JPH01262358A - Fuel supply device for internal combustion engine - Google Patents

Fuel supply device for internal combustion engine

Info

Publication number
JPH01262358A
JPH01262358A JP63088639A JP8863988A JPH01262358A JP H01262358 A JPH01262358 A JP H01262358A JP 63088639 A JP63088639 A JP 63088639A JP 8863988 A JP8863988 A JP 8863988A JP H01262358 A JPH01262358 A JP H01262358A
Authority
JP
Japan
Prior art keywords
fuel
pressure
passage
bomb
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63088639A
Other languages
Japanese (ja)
Other versions
JPH0774628B2 (en
Inventor
Tadahiro Yamamoto
忠弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP63088639A priority Critical patent/JPH0774628B2/en
Publication of JPH01262358A publication Critical patent/JPH01262358A/en
Publication of JPH0774628B2 publication Critical patent/JPH0774628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the temperature of liquefied gas fuel in a fuel storage bomb by feeding the fuel from the bomb into a metering solenoid valve after the fuel is pressurized, and by providing a pressure regulator for returning excessive fuel while holding the pressure thereof to a regulated pressure. CONSTITUTION:A liquefied kerosene gas or the like (hereinbelow denoted as fuel) reserved in a fuel bomb 10 is press-fed into a fuel injection nozzle 25 through a metering solenoid valve 16 and a fuel passage 22 under operation of the fuel pump 15 disposed in an outlet passage 13, and is then injected into an intake-air passage 23. Excessive fuel having passed through the metering solenoid valve 16 is returned into the bomb 10 through a passage 17 and a pressure regulator 18 for holding the pressure of fuel at a regulated pressure. In this arrangement, the pressure regulator 18 is disposed in the vicinity of the fuel 10, that is, for example, it may be directly connected to the bomb 10. Thereby, a relative high pressure of the fuel is held until it being discharged into the bomb 10, thereby it is possible to prevent evaporation of the fuel.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えば液化石油ガス等の液化〃スを燃料と
する内燃機関の燃料供給装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fuel supply device for an internal combustion engine that uses liquefied gas, such as liquefied petroleum gas, as fuel.

(従来の技術) 例えば液化石油ガス等、常温でも加圧状態では液体であ
るが、大気圧下で気体となるような液化〃スを燃料とす
る内燃機関では、液化状態で貯蔵している燃料を気化さ
せた後に吸気通路に供給するようになっており、そのた
めに燃料供給vc置は一般的にはptS3図のように構
成されている(昭和55年7月(株)山海堂発行、1゛
自動車工学全書4巻1fソ17 ンzンE/ンJPIS
205頁−f:l52011参照)。
(Prior art) For example, in an internal combustion engine that uses liquefied petroleum gas as fuel, which is a liquid under pressure at room temperature but becomes a gas under atmospheric pressure, the fuel is stored in a liquefied state. After being vaporized, it is supplied to the intake passage, and for this purpose, the fuel supply VC system is generally configured as shown in Fig. PTS3 (July 1980, published by Sankaido Co., Ltd., 1゛Automotive Engineering Complete Book Volume 4 1f So 17 Nzn E/n JPIS
205-f:l52011).

燃料ボンベ(タンク)1に液化状態で貯蔵されている燃
料は、i!5IFr弁2A、2Bを開くと、プレヒータ
3に流れ、ここで予熱された後にベーパライザ4でほぼ
大気圧程度まで減圧されると共に、温水により加熱され
気化する。
The fuel stored in the fuel cylinder (tank) 1 in a liquefied state is i! When the 5IFr valves 2A and 2B are opened, the water flows to the preheater 3, where it is preheated, and then the vaporizer 4 reduces the pressure to approximately atmospheric pressure, and at the same time, it is heated by hot water and vaporized.

プレヒータ3とベーパライザ4にはエンジン5の冷却温
水の一部が循環通路6A6Bにより導かれる。
A portion of hot water for cooling the engine 5 is guided to the preheater 3 and vaporizer 4 through a circulation passage 6A6B.

気化したガス状燃料は吸気管7に設けたミキサ8に導び
がれると共に、エンジン吸入空気量に応じて発生する負
圧に吸引され、空気と所定の割合で混合しながらエンジ
ン5に供給される。
The vaporized gaseous fuel is guided to the mixer 8 provided in the intake pipe 7, is sucked into the negative pressure generated according to the amount of engine intake air, and is supplied to the engine 5 while being mixed with air at a predetermined ratio. Ru.

なお、図中9は燃料の配管で、点線矢印のように燃料が
流れ、また温水の流れは実線の矢印で示しである。
Note that 9 in the figure is a fuel pipe, through which fuel flows as indicated by dotted arrows, and the flow of hot water is indicated by solid arrows.

(発明が解決しようとする課題) ところがこのような燃料供給装置にあっては、液状燃料
を予め気化してから吸気通路に導入するため、吸気通路
に液体燃料をそのまま噴射供給するガソリンエンノンの
ように、噴射燃料が吸入空気から気化熱を奪い去ること
がなく、したがって気化に伴い吸入空気温度が低下する
ことによる、実質的な吸入空気量(質量流ff1)の増
加が望めず、特に高負荷領域におけるエンノンの高出力
化に限界があった。
(Problem to be Solved by the Invention) However, in such a fuel supply device, since the liquid fuel is vaporized in advance and then introduced into the intake passage, it is difficult to use a gasoline engine that injects the liquid fuel directly into the intake passage. As a result, the injected fuel does not remove the heat of vaporization from the intake air, and therefore the intake air temperature decreases due to vaporization, so it is impossible to expect a substantial increase in the amount of intake air (mass flow ff1). There was a limit to the high output of Ennon in the load range.

この対策としては、ガソリンエンジンと同じようにして
、液状燃料をそのまま吸気通路に噴射供給することが考
えられるが(特願昭61−”159301号)、ガソリ
ンに比較して液化石油ガスははるかに気化しやすいため
、エンジンルームの内部が高温のままのエンジンの再始
動時等において、燃料配管の内部で気化により発生した
気泡が抜けず、燃料通路を閉塞して燃料の噴射が円滑に
行なわれなくなり、始動性を者しく悪化させることがあ
った。このような燃料配管における気泡の発生は、ガソ
リンエンジンの燃料噴射装置でもよくやられているよう
に、低温の燃料を燃料ボンベから燃料噴射ノズルの近傍
まで、圧力レギュレータを介して大量に循環させること
により防ぐことはできるが、圧力レギュレータからの還
流燃料は圧力が低いため、燃料ボンベに戻るまでにエン
ジンルームの高熱を受けて気化しやすく、このようにし
て一部に気化燃料を含む燃料が燃料ボンベに大量に′I
l流されると、燃料温度が上昇してボンベの内圧が許容
値以上に高まる危険があった。
As a countermeasure to this problem, it is possible to inject and supply liquid fuel directly into the intake passage in the same way as in a gasoline engine (Japanese Patent Application No. 159301 of 1983), but compared to gasoline, liquefied petroleum gas is far more effective. Because it evaporates easily, when restarting the engine while the inside of the engine compartment remains hot, the bubbles generated by evaporation inside the fuel piping cannot escape, blocking the fuel passage and preventing smooth fuel injection. The occurrence of bubbles in the fuel piping can occur when low-temperature fuel is not transferred from the fuel cylinder to the fuel injection nozzle, as is often the case with fuel injection systems for gasoline engines. This can be prevented by circulating a large amount of fuel through a pressure regulator, but since the pressure of the recirculated fuel from the pressure regulator is low, it is easily vaporized by the high heat in the engine room before returning to the fuel cylinder. In this way, a large amount of fuel, including some vaporized fuel, is stored in the fuel cylinder.
If it were to flow, there was a risk that the fuel temperature would rise and the internal pressure of the cylinder would rise beyond the allowable value.

つまり気化燃料は同じ温度の液化燃料に比較してはるか
に多くの熱を保有しており、このような燃料を大量にボ
ンベに循環させれば、液状燃料がこれを吸熱してボンベ
内の温度上昇が進み、ボンベ内圧がより一層高圧化する
のである。
In other words, vaporized fuel has much more heat than liquefied fuel at the same temperature, and if a large amount of such fuel is circulated through a cylinder, the liquid fuel absorbs this heat and the temperature inside the cylinder increases. As the pressure continues to rise, the internal pressure in the cylinder becomes even higher.

この発明はこのような問題の解決を図ることを目的とす
る。
This invention aims to solve such problems.

(課題を解決するための手段) この目的を達成するために本発明は、燃料貯蔵ボンベか
らの液化ガス燃料を加圧して送り出すポンプと、この加
圧燃料をエンジン吸入空気量に応じて計量する計量手段
と、計量燃料を吸気通路に噴射する弁手段と、計量手段
からの余剰燃料を規定圧力を保持して還流すべく燃料貯
蔵ボンベの近傍に取付けた圧力レギュレータとからなる
(Means for Solving the Problems) In order to achieve this object, the present invention provides a pump that pressurizes and sends out liquefied gas fuel from a fuel storage cylinder, and a pump that measures the pressurized fuel according to the amount of engine intake air. It consists of a metering means, a valve means for injecting the metered amount of fuel into the intake passage, and a pressure regulator installed near the fuel storage cylinder to maintain the specified pressure and recirculate surplus fuel from the metering means.

(作用) 燃料舵翼ボンベからの液化〃ス燃料は、ポンプにより加
圧されているため、液状のまま弁手段から吸気通路に噴
出する。吸気通路は圧力が低く、噴射燃料は周囲の吸気
通路を流れる空気から気化熱を奪いつつ瞬時に気化する
一方、これに伴い吸気温度が下がり、吸気の実質的な供
給量を増加させ、エンジンの最大出力を高める。
(Operation) Since the liquefied fuel from the fuel rudder blade cylinder is pressurized by the pump, it is injected from the valve means into the intake passage in a liquid state. The pressure in the intake passage is low, and the injected fuel instantly vaporizes while taking vaporization heat from the air flowing through the surrounding intake passage, while the intake air temperature decreases and the actual intake air supply amount increases, increasing the engine speed. Increase maximum output.

計量手段からの余剰の燃料は、圧力レギュレータにより
規定圧力に保持されているため、燃料配管を戻る途中で
エンジンからの熱を受けても気化することがない。圧力
レギエレータは燃料貯蔵ボンベの近傍に設置されるため
、圧力レギエレータからボンベに燃料が放出される際に
、圧力解放に伴い一部が気化するにしても、気化に必要
な熱はボンベから奪うことになり、このため内部の燃料
温度の上昇を防ぎ、内圧の異常な上昇を回避する。
Since the excess fuel from the metering means is maintained at a specified pressure by the pressure regulator, it will not vaporize even if it receives heat from the engine while returning through the fuel pipe. Since the pressure regierator is installed near the fuel storage cylinder, when fuel is released from the pressure regierator into the cylinder, even if some of the fuel is vaporized as pressure is released, the heat required for vaporization is taken away from the cylinder. This prevents an increase in internal fuel temperature and avoids an abnormal increase in internal pressure.

(実施例) 第1図において、燃料ボンベ(またはタンク)10は自
動車のトランクルーム11等エンジン12から十分に離
れた位置に配設され、その燃料の取出通路13にはエン
ジン停止時に閉じる電磁遮断弁14の下流に燃料ポンプ
15が設けられ、燃料を加圧して計+lL電磁弁16に
送り込む。燃料ポンプ15は電動モータで駆動される。
(Example) In FIG. 1, a fuel cylinder (or tank) 10 is arranged in a position sufficiently away from an engine 12, such as in a trunk room 11 of an automobile, and a fuel take-out passage 13 is provided with an electromagnetic cutoff valve that closes when the engine is stopped. A fuel pump 15 is provided downstream of the fuel pump 14 to pressurize fuel and send it to the +1L solenoid valve 16. Fuel pump 15 is driven by an electric motor.

計量電磁弁16からは余剰燃料を前記燃料ボンベ10に
還流する通路17が接続し、この通路17には燃料ボン
ベ10の近傍、この例では燃料ボンベ10に直結して、
燃料の圧力を規定圧力に保持する圧力レギュレータ18
が設置される。
A passage 17 for circulating surplus fuel back to the fuel cylinder 10 is connected from the metering solenoid valve 16, and a passage 17 is connected to the vicinity of the fuel cylinder 10, in this example, directly connected to the fuel cylinder 10.
Pressure regulator 18 that maintains fuel pressure at a specified pressure
will be installed.

圧力レギュレータ18は、ダイヤフラム18aにより前
記還流通路17に接続する燃料室18bと、燃料ボンベ
10の内部に連通する基準圧力室18cとに画7&され
ており、燃料室18bの燃料圧力が、燃料ボンベ10の
内部圧力よりも所定値(例えば3 、5 K g/ c
m”)以上に高くなるとダイヤフラム18aに連動する
弁18dが開いて、余剰燃料を燃料ボンベ10に還流す
るもので、これにより還流通路の圧力を常に規定値に保
持する。
The pressure regulator 18 is divided into a fuel chamber 18b connected to the recirculation passage 17 by a diaphragm 18a, and a reference pressure chamber 18c communicating with the inside of the fuel cylinder 10. a predetermined value (e.g. 3, 5 K g/c
m''), a valve 18d connected to the diaphragm 18a opens to recirculate the excess fuel to the fuel cylinder 10, thereby constantly maintaining the pressure in the recirculation passage at a specified value.

なお、還流通路17の途中にはエンジン停止時に閉じる
電磁遮断弁19が介装される。
Note that an electromagnetic cutoff valve 19 is interposed in the middle of the recirculation passage 17, and is closed when the engine is stopped.

前記計量電磁弁16は後述する制御回路20がらのパル
ス信号により駆動され、オンオフ的に開田するもので、
計量電磁弁16の開弁により上流の加圧燃料(圧力レギ
ュレータ18により規定圧力に保持された)が、燃料溜
り21を経由して各気筒に対応して分岐する燃料通路2
2へと送り出される。
The metering solenoid valve 16 is driven by a pulse signal from a control circuit 20, which will be described later, and is turned on and off.
When the metering solenoid valve 16 is opened, the upstream pressurized fuel (maintained at a specified pressure by the pressure regulator 18) passes through a fuel reservoir 21 and branches into a fuel passage 2 corresponding to each cylinder.
Sent to 2.

計量電磁弁16はパルス信号により励磁されるソレノイ
ド16aと、ソレノイド16aの励磁時にリターンスプ
リングに抗してリフトするバルブ16bと、パルプ16
1+のす7トに伴い開開するパルプシー)16c等から
構成され、そしてこの計量電磁弁16は好ましくは、エ
ンジンルームの比較的温度の低い位置に設置される。
The metering solenoid valve 16 includes a solenoid 16a that is energized by a pulse signal, a valve 16b that lifts against a return spring when the solenoid 16a is energized, and a pulp 16.
The metering solenoid valve 16 is preferably installed in a relatively low-temperature position in the engine room.

エンジン12の吸気通路23には、吸気弁24になるべ
く近づけて燃料噴射ノズル25が設けられ、前記計量電
磁弁16から送り込まれる燃料通路22の圧力が一定値
を越えたとき1こ開いて、吸気ボート26に液状燃料を
噴射する。
A fuel injection nozzle 25 is provided in the intake passage 23 of the engine 12 as close as possible to the intake valve 24. When the pressure in the fuel passage 22 fed from the metering solenoid valve 16 exceeds a certain value, the fuel injection nozzle 25 opens one nozzle to inject air into the intake passage 23. Liquid fuel is injected into the boat 26.

燃料噴射/ズル25は、Pt52図に詳細を示すように
、ダイヤプラム25aに直結した針弁25bが177 
) してバルブシー)25cから離れると、燃料室25
dの燃料がオリフィス25eがら吸気ボート26に向け
て噴出するようになっており、ダイヤプラム25aの一
面には燃料通路22と連通する燃料室25dの圧力がか
がると共に、その反対面には基準圧力室25fに通路2
7を介して導かれる前記燃料ボンベ10の内部圧力と、
戻しバネ25gの荷重が作用し、ボンベ内圧よりも一定
値(例えば2 、5 Kg/ em”)だけ燃料圧力が
高いとダイヤプラム25aが移動して針弁25bを開弁
方向にり7トさせる。
As shown in detail in Fig. Pt52, the fuel injection/throttle 25 has a needle valve 25b directly connected to the diaphragm 25a.
) and valve seat) 25c, the fuel chamber 25
The fuel d is ejected from the orifice 25e toward the intake boat 26, and the pressure of the fuel chamber 25d communicating with the fuel passage 22 is built up on one side of the diaphragm 25a, while the pressure on the other side is built up. Passage 2 in the reference pressure chamber 25f
the internal pressure of the fuel cylinder 10 led through 7;
When the load of the return spring 25g is applied and the fuel pressure is higher than the cylinder internal pressure by a certain value (for example, 2.5 Kg/em"), the diaphragm 25a moves and moves the needle valve 25b in the opening direction. .

前記吸気通路23にはエアクリーナ30の下流においで
、アクセルペダルに連動する吸気絞弁32の開度に応じ
て流入する、吸入空気量(質量流ff1)を測定する熱
線式流量センサ31が設けられ、この流量センサ31の
出力は図示しないエンジン回転数(クランク角度)セン
サからの出力と共に前記制御回路20に入力される。マ
イクロコンピュータ等で構成される制御回路20は、こ
れら運転状態を検出する信号に基づいて所定の空燃比が
得られるように燃料の噴射量を演算し、エンジン回転に
同期して燃料噴射パルス信号を前記計量電磁弁16に出
力するのである。なお、排気系に排気濃度センサ等を設
置した場合には、これに基づいて空燃比をフィードバッ
ク制御するように燃料噴射量の修正がなされる。
A hot wire flow rate sensor 31 is provided downstream of the air cleaner 30 in the intake passage 23 and measures the amount of intake air (mass flow ff1) that flows in according to the opening degree of the intake throttle valve 32 that is linked to the accelerator pedal. The output of this flow rate sensor 31 is input to the control circuit 20 together with the output from an engine rotation speed (crank angle) sensor (not shown). A control circuit 20 composed of a microcomputer or the like calculates the amount of fuel to be injected so as to obtain a predetermined air-fuel ratio based on these signals that detect the operating state, and outputs a fuel injection pulse signal in synchronization with the engine rotation. It outputs to the metering solenoid valve 16. Note that when an exhaust gas concentration sensor or the like is installed in the exhaust system, the fuel injection amount is corrected based on the sensor so that the air-fuel ratio is feedback-controlled.

以上のように構成され、次ぎに作用について説明する。The system is constructed as described above, and its operation will be explained next.

エンジン12の始動に伴い電磁遮断弁14.19が開き
、また燃料ポンプ15が駆動されるため、燃料ボンベ1
0の燃料は取出通路13から計量電磁弁16へと加圧さ
れながら送り込まれる。
When the engine 12 starts, the electromagnetic cutoff valve 14.19 opens and the fuel pump 15 is driven, so the fuel cylinder 1
0 fuel is sent from the take-out passage 13 to the metering solenoid valve 16 while being pressurized.

運転者によって操作される絞弁32の開度に応じて吸入
空気量が決まり、この吸入空気量信号と回転数信号に基
づいて制御回路20は、この吸入空気と混合する噴射燃
料の割合が、所定の空燃比となるように計fi電磁弁1
6の開弁パルス時間を演算する。このパルス信号によっ
て計量電磁弁16が開くと、その上流側の加圧燃料が燃
料溜す21から燃料通路22へと送り込まれる。
The intake air amount is determined according to the opening degree of the throttle valve 32 operated by the driver, and based on this intake air amount signal and rotation speed signal, the control circuit 20 determines the ratio of the injected fuel mixed with this intake air. solenoid valve 1 so as to achieve a predetermined air-fuel ratio.
6. Calculate the valve opening pulse time. When the metering solenoid valve 16 is opened by this pulse signal, pressurized fuel on the upstream side thereof is sent from the fuel reservoir 21 to the fuel passage 22.

計量電磁弁16の上流側の圧力は、燃料ポンプ15から
送り込まれる燃料を、圧力レギュレータ18により燃料
ボンベ10の圧力をある一定値(約3.5にビ/cm2
)だけ上回る値に設定され、また下流側の圧力は、燃料
噴射ノズル25により燃料ボンベ10の圧力よりも一定
値(約2 、5 K g/ c+++2)だけ上回るよ
うに設定される。
The pressure on the upstream side of the metering solenoid valve 16 is such that the fuel sent from the fuel pump 15 is controlled by the pressure regulator 18 to maintain the pressure in the fuel cylinder 10 at a certain constant value (approximately 3.5 bi/cm2).
), and the pressure on the downstream side is set by the fuel injection nozzle 25 to exceed the pressure of the fuel cylinder 10 by a certain value (approximately 2.5 kg/c+++2).

したがって計量電磁弁16の上流と下流の差圧は常に一
定値(約I K g/ 0m2)となっており、計量電
磁弁16を流れる燃料流量はその開弁時間にのみ正しく
依存して決定される。
Therefore, the differential pressure between the upstream and downstream sides of the metering solenoid valve 16 is always a constant value (approximately I K g/0m2), and the flow rate of fuel flowing through the metering solenoid valve 16 is determined depending only on its opening time. Ru.

特にこの場合、計量電磁弁16は工ンジンルームの比較
的低温の部分に配置され、しかも前記の辿り上流と下流
の燃料圧力が高く保持されるため、計量部での燃料の気
化もなく、液状燃料の計量特性は非常に安定するのであ
る。
Particularly in this case, the metering solenoid valve 16 is placed in a relatively low-temperature part of the engine room, and the fuel pressures upstream and downstream of the above-mentioned path are kept high, so there is no vaporization of fuel in the metering section, and the liquid fuel The metrological properties of are very stable.

そして計!i電磁弁16の開弁に伴い燃料通路22に送
り込まれた燃料の圧力が、燃料噴射ノズル25のグイヤ
7ラム25aの設定圧を越えている間、針弁25bが開
いて液状燃料が吸気通路23に噴射される。吸気通路2
3の圧力は大気圧以下の低圧であるため、噴射燃料は吸
入空気から熱を奪って瞬時に気化しつつ、エンジン12
に吸入されでいく。
And the total! i While the pressure of the fuel sent into the fuel passage 22 with the opening of the solenoid valve 16 exceeds the set pressure of the gouya 7 ram 25a of the fuel injection nozzle 25, the needle valve 25b opens and liquid fuel flows into the intake passage. It is injected on 23. Intake passage 2
Since the pressure in step 3 is low, below atmospheric pressure, the injected fuel absorbs heat from the intake air and instantly vaporizes.
It is inhaled by the body.

このようにして噴射した液状燃料を吸気通路23の内部
で気化させるので、気化熱を奪われた吸入空気の温度を
下げ、実質的な吸気充填効率を高めることが可能となり
、エンジン全闇域での高出力化が図れる。
Since the injected liquid fuel is vaporized inside the intake passage 23 in this way, it is possible to lower the temperature of the intake air that has been deprived of the heat of vaporization, and to increase the substantial intake air filling efficiency. High output can be achieved.

ところで、計量電磁弁16の閉弁後の燃料溜り21側に
送り込まれない余剰の燃料は、還流通路17から燃料ボ
ンベ10に戻されるが、燃料ボンベ10に放出される直
前まで圧力レギュレータ18により、ボンベ内圧よりも
一定値(約3.5Kg/c162)だけ高い圧力に保持
されているため、還流通路17の燃料温度がボンベ内の
燃料より高温になっても気化することはほとんどない。
By the way, surplus fuel that is not sent to the fuel reservoir 21 side after the metering solenoid valve 16 is closed is returned to the fuel cylinder 10 from the recirculation passage 17, but the pressure regulator 18 controls the excess fuel until just before it is released into the fuel cylinder 10. Since the pressure is maintained at a constant value (approximately 3.5 kg/c162) higher than the internal pressure of the cylinder, even if the fuel temperature in the recirculation passage 17 becomes higher than the fuel in the cylinder, it hardly vaporizes.

したがって循環燃料が気化により周囲(エンジンルーム
)から多量に奪った熱を燃料ボンベ10に持ち込むこと
はなく、ボンベ内の燃料温度の上昇は少ない。
Therefore, the circulating fuel does not carry a large amount of heat taken from the surroundings (engine room) by vaporization into the fuel cylinder 10, and the temperature of the fuel in the cylinder does not rise much.

また、圧カレギエレータ18から燃料ボンベ10に放出
された燃料は、この瞬間に約3.5Kir/cI11′
だけ減圧されて気化しやすい状態になるものの、圧カレ
ギエレータ18が燃料ボンベ10に直結されていて気化
に必要な熱は燃料ボンベ10から奪うので、熱の授受が
相殺され、内部の貯蔵燃料の温度上昇にはつながらない
Further, the fuel released from the pressure radiator 18 into the fuel cylinder 10 is approximately 3.5Kir/cI11' at this moment.
However, since the pressure generator 18 is directly connected to the fuel cylinder 10 and the heat necessary for vaporization is taken from the fuel cylinder 10, the exchange of heat is canceled out and the temperature of the stored fuel inside increases. It doesn't lead to an increase.

他方、エンジン12の付近では燃料噴射ノズル25や燃
料通路22の燃料が、エンジン放出熱の影響で高温にな
ることがあり、燃料圧力がボンベ内圧よりも約2.5K
g/am”はど高い値に保持されているにもかかわらず
、若干の燃料は気化することがある。しかし燃料の気化
により圧力が高まると、燃料噴射ノズル25のグイヤ7
ラム25aが変位して側弁25bがリフトし、気化燃料
を逃がすため、気化による体積増加が燃料供給の妨げと
ならず、すなわち発生気泡によるベーパロック現求が回
避され、特1こエンジン極低回転域でも安定した回転特
性が維持される。
On the other hand, in the vicinity of the engine 12, the fuel in the fuel injection nozzle 25 and the fuel passage 22 may reach a high temperature due to the influence of the heat released from the engine, and the fuel pressure may be approximately 2.5K higher than the cylinder internal pressure.
Even though the "g/am" is kept at a very high value, some fuel may vaporize. However, as the pressure increases due to fuel vaporization, the fuel injection nozzle 25
Since the ram 25a is displaced and the side valve 25b is lifted to release the vaporized fuel, the increase in volume due to vaporization does not impede fuel supply. In other words, vapor lock due to generated bubbles is avoided, and the engine speed is particularly low. Stable rotation characteristics are maintained even in the range.

(発明の効果) 以上のように本発明によれば、燃料貯蔵ボンベからの液
化ガス燃料を加圧して計量電磁弁に送り込む一方、余剰
燃料を規定圧力を保持しつつ還流さぜる圧力レギュレー
タを燃料貯蔵ボンベの近傍に取付けたため、圧力レギュ
レータにより規定圧力に保持されている余剰燃料が、燃
料配管を戻る途中でエンノンからの熱を受けても気化す
ることがなく、シかも圧力レギュレータからボンベに燃
料が放出される際に、圧力解放に伴い一部が気化するに
しても、気化に必要な熱はボンベから奪うことになり、
このため内部の燃料温度の上昇を防ぎ、内圧の異常な上
昇を回避することができる。
(Effects of the Invention) As described above, according to the present invention, a pressure regulator is provided which pressurizes liquefied gas fuel from a fuel storage cylinder and sends it to a metering solenoid valve, while refluxing excess fuel while maintaining a specified pressure. Because it is installed near the fuel storage cylinder, excess fuel, which is maintained at a specified pressure by the pressure regulator, will not vaporize even if it receives heat from the Ennon on the way back through the fuel pipe, and will not be transferred from the pressure regulator to the cylinder. When the fuel is released, even if some of it vaporizes as the pressure is released, the heat required for vaporization is taken away from the cylinder.
Therefore, it is possible to prevent an increase in internal fuel temperature and avoid an abnormal increase in internal pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す回路的な構成図、第2図
は燃料噴射ノズルの断面図、第3図は従来例の構成図で
ある。 10・・・燃料ボンベ(タンク)、12・・・エンジン
、13・・・取出通路、15・・・燃料ポンプ、16・
・・計量電磁弁、17・・・還流通路、18・・・圧力
レギュレータ、20・・・制御回路、22・・・燃料通
路、23・・・吸気通路、25・・・燃料噴射ノズル。
FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention, FIG. 2 is a sectional view of a fuel injection nozzle, and FIG. 3 is a configuration diagram of a conventional example. 10... Fuel cylinder (tank), 12... Engine, 13... Take-out passage, 15... Fuel pump, 16...
... Metering solenoid valve, 17... Return passage, 18... Pressure regulator, 20... Control circuit, 22... Fuel passage, 23... Intake passage, 25... Fuel injection nozzle.

Claims (1)

【特許請求の範囲】[Claims] 燃料貯蔵ボンベからの液化ガス燃料を加圧して送り出す
ポンプと、この加圧燃料をエンジン吸入空気量に応じて
計量する計量手段と、計量燃料を吸気通路に噴射する弁
手段と、計量手段からの余剰燃料を規定圧力を保持して
還流すべく燃料貯蔵ボンベの近傍に取付けた圧力レギュ
レータとから構成されることを特徴する内燃機関の燃料
供給装置。
A pump that pressurizes and sends out liquefied gas fuel from a fuel storage cylinder, a metering device that measures the pressurized fuel according to the amount of engine intake air, a valve device that injects the metered amount of fuel into the intake passage, and 1. A fuel supply system for an internal combustion engine, comprising a pressure regulator installed near a fuel storage cylinder to maintain surplus fuel at a specified pressure and recirculate it.
JP63088639A 1988-04-11 1988-04-11 Fuel supply device for internal combustion engine Expired - Lifetime JPH0774628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63088639A JPH0774628B2 (en) 1988-04-11 1988-04-11 Fuel supply device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63088639A JPH0774628B2 (en) 1988-04-11 1988-04-11 Fuel supply device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH01262358A true JPH01262358A (en) 1989-10-19
JPH0774628B2 JPH0774628B2 (en) 1995-08-09

Family

ID=13948390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63088639A Expired - Lifetime JPH0774628B2 (en) 1988-04-11 1988-04-11 Fuel supply device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0774628B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050418A1 (en) * 2000-12-18 2002-06-27 Yamaha Hatsudoki Kabushiki Kaisha Gas fuel feeder of internal combustion engine
KR100799770B1 (en) * 2006-08-31 2008-02-01 (주)모토닉 Gas feeding apparatus of gas fuel vehicles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141819A (en) * 1977-05-16 1978-12-11 Toyota Motor Corp Fuel flow gain measurement insrument in liquefied gas automobile
JPS61232373A (en) * 1985-04-05 1986-10-16 Nippon Carbureter Co Ltd Method for injecting fuel liquefied gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141819A (en) * 1977-05-16 1978-12-11 Toyota Motor Corp Fuel flow gain measurement insrument in liquefied gas automobile
JPS61232373A (en) * 1985-04-05 1986-10-16 Nippon Carbureter Co Ltd Method for injecting fuel liquefied gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050418A1 (en) * 2000-12-18 2002-06-27 Yamaha Hatsudoki Kabushiki Kaisha Gas fuel feeder of internal combustion engine
KR100799770B1 (en) * 2006-08-31 2008-02-01 (주)모토닉 Gas feeding apparatus of gas fuel vehicles

Also Published As

Publication number Publication date
JPH0774628B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
US5482023A (en) Cold start fuel control system
US4430978A (en) Direct liquid injection of liquid petroleum gas
US5775282A (en) Auxiliary injector
US5711282A (en) Method for forming a fuel-air mixture and fuel supply device for an internal combustion engine
US20060037591A1 (en) System and method for increasing the available oxygen in a combustion engine
US6234153B1 (en) Purge assisted fuel injection
JP2001512212A (en) Fuel vapor extraction device
JPH07217505A (en) Evaporated fuel treatment device for internal combustion engine
CN100516502C (en) Fuel supply system for internal combustion engine
US20040200461A1 (en) Vaporized fuel injection system and method
US8534260B2 (en) Fuel supply system
US6092500A (en) Fuel delivery device
US6843238B2 (en) Cold start fuel control system
JPH06617Y2 (en) Engine fuel supply
JPH01262358A (en) Fuel supply device for internal combustion engine
US4546752A (en) Premixed charge conditioner for internal combustion engine
WO2002050418A1 (en) Gas fuel feeder of internal combustion engine
US4030457A (en) Vapor carburetor
JPS6316161A (en) Pressure controlling method for liquefied gas fuel
JP4378666B2 (en) Engine liquefied gas supply device
JP2719567B2 (en) Engine LPG supply device
JP2719568B2 (en) Engine LPG supply device
JPS6316160A (en) Fuel pressure control device
JP2004162655A (en) Liquid fuel supply system for engine
JP2004164153A (en) Pressure regulation device