narrowed down and used as scanning light, and the object to be scanned 3 is scanned and read using the scanning light having a small beam diameter. In this case, since the beam diameter of the scanning light is small, even a fine scanning pattern can be read as the object 3 to be scanned.

(発明が解決しようとする課題) 上記従来構成では、ホログラムレンズ6にrり走査光の
ビーム径を絞る場合、ホログラムレンズ6の焦点距離が
所定距離であるため、被走査体3が該焦点に対して走査
光の光軸方向にずれた位置にあると、走査光のビーム径
が大きくなって読取りができなくなることがあり、いわ
ゆる読取り可能な距離の範囲が狭いという問題点があっ
た。
(Problems to be Solved by the Invention) In the above conventional configuration, when the beam diameter of the scanning light is narrowed down by the hologram lens 6, the focal length of the hologram lens 6 is a predetermined distance, so the object to be scanned 3 is at the focal point. On the other hand, if the scanning light is located at a position shifted in the optical axis direction of the scanning light, the beam diameter of the scanning light becomes large and reading may become impossible, resulting in the problem that the so-called readable distance range is narrow.

また、上述の各従来構成においては、走査光により被走
査体3を走査したとき、その反射光を図示しない受光素
子によって検出するようにしており、この場合、上記反
射光が散乱光であるため、その反射光の強さが距離の2
乗に反比例して弱くなる事情にある。このため、被走査
体3が上記受光素子に対して遠ざかるように走査光の光
軸方向にずれた位置にあると、反射光の強さが弱くなり
これを受光素子で検出できなくなって読取りができなく
なることがあり、やはり読取り可能な距離の範囲が狭い
という問題点があった。
Furthermore, in each of the conventional configurations described above, when the object 3 to be scanned is scanned with the scanning light, the reflected light is detected by a light receiving element (not shown), and in this case, since the reflected light is scattered light, , the intensity of the reflected light is 2 of the distance
The reason is that it becomes weaker in inverse proportion to the power. Therefore, if the object to be scanned 3 is at a position shifted in the optical axis direction of the scanning light so as to move away from the light-receiving element, the intensity of the reflected light becomes weaker and the light-receiving element cannot detect it, making reading difficult. There is also the problem that the readable distance range is narrow.

そこで、本発明の目的は、被走査体が走査光の光軸方向
に位置がずれるような場合においても、読取りIj■能
な距離の範囲を広くできる光走査装置を提供するにある
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical scanning device that can widen the range of distances that can be read even when the object to be scanned is displaced in the optical axis direction of the scanning light.

[発明の構成] (課題を解決するための手段) 本発明の光走査装置は、周縁部に1M数のホログラムレ
ンズを配置した円板を回転可能に設け、上記ホログラム
レンズに光源からの光ビームを照射することによりその
光ビームのビーム径を絞って走査光とし、この走査光に
より被走査体を走査して読取るようにしたものであって
、前記複数のホログラムレンズの焦点距離を少なくとも
2種類設定すると共に、前記走査光の強さを前記ホログ
ラムレンズの焦点距離に応じて変化させる光M tit
s手段を設けたところに特徴を有する。
[Structure of the Invention] (Means for Solving the Problems) The optical scanning device of the present invention is provided with a rotatable disk having 1M hologram lenses arranged on its peripheral edge, and a light beam from a light source is directed to the hologram lens. The beam diameter of the light beam is narrowed down by irradiating it to make it into a scanning light, and the object to be scanned is scanned and read by this scanning light, and the plurality of hologram lenses have at least two types of focal lengths. a light M tit that changes the intensity of the scanning light according to the focal length of the hologram lens;
It is characterized by the provision of s means.

(作用) 複数のホログラムレンズの焦点距離が少なくとも2f4
類設定されているから、被走査体が走査光の光軸方向に
ずれたとき、上記ホログラムレンズの二つの焦点の間及
びそれらに近傍する位置にあれば、走査光のビーム径を
十分小さくなし得て被走査体の読取りが可能となる。こ
れと共に、光調節手段によって走査光の強さをホログラ
ムレンズの焦点距離に応じて変化させたから、走査光に
より被走査体を走査したときの被走査体からの反射光が
上記焦点距離に応じて食代するため、反射光が散乱光で
あるためにその反射光の強さが距離の2乗に反比例して
弱くなる事情にあっても、被走査体が二つの焦点の間及
びそれらの近傍のどこに位置するかにかかわらず、受光
素子に受光される反射光の強さを略所定の強さに設定で
きるようになる。
(Function) The focal length of the plurality of hologram lenses is at least 2f4
Therefore, when the object to be scanned is shifted in the optical axis direction of the scanning light, the beam diameter of the scanning light can be made sufficiently small if it is located between or near the two focal points of the hologram lens. As a result, the object to be scanned can be read. At the same time, since the intensity of the scanning light is changed by the light adjustment means according to the focal length of the hologram lens, when the object to be scanned is scanned by the scanning light, the reflected light from the object to be scanned is adjusted according to the focal length. Even if the intensity of the reflected light becomes weaker in inverse proportion to the square of the distance because the reflected light is scattered light, the object to be scanned may be between the two focal points or near them. The intensity of the reflected light received by the light receiving element can be set to approximately a predetermined intensity regardless of where the light receiving element is located.

(実施例) 以下、本発明の一実施例につき第1図乃至第4図を参照
しながら説明する。
(Example) An example of the present invention will be described below with reference to FIGS. 1 to 4.

まず第3図において、11は円板で、これは中心軸11
aの回りに回転可能に設けられている。
First, in Fig. 3, 11 is a disk, which corresponds to the central axis 11.
It is rotatably provided around a.

この円板11の周縁部には、第2図に示すように複数例
えば16個のホログラムレンズ12〜27が配置されて
いる。ここで、16個のホログラムレンズ12〜27に
ついては、第1図にも示すように、中心軸11gを挾ん
で点対称位置に配置されたホログラムレンズ12及び2
0は焦点距Rteaを有し、同ホログラムレンズ13及
び21は焦点距M1.bを有し、同ホログラムレンズ1
4及び22は焦点距1li11.cを有し、同ホログラ
ムレンズ15及び22は焦点距M1.cを有し、同ホロ
、グラムレンズ16及び24は焦点距離1.dををし、
同ホログラムレンズ17及び23は焦点距Mleを有し
、同ホログラムレンズ18及び24は焦点距離シ「を有
し、同ホログラムレンズ19及び25は焦点距1liI
i1.gを有し、同ホログラムレンズ20及び21は焦
点距1li11.hを6するようになっている。この場
合、複数のホログラムレンズ12〜27の焦点距離はS
gi類設定されている。
As shown in FIG. 2, a plurality of hologram lenses 12 to 27, for example, 16, are arranged on the peripheral edge of the disk 11. Here, regarding the 16 hologram lenses 12 to 27, as shown in FIG.
0 has a focal length Rtea, and the hologram lenses 13 and 21 have a focal length M1. b, and the same hologram lens 1
4 and 22 have focal lengths of 1li11. The hologram lenses 15 and 22 have focal lengths M1. The holo-gram lenses 16 and 24 have a focal length of 1.c. do d,
The hologram lenses 17 and 23 have a focal length Mle, the hologram lenses 18 and 24 have a focal length S, and the hologram lenses 19 and 25 have a focal length 1liI.
i1. g, and the hologram lenses 20 and 21 have a focal length of 1li11. h is set to 6. In this case, the focal length of the plurality of hologram lenses 12 to 27 is S
gi class is set.

一方、28はヘリウムネオンレーザ光源等よりなる光源
で、これはレーザビーム等よりなる光ビ−ム29を上述
のホログラムレンズ12〜27に照射する。そして、先
ビーム29は、ホログラムレンズ12〜27によりビー
ム径が絞られて上述の焦点距離1.a、I、hだけ離れ
た焦点A−Hで集光する走査光30となるようになって
いる。また、31は表面に例えば口承しないバーコード
が設けられた被走査体であり、この被走査体31は第1
図中黒点Aと焦点Hとの間及びそれらの近傍に位置した
とき走査光30により走査されてその反射光32が検出
素子等よりなる受光器33に受光され、以て上記バーコ
ードの読取りが行なわれるように構成されている。ここ
で、ホログラムレンズ12〜27の透過率は、第4図に
示すように焦点距i!i11.a−1,hに応じて波I
Pに従って変化するようになっており、走査光30の光
の強さを焦点距離シa−lhに応じて変化させることに
より、被走査体31が焦点Aと焦点Hの間及びそれらの
近傍のどこに位置するかにかかわらず、受光器33に受
光される反射光32の光の強さが略所定の強さに設定さ
れるようになっている。そして、このようなホログラム
レンズ12〜27により光調両手段34が構成されてい
る。
On the other hand, 28 is a light source such as a helium neon laser light source, which irradiates the above-mentioned hologram lenses 12 to 27 with a light beam 29 such as a laser beam. The beam diameter of the forward beam 29 is narrowed down by the hologram lenses 12 to 27, and the focal length is set to 1. The scanning light 30 is condensed at focal points A-H separated by distances a, I, and h. Further, 31 is a scanned object having, for example, a non-oral barcode on its surface, and this scanned object 31 is the first object to be scanned.
When positioned between black point A and focal point H in the figure, or in the vicinity thereof, it is scanned by scanning light 30, and its reflected light 32 is received by a light receiver 33 consisting of a detection element, etc., so that the bar code can be read. is configured to be performed. Here, the transmittance of the hologram lenses 12 to 27 is determined by the focal length i!, as shown in FIG. i11. Wave I according to a-1, h
By changing the light intensity of the scanning light 30 according to the focal length a-lh, the object to be scanned 31 can be detected between the focal points A and H and in the vicinity thereof. Regardless of where it is located, the intensity of the reflected light 32 received by the light receiver 33 is set to approximately a predetermined intensity. The hologram lenses 12 to 27 constitute a light adjustment means 34.

而して、上記構成によれば、16個のホログラムレンズ
12〜27の焦点距H’、a −1hが8ilffi類
設定されているから、光源28からの光ビーム29をホ
ログラムレンズ12〜27に照射すると、円板11が1
回転する毎に焦点A−Hで集光する走査光30が各2回
ずつ被走査体31を走査する。
According to the above configuration, since the focal lengths H', a-1h of the 16 hologram lenses 12 to 27 are set to 8ilffi, the light beam 29 from the light source 28 is directed to the hologram lenses 12 to 27. When irradiated, the disk 11 becomes 1
The scanning light 30 condensed at focal points A to H scans the scanned object 31 twice each time it rotates.

これによって、被走査体31が走査光30の光軸方向に
位置がずれたとき、上記ホログラムレンズ12〜27の
焦点Aと焦点Hとの間及びそれらに近傍する位置に該被
走査体31が位置すれば、走査光30のビーム径を十分
小さくなし得て被走査体31の読取りを行なうことがで
きる。この結果、従来に比べて、読取り可能な距離の範
囲を広くできる。そして、このとき、光調両手段34を
構成するホログラムレンズ12〜27の透過率を第4図
に示すように変化させることによって走査光30の強さ
をホログラムレンズ12〜27の焦点距離1.B−wl
、hに応じて変化させたから、走査光30により被41
′査体31を走査したときの被走査体31からの反射光
32の強さが上記焦点距Mea〜1.hに応じて変化す
る。このため、反射光32が散乱光であるためにその反
射光32の強さが距離の2乗に反比例して弱くなる事情
にあっても、被走査体31が焦点Aと焦点Hとの間及び
それらに近傍する位置のどこに位置するかにかかわらず
、受光器33に受光される反射光32の強さは略所定の
強さに設定されるようになり、従って従来とは異なり読
取り可能な距離の範囲を広くしても読取りが可能となる
As a result, when the object to be scanned 31 is displaced in the optical axis direction of the scanning light 30, the object to be scanned 31 is located between and near the focal points A and H of the hologram lenses 12 to 27. If it is located, the beam diameter of the scanning light 30 can be made sufficiently small, and the object 31 to be scanned can be read. As a result, the readable distance range can be made wider than in the past. At this time, by changing the transmittance of the hologram lenses 12 to 27 constituting the light adjustment means 34 as shown in FIG. 4, the intensity of the scanning light 30 is adjusted to 1. B-wl
, h, the scanned light 30
'The intensity of the reflected light 32 from the scanned object 31 when the scanning object 31 is scanned is the focal length Mea~1. It changes depending on h. Therefore, even if the reflected light 32 is scattered light and the intensity of the reflected light 32 becomes weaker in inverse proportion to the square of the distance, the scanned object 31 is located between the focal points A and H. The intensity of the reflected light 32 received by the light receiver 33 is set to approximately a predetermined intensity regardless of where it is located in the vicinity of the reflected light 32. Reading is possible even if the distance range is widened.

また、上記実施例では、機械的な駆動部は、円板11の
回転駆動部だけであるから、走査光の焦点を被走査体に
合せるために例えば自動焦点合せ機構を設けるものに比
べて、構成が簡単化され且つ装置の信頼性も向上する。
In addition, in the above embodiment, the only mechanical drive unit is the rotation drive unit for the disk 11, so compared to an example in which an automatic focusing mechanism is provided to focus the scanning light on the object to be scanned, The configuration is simplified and the reliability of the device is improved.

尚、上記実施例においては、光調両手段34として、ホ
ログラムレンズ12〜27の透過率を焦点距AI(a 
−< hに応じて変化させる構成を用いるようにしたが
、これに代えて、例えば光源の出力をホログラムレンズ
の焦点距離に応じて変化させる構成を用いても良い。ま
た、ホログラムレンズ12〜27の焦点距Aft/a−
(hを8種類設定したが、これに限られるものではなく
、ホログラムレンズの焦点距離は少なくとも2種類設定
すれば良い。更に、ホログラムレンズ12〜27は透過
形のものを用いたが、反射形のものを用いても良い。更
にまた、ホログラムレンズ12〜27を配置した円板1
1を光源28の出力側に設けるのみとしたが、ホログラ
ムレンズを配置した円板を被走査体からの反射光を受光
する受光側にも設けるようにしても良い。
In the above embodiment, as the light adjustment means 34, the transmittance of the hologram lenses 12 to 27 is determined by the focal length AI (a
-< h Although a configuration is used in which the output is changed according to h, instead of this, for example, a configuration may be used in which the output of the light source is changed according to the focal length of the hologram lens. Moreover, the focal length Aft/a- of the hologram lenses 12 to 27 is
(Although eight types of h were set, the invention is not limited to this, and the focal length of the hologram lens may be set to at least two types.Furthermore, the hologram lenses 12 to 27 used transmissive types, but reflective types Furthermore, a disk 1 on which hologram lenses 12 to 27 are arranged may be used.
1 is only provided on the output side of the light source 28, but a disk on which a hologram lens is arranged may also be provided on the light receiving side that receives reflected light from the object to be scanned.

[発明の効果] 本発明は以上の説明から明らかなように、複数のホログ
ラムレンズの焦点距離を少なくとも2種類設定すると共
に、走査光の強さを前記ホログラムレンズの焦点距離に
応じて変化させる光調両手段を設ける構成としたので、
被走査体が走査光の光軸方向に位置がずれるような場合
においても、読取り可能な距離の範囲を広くできるとい
う優れた効果を奏する。
[Effects of the Invention] As is clear from the above description, the present invention provides a light beam that sets at least two types of focal lengths for a plurality of hologram lenses and changes the intensity of scanning light according to the focal lengths of the hologram lenses. Since the structure is equipped with a control means,
Even when the object to be scanned is misaligned in the optical axis direction of the scanning light, the excellent effect of widening the readable distance range is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明の一実施例を示すもので、第
1図は側面図、第2図は円板の正面図、第3図は斜現図
、第4図はホログラムレンズの透過率と焦点距離との関
係を示す特性図である。また、第5図乃至第7図は従来
構成を示すそれぞれ第3図相当図である。 図面中、11は円板、12〜27はホログラムレンズ、
28は光源、31は被走査体、34は光調節手段を示す
。 出願人  株式会社  東  芝 kA1図 第2図 第3図 焦点路!(読取l)距la)→ 第4図 第5図
Figures 1 to 4 show an embodiment of the present invention, with Figure 1 being a side view, Figure 2 being a front view of the disk, Figure 3 being a perspective view, and Figure 4 being a hologram lens. FIG. 3 is a characteristic diagram showing the relationship between transmittance and focal length. Further, FIGS. 5 to 7 are views corresponding to FIG. 3, respectively, showing the conventional configuration. In the drawing, 11 is a disk, 12 to 27 are hologram lenses,
28 is a light source, 31 is a scanned object, and 34 is a light adjustment means. Applicant Toshiba Corporation kA1 Figure 2 Figure 3 Focal path! (Reading l) Distance la) → Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 1、周縁部に複数のホログラムレンズを配置した円板を
回転可能に設け、上記ホログラムレンズに光源からの光
ビームを照射することによりその光ビームのビーム径を
絞って走査光とし、この走査光により被走査体を走査し
て読取るようにしたものであって、前記複数のホログラ
ムレンズの焦点距離を少なくとも2種類設定すると共に
、前記走査光の強さを前記ホログラムレンズの焦点距離
に応じて変化させる光調節手段を設けたことを特徴とす
る光走査装置。
1. A circular plate with a plurality of hologram lenses arranged around its periphery is rotatably provided, and by irradiating the hologram lens with a light beam from a light source, the beam diameter of the light beam is narrowed to become scanning light, and this scanning light The object to be scanned is scanned and read by the method, in which at least two types of focal lengths of the plurality of hologram lenses are set, and the intensity of the scanning light is changed according to the focal length of the hologram lenses. An optical scanning device characterized in that it is provided with a light adjusting means for adjusting the light.
JP63092447A 1988-04-14 1988-04-14 Optical scanner Pending JPH01262521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63092447A JPH01262521A (en) 1988-04-14 1988-04-14 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63092447A JPH01262521A (en) 1988-04-14 1988-04-14 Optical scanner

Publications (1)

Publication Number Publication Date
JPH01262521A true JPH01262521A (en) 1989-10-19

Family

ID=14054661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63092447A Pending JPH01262521A (en) 1988-04-14 1988-04-14 Optical scanner

Country Status (1)

Country Link
JP (1) JPH01262521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230286A (en) * 1990-02-06 1991-10-14 Fujitsu Ltd Bar code reader

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03230286A (en) * 1990-02-06 1991-10-14 Fujitsu Ltd Bar code reader

Similar Documents

Publication Publication Date Title
JPH08305786A (en) Bar-code scanning reader
JP2008507758A (en) Electro-optic reader with improved laser intensity modulation over an extended operating range
US6029893A (en) Optical scanner having a reflected light collector including holographic optical elements
CA2169865C (en) Optical reflection sensing arrangement for scanning devices
JPH06242391A (en) Optical scanning type picture reader
JPH01262521A (en) Optical scanner
JPH03127191A (en) Optical scanner
US4739158A (en) Apparatus for the detection of pattern edges
JPS61128522A (en) Focussing device
US20060113393A1 (en) Optical scanner
JP3480172B2 (en) Defocus correction device and light beam recording device
JP2602173Y2 (en) Code reader
JP2751644B2 (en) Optical scanning device
JP2788317B2 (en) Scanning pattern forming device for bar code reader
JP2004020441A (en) Apparatus for reading information on micro array
JP3577905B2 (en) Manufacturing method of laser array image forming apparatus
JPH0453953Y2 (en)
JP3800756B2 (en) Optical information reader
JPS63217318A (en) Optical scanner
JP3633736B2 (en) Optical dimension measuring device
JP2652661B2 (en) Scanning optical reader
JPH02157982A (en) Laser bar code scanner
JPS6236822A (en) Optical positioning device
JPH11133322A (en) Optical scanner
JPS62254115A (en) Light beam scanning device