JPH01262427A - Method and instrument for measuring ultraviolet ray of sunlight - Google Patents

Method and instrument for measuring ultraviolet ray of sunlight

Info

Publication number
JPH01262427A
JPH01262427A JP9116188A JP9116188A JPH01262427A JP H01262427 A JPH01262427 A JP H01262427A JP 9116188 A JP9116188 A JP 9116188A JP 9116188 A JP9116188 A JP 9116188A JP H01262427 A JPH01262427 A JP H01262427A
Authority
JP
Japan
Prior art keywords
amount
light
ultraviolet
sunlight
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9116188A
Other languages
Japanese (ja)
Inventor
Fumio Koike
文雄 小池
Atsuyuki Kato
淳之 加藤
Kenji Kawai
健司 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP9116188A priority Critical patent/JPH01262427A/en
Publication of JPH01262427A publication Critical patent/JPH01262427A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light

Abstract

PURPOSE:To calculate the energy quantity of the UV rays harmful to the human body by detecting quantity of the received irradiation light in the prescribed wavelength range contained in the sunlight and calculating the specific quantity of the rays in a specific wavelength range. CONSTITUTION:A sensor element 1 transmits the output signal corresponding to the quantity of the received light to a signal processing circuit 10 when the element 1 receives the irradiation light in the prescribed wavelength range in the sunlight. The electric signal subjected to signal processing is inputted to a miroprocessor 13. The microprocessor 13 calculates the energy quantity of the UV A wave or UV B wave or the total UV quantity by the computation equation stored in a memory 14. The microprocessor 13 compares the energy quantity of the UV A wave or B wave or the total UV quantity determined by the computation with the threshold value set by a threshold value setting mechanism 15. An alarm signal is outputted to a display part 16 and an alarm 17 when the respective energy quantities or the total UV quantity exceeds the threshold value. The energy quantity of the UV rays harmful to the human body is thereby calculated.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、例えば日光浴などの際に太陽光に含まれた
有害紫外線量を検出する太陽光の紫外線測定方法および
その装置に関するものである。
The present invention relates to a method and apparatus for measuring ultraviolet rays in sunlight, which detects the amount of harmful ultraviolet rays contained in sunlight during, for example, sunbathing.

【従来の技術】[Conventional technology]

地表に到達する太陽光のうち、波長290 nm以下の
紫外光は、地表から高度25km前後の成層圏内のオゾ
ンに吸収されるため、地表に降り注ぐ太陽光は波長29
0nm以上の光である。 ところが、最近、調髪用や殺虫剤のスプレー類、冷蔵庫
等の冷媒、半導体加工の洗浄剤などに多用されているフ
ロンガス(弗素、塩素を含む有機化合物、例えばフロン
13(CCIF:l)、フロン14(CF4)、フロン
23(CHF:l)等)が成層圏に蓄積してオゾン層を
破壊し、地上に降り注く波長の短い紫外線量を増加させ
る恐れがあることが指摘されている。 太陽光中の紫外線が人体に与える悪影響としては、UV
−A (波長315〜400nm)による皮膚の色素沈
着やUV−B (波長280〜315nm)による皮膚
の紅斑、眼炎(結膜炎、角膜炎)等が既に知られており
、上記紫外線量の増加は大きな問題となりつつある。 このような問題に対処する防衛策の一つとして、太陽光
を浴びる際に各自が自己の受ける紫外線量を把握する方
法が考えられる。 そして、この方法による場合、現状では紫外線量を把握
するにあたり本格的な計測用の紫外線測定装置を使用せ
ざるを得ない。
Of the sunlight that reaches the earth's surface, ultraviolet light with a wavelength of 290 nm or less is absorbed by ozone in the stratosphere at an altitude of about 25 km from the earth's surface, so the sunlight that falls on the earth's surface has a wavelength of 290 nm or less.
It is light of 0 nm or more. However, recently, Freon gas (organic compounds containing fluorine and chlorine, such as Freon-13 (CCIF: l), Freon-14 It has been pointed out that fluorocarbons (CF4), Freon-23 (CHF:l), etc.) can accumulate in the stratosphere, destroy the ozone layer, and increase the amount of short-wavelength ultraviolet rays that fall on the ground. The harmful effects of ultraviolet rays in sunlight on the human body include
It is already known that skin pigmentation caused by -A (wavelength 315 to 400 nm) and skin erythema and ophthalmitis (conjunctivitis, keratitis) caused by UV-B (wavelength 280 to 315 nm) are caused by the increase in the amount of ultraviolet rays mentioned above. This is becoming a big problem. One possible defensive measure to deal with this problem is to monitor the amount of UV rays each person receives when exposed to sunlight. If this method is used, at present, a full-scale ultraviolet measuring device must be used to determine the amount of ultraviolet rays.

【発明が解決しようとする課B】[Question B that the invention attempts to solve]

しかし、従来の計測用の紫外線測定装置は、その取り扱
いが非常に面倒であり、日常生活では使用に適さず、更
に検出した紫外線量が人体に悪影響を与えるものである
か否かの判断を利用者自ら行わなければならないという
問題点があった。 この発明は上記のような問題点を解消するためになされ
たもので、日光浴などの際における太陽光に含まれた特
定光線量を容易に検出でき、この特定光線量から皮膚に
悪影響を及ぼす紫外線エネルギー量を容易に算出するこ
とができ、それによって皮膚の損傷を未然に防止できる
太陽光の紫外線測定方法およびその装置を得ることを目
的とする。
However, conventional ultraviolet measurement devices are very difficult to handle and are not suitable for use in daily life. The problem was that the person had to do it himself. This invention was made in order to solve the above-mentioned problems, and it is possible to easily detect a specific amount of light contained in sunlight during sunbathing, etc., and from this specific amount of light, ultraviolet rays that have an adverse effect on the skin can be detected. The object of the present invention is to provide a method and device for measuring ultraviolet rays of sunlight, which can easily calculate the amount of energy and thereby prevent damage to the skin.

【課題を解決するための手段】[Means to solve the problem]

この発明に係る太陽光の紫外線測定方法は、太陽光に含
まれた所定波長範囲の照射光を受光して該受光量を検出
し、該受光量から特定波長範囲内の特定光線量を演算に
より算出し、この特定光線量から人体に有害な紫外線エ
ネルギー量を算出するものである。 なお、上記照射光は太陽光中の可視光、または所定波長
範囲内の紫外線であってもよく、また、上記特定光線量
は太陽光中の紫外線であり、この紫外線は波長の長い紫
外線または波長の短い紫外線であってもよく、その何れ
の場合であっても同様の効果が得られる。 また、この発明に係る紫外線測定装置は、太陽光中の所
定波長範囲内の照射光を受光して該受光量に応じた電気
信号を出力するセンサ素子と、このセンサ素子の出力信
号を入力して信号処理を行う信号処理回路と、この信号
処理回路からの入力信号により上記受光量から特定光線
量を演算により求め、求められた特定光線量から人体に
有害な紫外線エネルギー量を算出する演算回路とを備え
たものである。更に、この演算回路は、演算により算出
した紫外線エネルギー量が予め設定された闇値に達した
時点で警報を発する警報手段を備えている。
The method for measuring ultraviolet rays of sunlight according to the present invention involves receiving irradiation light in a predetermined wavelength range contained in sunlight, detecting the amount of the received light, and calculating a specific amount of light within a specific wavelength range from the amount of received light. The amount of ultraviolet energy harmful to the human body is calculated from this specific amount of light. In addition, the above-mentioned irradiation light may be visible light in sunlight or ultraviolet rays within a predetermined wavelength range, and the above-mentioned specific light dose is ultraviolet rays in sunlight, and this ultraviolet rays may be ultraviolet rays with long wavelengths or The same effect can be obtained in either case. Further, the ultraviolet measuring device according to the present invention includes a sensor element that receives irradiated light within a predetermined wavelength range in sunlight and outputs an electrical signal according to the amount of received light, and an output signal of this sensor element. a signal processing circuit that performs signal processing based on the input signal from the signal processing circuit; and an arithmetic circuit that calculates a specific light dose from the received light amount using input signals from the signal processing circuit, and calculates the amount of ultraviolet energy harmful to the human body from the determined specific light dose. It is equipped with the following. Further, this arithmetic circuit includes an alarm means that issues an alarm when the amount of ultraviolet energy calculated by the arithmetic operation reaches a preset darkness value.

【作 用】[For use]

この発明の紫外線測定方法では、太陽光に含まれた所定
波長範囲の照射光を受光することにより該受光量が検出
され、この受光量に基づく演算を行って特定波長範囲内
の特定光線量が算出され、かつ、この特定光線量から人
体に有害な紫外線エネルギー量が算出される。 また、この発明の紫外線測定装置は、太陽光中の所定波
長範囲内の照射光をセンサ素子が受光することにより、
該センサ素子は受光量に応じた出力信号を信号処理回路
に発信し、この信号処理回路で信号処理された出力信号
を演算回路が入力することにより、該演算回路は、上記
受光量から人体に有害な紫外線エネルギー量を演算によ
り求める。そして、求められた紫外線エネルギー量が設
定闇値に達した時点で上記演算回路から警報手段に警報
信号が送られることにより、上記警報手段が警報を発す
る。この警報によって、日光浴をやめるれば、過剰日光
浴による皮膚の損傷が未然に防止できる。
In the ultraviolet measuring method of the present invention, the amount of received light is detected by receiving irradiated light in a predetermined wavelength range contained in sunlight, and calculations are performed based on this received amount of light to determine the specific amount of light within the specific wavelength range. The amount of ultraviolet energy harmful to the human body is calculated from this specific amount of light. Further, the ultraviolet ray measurement device of the present invention has a sensor element that receives irradiated light within a predetermined wavelength range in sunlight.
The sensor element transmits an output signal according to the amount of light received to a signal processing circuit, and the arithmetic circuit inputs the output signal processed by the signal processing circuit, so that the arithmetic circuit detects the amount of light received by the human body based on the amount of light received. Calculate the amount of harmful ultraviolet energy. Then, when the determined amount of ultraviolet energy reaches the set darkness value, an alarm signal is sent from the arithmetic circuit to the alarm means, so that the alarm means issues an alarm. This warning can help prevent skin damage caused by excessive sun exposure by stopping sunbathing.

【実施例】【Example】

以下、この発明の一実施例を図面に基づいて説明する。 第1図はこの発明の一実施例による紫外線測定装置のシ
ステムブロック図、第2図は紫外線センサ素子の概略的
な側面図である。 図において、1は太陽光に含めれた紫外線の所定波長領
域(290〜400nm)の光にのみ感度を有するセン
サ素子であり、ある波長範囲の紫外線のみを透過させる
紫外線透過フィルタ2と、この紫外線透過フィルタ2を
透過した紫外線に感度のある半導体受光素子3とからな
っている。この半導体受光素子3としては、例えばシリ
コン系の太陽電池や化合物半導体フォトダイオード等が
用いられる。 従って、上記センサ素子1は、太陽光中の所定波長範囲
の紫外線(照射光)を受光することにより、その紫外線
の照度(強さ)に応じた電気信号を出力する。 lOは上記センサ素子1の出力信号を入力して信号処理
を行う信号処理回路で、上記センサ素子1の出力信号を
入力して増幅する増幅器11と、この増幅器11からの
出力信号をA/D変換するA/D変換器12とからなっ
ている。このA/D変換器12は、次に述べるA変換ま
たはB変換の何れを行うものであってもよい。 A変換;nビットのA/D変換器12を使用し、一定時
間tごとにnビットの瞬時値信号を出力する。 B変換;増幅器11からの入力信号を積分し、−定のエ
ネルギー量に達した時点で1パルス出力する。 13は上記A/D変換器12でデジタル化された信号を
入力し、この入力信号を演算によって紫外線エネルギー
量に変換するマイクロプロセッサ(演算回路)であり、
このマイクロプロセッサ13は、上記A変換またはB変
換に対応した何れかの演算を行うもので、その演算式を
次に述べる。 A変換の場合は、各瞬時値E+、EzEi  ・・・E
、を加算し、これに時間tを乗じて更に係数k。 をかける下記(1)式。 E=に、−tΣE ・・・・(1) この(1)式によって紫外線エネルギー量J / cm
”を求める。 B変換の場合は、パルスのカウント値に1パルス相当分
のエネルギーIk!を乗じることで紫外線エネルギー量
J/cm”を求める下記(2)式。 E”kz N (Nはパルス数)・・・(2)また、上
記マイクロプロセッサ13は、上記A/D変換器12か
らの入力信号に基づいて特定紫外線エネルギー量(特定
波長の特定光線量)の演算をも行う。 ここで、太陽光中の紫外線について説明する。 太陽光中の紫外線は、第3図に示す太陽光スペクトルの
うち、波長290nm〜400nm範囲(所定波長範囲
)の光であり、この紫外線は更に上記所定波長範囲内に
おける波長の短い290nm〜320nm範囲の紫外線
B波(特定光線量)と、波長の長い320nm〜400
nm範囲の紫外線A波(特定光線量)とに分けられる。 そして、かかる太陽光中の紫外線量は、例えば1971
年の国際照明委員会によって下記の表で示すように決定
されている。 表 このような太陽光中の紫外線量の割合は、測定環境や測
定条件によって変化するが、全紫外線量に対する紫外線
A波の割合あるいは紫外線B波の割合、さらに紫外線A
波とB波の比率は場所に関係なくほぼ一定である。 従って、例えば全紫外線量と紫外線B波量との関係は第
4図に示すような関係にあり、全紫外線量をモニターし
てその値から紫外線B波量を下記の演算式(3)で算出
することができる。即ち、全紫外線量をx(J/cm”
)、紫外線B波量をy(J/cm”)とすると、近似式 y =2.19X10 ”x” +3.12x x −
1,06X10 ” ・・(3)で紫外線B波量が求め
られる。 なお、このような紫外線量の算出は、上記(3)式以外
に次のような方法で行うこともできる。 (a)紫外線A波量をモニターし、紫外線B波量を演算
により算出する方法。 (b)紫外線B波量をモニターし、紫外線A波量を演算
により算出する方法。 (c)全紫外線量と紫外線A波をモニターし、両者の差
から紫外線B波を算出する方法。 (d)全紫外線量と紫外線B波をモニターし、両者の差
から紫外線A波を算出する方法。 そこで、この発明の実施例においては、上記マイクロプ
ロセッサ13が上記(3)式をも演算するものとして説
明する。 第1図に戻って、14は上記演算式(1)〜(3)を予
め記憶させたメモリ、15は閾値設定機構であり、この
闇値設定機構15によって、利用者の皮膚が肌色に応じ
て上記紫外線A波およびB波を許容し得る闇値(許容紫
外′!aN)が予め設定される。 16は警報手段としての表示部、17は同じく警報手段
としてのアラームであり、これらの表示部16およびア
ラーム17は、上記マイクロプロセッサ13による演算
結果の紫外線エネルギー量J / c m ”が上記闇
値に達した時点における上記マイクロプロセッサ13の
出力信号を人力して作動する。18は上記表示部16の
クリアスイッチおよび上記アラーム17のストンプボタ
ン等を有して警報状態の解除および初期状態への復帰を
行う機能設定機構、19はクロック機構、20は太陽光
紫外線検出回路の電源である。 次に動作について説明する。 日光浴などの際に利用者は電a20を投入し、かつ闇値
設定機構15を操作して自らの皮膚質に対応した闇値を
設定する。 この状態において、センサ素子lが太陽光を受光するが
、この場合、センサ素子1は紫外線透過フィルタ2を透
過した所定波長の紫外線を受光し、その受光量(紫外線
照度)に応じた電気信号を信号処理回路10に出力する
ことにより、この信号処理回路10で信号処理される。 その信号処理された電気信号をマイクロプロセッサ13
は人力する。これにより、マイクロプロセッサ13は、
メモリ14に記憶された演算式により、紫外線A波エネ
ルギー量または紫外線B波エネルギー量あるいは全紫外
線量を算出する。例えば、センサ素子1が290〜40
0nm波長の全紫外線量を検出した場合、マイクロプロ
セッサ13は(3)式を実行することにより、紫外線B
波エネルギー量y(J/cm”)が求められる。また、
上記マイクロプロセッサ13で紫外線A波エネルギー量
Zを求めることもでき、この場合は、Z=x−yなる演
算式をメモリ14に予め記憶させておけばよい。そして
、上記マイクロプロセッサ13は、上述のような演算で
求められた紫外線A波または紫外線B波のエネルギー量
あるいは全紫外線量を、闇値設定機構15で設定された
闇値と比較し、上記各エネルギー量あるいは全紫外線量
が上記闇値を越えた時、表示部16およびアラームI7
に警報信号を出力する。これにより、表示部16にエネ
ルギー量が表示されると共に、アラーム17が警報を発
する。この警報で日光浴をやめれば、皮膚の損傷(紅斑
、水庖、色素沈着によるシミ、ソバカス)を未然に防止
することができる。 以上は、センサ素子1が太陽光中の所定波長範囲の紫外
線を受光して該受光量に応じた電気信号を出力すること
により、マイクロプロセッサ13が受光紫外線エネルギ
ー量を演算してその結果の算出値が闇値を越えた時に警
報信号を出力する場合であるが、この発明は太陽光中の
可視光線によって人体に有害な紫外線エネルギー量を算
出する方法をとることもできる。この場合、センサ素子
1は太陽光中の可視光VA領領域ある波長範囲(例えば
400〜700nm)の光にのみ感度を有する可視光線
センサ素子とする。 ここで、太陽光のスペクトルについで第3図を参照して
再度述べると、太陽光中には、上述した400nm以下
の波長範囲にある紫外線のほかに、400nm〜780
nmの可視光と、780nm以上の赤外光が含まれてお
り、太陽光中で上記各光が占める割合は、紫外線が全体
の約6%、可視光が約52%、赤外光が約42%である
。このように、可視光は紫外線に比べて光量が可成り多
いため、紫外線よりも容易に検出することができる。 そして、可視光線量と紫外線量の比あるいは赤外光線量
と紫外線量の比は場所に関係なく略一定の関係を示す。 例えば、太陽光中の可視光ff(400〜700nm)
と紫外線量(300〜400nm)の関係は第5図に示
すような関係にあり、可視光線量をx(J/cm2)と
すると、紫外線量Y(J/cm2)は、 y#0.136xx−0,292=14)の関係式で近
似的に求めることができる。 また、全紫外線量と紫外線A波量の関係あるいは全紫外
vA量と紫外線B波量の関係も、第4図に基づいて説明
した(3)式で表すことができる。 従って、上記(3)および(4)式をメモリ14に予め
記憶させておけば、上記可視光線センサ素子lで受光し
た可視光線量に基づいてマイクロプロセッサ13が上記
(4)式を実行することにより、紫外線Iy(J/cm
”)が求められ、また、上記式(3)を実行することに
より、紫外線B波量が求められる。そして、上述の場合
と同様に、求められた紫外線エネルギー量を闇値を比較
し、この闇値を上記紫外線エネルギー量が越えた時点で
マイクロプロセッサ13から警報信号が出力されて表示
部16およびアラーム17が動作する。 第6図にはこの発明を商品化する場合の具体例を示す斜
視図であり、第6図(A)は携帯用置物形式、第6図(
B)は腕時計式、第6図(C)は帽子にピンまたはフッ
ク止め等で取付けられたバッチ式、第6図(D)は広告
塔形式としたそれぞれの紫外線センサ本体25を示し、
この紫外線センサ本体25内に第1図の紫外線センサ回
路が組込まれ、かつ、その紫外線センサ本体25の表面
にセンサ素子lの受光部(紫外線または可視光線透過フ
ィルタ2)と闇値設定機構(設定用嫡子)15および表
示部16、アラーム17、電a20のスイッチをそれぞ
れ表出させた構成としている。 以上において、第6図(A)〜(C)の紫外線センサ本
体25は容易に携帯でき、使用に際しては使用者の皮膚
の強さに応じた闇値を設定嫡子15により設定し、スタ
ートスイッチ20を押して日光浴する傍らに置いておく
。もって、表示部16およびアラーム17の作動による
警報時点で日光浴をやめることにより、過剰日光浴によ
る皮膚の損傷を未然に防止できる。第6図(D)の場合
は、海辺やスポーツ会場などに設置され、表示部16や
アラーム17は人目につくようにし、使用に際しては1
日ごとにリセットし、現在の照度での日光浴可能時間や
成る時刻からの積算量などを表示部16でメンセージな
どを順次表示させたり、アラーム17による音声で知ら
せる。
Hereinafter, one embodiment of the present invention will be described based on the drawings. FIG. 1 is a system block diagram of an ultraviolet measuring device according to an embodiment of the present invention, and FIG. 2 is a schematic side view of an ultraviolet sensor element. In the figure, 1 is a sensor element that is sensitive only to light in a predetermined wavelength range (290 to 400 nm) of ultraviolet light contained in sunlight, and an ultraviolet transmission filter 2 that transmits only ultraviolet light in a certain wavelength range; It consists of a semiconductor light receiving element 3 that is sensitive to ultraviolet light transmitted through a filter 2. As this semiconductor light-receiving element 3, a silicon-based solar cell, a compound semiconductor photodiode, or the like is used, for example. Therefore, the sensor element 1 receives ultraviolet rays (irradiation light) in a predetermined wavelength range in sunlight and outputs an electric signal corresponding to the illuminance (intensity) of the ultraviolet rays. 1O is a signal processing circuit that inputs the output signal of the sensor element 1 and processes the signal, and includes an amplifier 11 that inputs and amplifies the output signal of the sensor element 1, and an A/D converter for the output signal from the amplifier 11. It consists of an A/D converter 12 for conversion. This A/D converter 12 may perform either A conversion or B conversion described below. A conversion: An n-bit A/D converter 12 is used to output an n-bit instantaneous value signal every fixed time t. B conversion: Integrates the input signal from the amplifier 11, and outputs one pulse when it reaches a certain amount of energy. 13 is a microprocessor (arithmetic circuit) that inputs the signal digitized by the A/D converter 12 and converts this input signal into an amount of ultraviolet energy through calculation;
This microprocessor 13 performs any calculation corresponding to the above-mentioned A conversion or B conversion, and the calculation formula will be described below. In the case of A conversion, each instantaneous value E+, EzEi ...E
, is multiplied by the time t, and then the coefficient k is obtained. Equation (1) below. E=, -tΣE...(1) According to this formula (1), the amount of ultraviolet energy J/cm
In the case of B conversion, the following equation (2) calculates the ultraviolet energy amount J/cm by multiplying the pulse count value by the energy Ik! equivalent to one pulse. E”kz N (N is the number of pulses) (2) The microprocessor 13 also calculates a specific amount of ultraviolet energy (a specific amount of light at a specific wavelength) based on the input signal from the A/D converter 12. The calculation is also performed. Here, the ultraviolet rays in sunlight will be explained. The ultraviolet rays in sunlight are light in the wavelength range of 290 nm to 400 nm (predetermined wavelength range) in the sunlight spectrum shown in Fig. 3. The ultraviolet rays further include ultraviolet B waves (specific light dose) with short wavelengths in the range of 290 nm to 320 nm within the above-mentioned predetermined wavelength range, and ultraviolet B waves (specific light dose) with long wavelengths in the range of 320 nm to 400 nm.
It is divided into ultraviolet A waves (specific light dose) in the nanometer range. The amount of ultraviolet rays in sunlight is, for example, 1971
The standards were determined by the International Commission on Illumination in 2007 as shown in the table below. Table: The proportion of ultraviolet rays in sunlight varies depending on the measurement environment and measurement conditions, but the proportion of ultraviolet A waves or ultraviolet B waves to the total amount of ultraviolet rays, as well as the proportion of ultraviolet A waves,
The ratio of waves to B waves is almost constant regardless of location. Therefore, for example, the relationship between the total amount of ultraviolet rays and the amount of ultraviolet B waves is as shown in Figure 4, and the amount of ultraviolet B waves can be calculated from that value by monitoring the total amount of ultraviolet rays using the following formula (3). can do. In other words, the total amount of ultraviolet rays is x (J/cm”
), and the amount of ultraviolet B waves is y (J/cm"), the approximate formula y = 2.19X10 "x" + 3.12x x -
1,06X10''...(3) calculates the amount of ultraviolet B rays. In addition to formula (3) above, calculation of the amount of ultraviolet rays can also be performed using the following method. (a) A method in which the amount of ultraviolet A is monitored and the amount of ultraviolet B is calculated by calculation. (b) A method in which the amount of ultraviolet B is monitored and the amount of ultraviolet A is calculated by calculation. (c) Total amount of ultraviolet rays and ultraviolet A (d) A method of monitoring the total amount of ultraviolet rays and ultraviolet B waves and calculating ultraviolet A waves from the difference between the two.Therefore, embodiments of the present invention In the following, the explanation will be given assuming that the microprocessor 13 also calculates the above equation (3).Returning to FIG. This is a threshold value setting mechanism, and this dark value setting mechanism 15 presets a dark value (acceptable ultraviolet'!aN) at which the user's skin can tolerate the ultraviolet A and B waves according to the skin color.16 is a display section as a warning means, and 17 is an alarm also as a warning means, and these display section 16 and alarm 17 indicate that the amount of ultraviolet energy J/cm'' calculated by the microprocessor 13 is equal to the darkness value. The output signal of the microprocessor 13 at the time reached is manually operated. 18 is a function setting mechanism that includes a clear switch for the display section 16 and a stomp button for the alarm 17 to cancel the alarm state and return to the initial state; 19 is a clock mechanism; and 20 is a solar ultraviolet detection circuit. It is a power source. Next, the operation will be explained. When sunbathing or the like, the user inserts the A20 and operates the darkness value setting mechanism 15 to set the darkness value corresponding to his/her skin quality. In this state, the sensor element 1 receives sunlight. In this case, the sensor element 1 receives ultraviolet rays of a predetermined wavelength that have passed through the ultraviolet transmission filter 2, and outputs an electric signal according to the amount of received light (ultraviolet illuminance). By outputting the signal to the signal processing circuit 10, the signal is processed by the signal processing circuit 10. The signal-processed electric signal is sent to the microprocessor 13
is done manually. As a result, the microprocessor 13
The amount of energy of ultraviolet A waves, the amount of energy of ultraviolet B waves, or the total amount of ultraviolet rays is calculated using the calculation formula stored in the memory 14. For example, sensor element 1 is 290 to 40
When the total amount of ultraviolet light with a wavelength of 0 nm is detected, the microprocessor 13 executes equation (3) to detect ultraviolet B
The amount of wave energy y (J/cm") is found. Also,
The ultraviolet A-wave energy amount Z can also be determined by the microprocessor 13, and in this case, the arithmetic expression Z=x-y may be stored in the memory 14 in advance. Then, the microprocessor 13 compares the energy amount of ultraviolet A waves or ultraviolet B waves or the total amount of ultraviolet rays obtained by the above-mentioned calculations with the darkness value set by the darkness value setting mechanism 15, and sets each of the above values. When the amount of energy or the total amount of ultraviolet rays exceeds the above darkness value, the display section 16 and alarm I7 are activated.
Outputs an alarm signal. As a result, the amount of energy is displayed on the display section 16, and the alarm 17 issues a warning. If you stop sunbathing in response to this warning, you can prevent skin damage (erythema, blisters, pigmentation spots, and freckles). In the above, the sensor element 1 receives ultraviolet rays in a predetermined wavelength range in sunlight and outputs an electrical signal according to the amount of received light, and the microprocessor 13 calculates the amount of received ultraviolet energy and calculates the result. Although this is a case where an alarm signal is output when the value exceeds the darkness value, the present invention can also adopt a method of calculating the amount of ultraviolet energy harmful to the human body using visible light in sunlight. In this case, the sensor element 1 is a visible light sensor element that is sensitive only to light within a certain wavelength range (for example, 400 to 700 nm) in the visible light VA region of sunlight. Here, to explain the spectrum of sunlight again with reference to Figure 3, in addition to the above-mentioned ultraviolet rays in the wavelength range of 400 nm or less, there are also ultraviolet rays in the wavelength range of 400 nm to 780 nm.
It includes visible light of 780 nm and infrared light of 780 nm or more, and the proportion of each of the above in sunlight is approximately 6% for ultraviolet rays, approximately 52% for visible light, and approximately 52% for infrared light. It is 42%. In this way, since visible light has a considerably larger amount of light than ultraviolet light, it can be detected more easily than ultraviolet light. The ratio of the amount of visible light to the amount of ultraviolet rays or the ratio of the amount of infrared rays to ultraviolet rays shows a substantially constant relationship regardless of location. For example, visible light in sunlight ff (400-700 nm)
The relationship between the amount of UV light and the amount of ultraviolet light (300 to 400 nm) is as shown in Figure 5. If the amount of visible light is x (J/cm2), the amount of ultraviolet light Y (J/cm2) is y#0.136xx -0,292=14). Further, the relationship between the total amount of ultraviolet rays and the amount of ultraviolet A waves or the relationship between the amount of total ultraviolet vA and the amount of ultraviolet B waves can also be expressed by equation (3) explained based on FIG. 4. Therefore, if the above equations (3) and (4) are stored in the memory 14 in advance, the microprocessor 13 can execute the above equation (4) based on the amount of visible light received by the visible light sensor element l. According to the ultraviolet ray Iy (J/cm
”) is obtained, and by executing the above equation (3), the amount of ultraviolet B rays is obtained. Then, in the same way as in the above case, the obtained amount of ultraviolet energy is compared with the dark value, and this When the amount of ultraviolet energy exceeds the darkness value, an alarm signal is output from the microprocessor 13, and the display section 16 and alarm 17 are activated. Fig. 6 is a perspective view showing a specific example of commercializing this invention. Figure 6 (A) is a portable figurine format, Figure 6 (
B) shows the ultraviolet sensor body 25 as a wristwatch type, FIG. 6(C) as a batch type attached to a hat with a pin or hook, etc., and FIG. 6(D) as a billboard type.
The ultraviolet sensor circuit shown in FIG. The configuration is such that the switches for the illegitimate child) 15, the display section 16, the alarm 17, and the electric light a 20 are exposed. In the above, the ultraviolet sensor main body 25 shown in FIGS. 6(A) to 6(C) can be easily carried, and when used, the darkness value corresponding to the strength of the user's skin is set by the eldest child 15, and the start switch 20 is set. Press and keep it near you while sunbathing. Therefore, by stopping sunbathing when the display unit 16 and alarm 17 are activated, skin damage caused by excessive sunbathing can be prevented. In the case of Fig. 6 (D), the display unit 16 and alarm 17 are installed at a beach or sports venue, etc., so that they are conspicuous, and when in use,
It is reset every day, and messages such as the available time for sunbathing at the current illuminance and the accumulated amount since the current illuminance are sequentially displayed on the display section 16, and an alarm 17 is used to notify the user by sound.

【発明の効果】【Effect of the invention】

以上のように、この発明によれば、太陽光に含まれた所
定波長範囲の照射光を受光し、該受光量に基づいて特定
波長の特定光線量を演算により求め、この特定光線量か
ら人体に有害な紫外線エネルギー量を算出できるので、
この算出された紫外線エネルギー量を基に警報信号を取
り出すことができ、これによって、過剰日光浴による皮
膚の損傷を未然に防止できるという効果が得られる。
As described above, according to the present invention, irradiation light in a predetermined wavelength range contained in sunlight is received, a specific light dose of a specific wavelength is calculated based on the received light amount, and from this specific light dose, the human body It is possible to calculate the amount of ultraviolet energy that is harmful to
An alarm signal can be extracted based on the calculated amount of ultraviolet energy, which has the effect of preventing skin damage caused by excessive sunbathing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による紫外線測定装置のシ
ステムブロック図、第2図はセンサ素子の概略的な側面
図、第3図は太陽光中の分光照射照度スペクトル図、第
4図は全紫外線量と紫外線B波との関係を示す図、第5
図は太陽光中の可視光線量と紫外線量の関係を示す図、
第6図はこの発明を商品化する場合の具体例を示す斜視
図である。 図において、■はセンサ素子、10信号処理回路、13
はマイクロプロセッサ(演算回路)、16は表示部(警
報手段)17はアラーム(警報手段)である。 特 許 出 願 人  山武ハネウェル株式会社(外2
名) 第3図 波長(n−) 第4図 全紫外線量(J/cs”) 第5図 可視光線1i(J/cs+’) 第6図      m6図 (A)       (B) (C)         (D) 手続補正書(方式) %式% 1、事件の表示   特願昭63−91161号2、発
明の名称 太陽光の紫外線測定方法およびその装置3、補正をする
者 事件との関係 特許出願人 住所
FIG. 1 is a system block diagram of an ultraviolet measuring device according to an embodiment of the present invention, FIG. 2 is a schematic side view of a sensor element, FIG. 3 is a spectral diagram of irradiation intensity in sunlight, and FIG. Diagram showing the relationship between the total amount of ultraviolet rays and ultraviolet B waves, No. 5
The figure shows the relationship between the amount of visible light in sunlight and the amount of ultraviolet rays.
FIG. 6 is a perspective view showing a specific example of commercializing this invention. In the figure, ■ indicates a sensor element, 10 signal processing circuits, 13
16 is a display unit (alarm means); and 17 is an alarm (alarm means). Patent applicant: Yamatake Honeywell Co., Ltd.
Figure 3 Wavelength (n-) Figure 4 Total UV dose (J/cs'') Figure 5 Visible light 1i (J/cs+') Figure 6 m6 (A) (B) (C) (D ) Procedural amendment (method) % formula % 1. Indication of the case Japanese Patent Application No. 63-91161 2. Name of the invention Method and device for measuring sunlight ultraviolet rays 3. Person making the amendment Relationship with the case Patent applicant address

Claims (1)

【特許請求の範囲】 (1)太陽光に含まれた所定波長範囲の照射光を受光し
て該受光量を検出し、該受光量から特定波長範囲内の特
定光線量を演算により算出し、かつ、この特定光線量か
ら人体に有害な紫外線エネルギー量を算出することを特
徴とする太陽光の紫外線測定方法。 (2)上記照射光は太陽光中の可視光であり、上記特定
光線は太陽光中の紫外線である請求項1記載の太陽光の
紫外線測定方法。 (3)上記照射光が所定波長範囲内の紫外線であり、上
記特定光線は特定波長範囲内における波長の長い紫外線
または波長の短い紫外線である請求項1記載の太陽光の
紫外線測定方法。 (4)上記照射光は太陽光中の可視光であり、上記特定
光線は特定波長範囲内における波長の長い紫外線または
波長の短い紫外線である請求項1記載の太陽光の紫外線
測定方法。(5)太陽光中の所定波長範囲内の照射光を
受光して該受光量に応じた電気信号を出力するセンサ素
子と、このセンサ素子の出力信号を入力して信号処理を
行う信号処理回路と、この信号処理回路からの入力信号
により上記受光量から特定光線量を演算により求め、求
められた特定光線量から人体に有害な紫外線エネルギー
量を算出する演算回路とを備えた太陽光の紫外線測定装
置。 (6)上記演算回路は、算出した有害紫外線エネルギー
量が設定値に達した時点で警報を発する警報手段を備え
ている請求項5記載の太陽光の紫外線測定装置。
[Claims] (1) Receive irradiated light in a predetermined wavelength range contained in sunlight, detect the amount of the received light, calculate a specific amount of light within the specific wavelength range from the received amount of light, A method for measuring ultraviolet rays of sunlight, characterized in that the amount of ultraviolet energy harmful to the human body is calculated from this specific amount of light. (2) The method for measuring ultraviolet rays in sunlight according to claim 1, wherein the irradiation light is visible light in sunlight, and the specific light ray is ultraviolet rays in sunlight. (3) The method for measuring ultraviolet rays of sunlight according to claim 1, wherein the irradiation light is an ultraviolet ray within a predetermined wavelength range, and the specific light ray is an ultraviolet ray with a long wavelength or an ultraviolet ray with a short wavelength within the specific wavelength range. (4) The method for measuring ultraviolet rays of sunlight according to claim 1, wherein the irradiation light is visible light in sunlight, and the specific light ray is ultraviolet rays with a long wavelength or ultraviolet rays with a short wavelength within a specific wavelength range. (5) A sensor element that receives irradiated sunlight within a predetermined wavelength range and outputs an electrical signal according to the amount of received light, and a signal processing circuit that inputs the output signal of this sensor element and performs signal processing. and an arithmetic circuit that calculates a specific amount of light from the amount of received light using input signals from the signal processing circuit, and calculates the amount of ultraviolet energy that is harmful to the human body from the determined amount of specific light. measuring device. (6) The solar ultraviolet ray measuring device according to claim 5, wherein the arithmetic circuit includes an alarm means for issuing an alarm when the calculated amount of harmful ultraviolet energy reaches a set value.
JP9116188A 1988-04-13 1988-04-13 Method and instrument for measuring ultraviolet ray of sunlight Pending JPH01262427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9116188A JPH01262427A (en) 1988-04-13 1988-04-13 Method and instrument for measuring ultraviolet ray of sunlight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9116188A JPH01262427A (en) 1988-04-13 1988-04-13 Method and instrument for measuring ultraviolet ray of sunlight

Publications (1)

Publication Number Publication Date
JPH01262427A true JPH01262427A (en) 1989-10-19

Family

ID=14018768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9116188A Pending JPH01262427A (en) 1988-04-13 1988-04-13 Method and instrument for measuring ultraviolet ray of sunlight

Country Status (1)

Country Link
JP (1) JPH01262427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322005B1 (en) * 1998-12-31 2002-06-20 윤종용 UV index display device and method of mobile communication terminal
JP2004205524A (en) * 2004-02-09 2004-07-22 Konami Co Ltd Portable device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524665A (en) * 1978-08-10 1980-02-21 Matsushita Electric Ind Co Ltd Sunburn warning device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524665A (en) * 1978-08-10 1980-02-21 Matsushita Electric Ind Co Ltd Sunburn warning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322005B1 (en) * 1998-12-31 2002-06-20 윤종용 UV index display device and method of mobile communication terminal
JP2004205524A (en) * 2004-02-09 2004-07-22 Konami Co Ltd Portable device and method

Similar Documents

Publication Publication Date Title
US5686727A (en) Ultraviolet exposure detection apparatus
US5151600A (en) Noseshade for monitoring exposure to ultraviolet radiation
US5306917A (en) Electro-optical system for measuring and analyzing accumulated short-wave and long-wave ultraviolet radiation exposure
Huang et al. Review of wearable and portable sensors for monitoring personal solar UV exposure
US10459252B2 (en) Apparatus and method for protecting a user from blue light radiation
US5008548A (en) Personal UV radiometer
AU2001261065B2 (en) Device and method for ultraviolet radiation monitoring
AU2001261065A1 (en) Device and method for ultraviolet radiation monitoring
GB2236182A (en) Ultraviolet radiation dosimeter
JPH01262427A (en) Method and instrument for measuring ultraviolet ray of sunlight
US5034610A (en) Mobile radiation monitor
US10082423B2 (en) Method, electronic device and system for monitoring a skin surface condition
US20040031927A1 (en) Indicating apparatus for skin protection against sunshine
JPH01262425A (en) Ultraviolet sensor for sunlight
GB2158572A (en) Detecting low level radiation sources
JPS6263883A (en) Radiation exposure-quantity measuring instrument with clock
JPH01262426A (en) Ultraviolet-ray quantity integrating method for sunlight
US5401970A (en) Biological UV-B effect monitoring instrument and method
US20030234365A1 (en) Optical detector
JPH071202B2 (en) UV detector
WO2003001164A1 (en) Ultraviolet detection sensor
CN112798551A (en) Portable device for detecting sun-proof effect
SE523729C2 (en) Optical detector arrangement for detecting and registering incident ultraviolet radiation has sensors, which when activated, continuously measure and indicate changes of UV radiation passing through applied protective agent on covering
JPH11125558A (en) Ultraviolet ray detector
SE521065C2 (en) Optical detector arrangement for detecting and registering incident ultraviolet radiation has sensors, which when activated, continuously measure and indicate changes of UV radiation passing through applied protective agent on covering