JPH01262331A - Air-fuel ratio control mechanism of fuel injection equipment - Google Patents

Air-fuel ratio control mechanism of fuel injection equipment

Info

Publication number
JPH01262331A
JPH01262331A JP63092522A JP9252288A JPH01262331A JP H01262331 A JPH01262331 A JP H01262331A JP 63092522 A JP63092522 A JP 63092522A JP 9252288 A JP9252288 A JP 9252288A JP H01262331 A JPH01262331 A JP H01262331A
Authority
JP
Japan
Prior art keywords
negative pressure
fuel
air
valve
slow system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63092522A
Other languages
Japanese (ja)
Inventor
Mitsuru Sekiya
満 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP63092522A priority Critical patent/JPH01262331A/en
Publication of JPH01262331A publication Critical patent/JPH01262331A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/16Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors
    • F02M69/18Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means being metering valves throttling fuel passages to injectors or by-pass valves throttling overflow passages, the metering valves being actuated by a device responsive to the engine working parameters, e.g. engine load, speed, temperature or quantity of air
    • F02M69/20Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means being metering valves throttling fuel passages to injectors or by-pass valves throttling overflow passages, the metering valves being actuated by a device responsive to the engine working parameters, e.g. engine load, speed, temperature or quantity of air the device being a servo-motor, e.g. using engine intake air pressure or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To control air-fuel ratio constantly from an initial stage and prevent unnecessary exhaustion of fuel by a method wherein a slow system fuel controller is composed so that a composite negative pressure consisting of a manifold negative pressure and a downstream negative pressure of an air valve is adjusted and fed into a negative pressure path of the slow system. CONSTITUTION:A fuel injection equipment equipped with a slow system fuel controller 16 or the like is provided with a slow system negative pressure path 21 which has an opening on an inlet path 1 downstream of an opening 19a at the minimum opening of an air valve 19. A bypass negative pressure path 22 is provided whose one end has an opening on the inlet path 1 downstream a throttle valve 20 and the other end communicates with the negative pressure path 21 downstream an aperture 21a. A branch bypass negative pressure path 23 which connects the inlet path 1 and the bypass path 22 via an aperture 23a is additionally provided. The negative pressure path 22 is equipped with an adjust screw 24 as a pressure adjusting means for adjusting the amount of composite negative pressure consisting of negative pressure downstream the air valve 10 and manifold negative pressure supplied to the negative pressure path 21.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空気流量に応した負圧に基づいて燃料噴射量を
制御する燃料噴射装置における混合気の空燃比側tel
 Ia横に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an air-fuel ratio side tel of a mixture in a fuel injection device that controls a fuel injection amount based on a negative pressure corresponding to an air flow rate.
Regarding Ia side.

〔従来の技術〕[Conventional technology]

この種の圧力バランス式燃料噴射装置として例えば本件
出願人が実願昭63−12254号を以って提案したも
のがあり、この装置の原理を第4図に基づいて説明する
。吸気通路1のベンチュリ部2に燃料制御部3が配設さ
れており、対向する一方の内壁に設けられた負圧レギュ
レータ4は開口5aによってベンチュリ部2に連通ずる
負正室5が負圧ダイアフラム6によって大気室7と仕切
られており、他方の内壁に設けられた燃圧レギュレータ
8は、噴射口9aをもってベンチュリ部2に開口する燃
料噴射室9と燃料ポンプから加圧された燃料が送り込ま
れる燃圧室lOとが燃料ダイアフラム11によって仕切
られており、また燃料噴射室9と燃圧室lOとはメイン
ジェット12を介して連通されている。そして、負圧ダ
イアフラム6と燃料ダイアフラム11とを連結する連結
棒13には噴射口9aを開閉して燃料噴射室9内の燃料
を吸気通路1内へ噴射させ得るバルブ13aが形成され
ている。
An example of this type of pressure-balanced fuel injection device is one proposed by the applicant in Utility Model Application No. 12254/1983, and the principle of this device will be explained with reference to FIG. 4. A fuel control section 3 is disposed in the venturi section 2 of the intake passage 1, and a negative pressure regulator 4 provided on one of the opposing inner walls has a negative positive chamber 5 that communicates with the venturi section 2 through an opening 5a, which is connected to a negative pressure diaphragm. A fuel pressure regulator 8 provided on the other inner wall is separated from an atmospheric chamber 7 by a fuel injection chamber 9 having an injection port 9a, and a fuel pressure regulator 8 is connected to a fuel injection chamber 9 that opens into the venturi portion 2 with an injection port 9a, and a fuel pressure regulator 8 into which pressurized fuel is sent from a fuel pump. A fuel diaphragm 11 partitions the fuel injection chamber 9 and the fuel pressure chamber 10, and the fuel injection chamber 9 and the fuel pressure chamber 10 communicate with each other via a main jet 12. The connecting rod 13 connecting the negative pressure diaphragm 6 and the fuel diaphragm 11 is provided with a valve 13a that can open and close the injection port 9a to inject the fuel in the fuel injection chamber 9 into the intake passage 1.

このような構成のもとでベンチュリ部3の空気流量に応
じた負圧が負圧室5内に導入されて負圧ダイアフラム6
が負圧室5側に変位せしめられると、バルブ13aが噴
射口9aを開いて燃料が噴射されて燃料噴射室9内の圧
力が低下する。そして、負圧と大気圧の差圧とメインジ
ェット12の前後の燃圧差による圧力とがバランスする
と、負圧ダイアフラム6と燃料ダイアフラム11とにか
かる圧力がバランスし、この状態で混合気の空燃比が一
定に維持される。
With this configuration, negative pressure corresponding to the air flow rate of the venturi section 3 is introduced into the negative pressure chamber 5 and the negative pressure diaphragm 6
When the fuel is displaced toward the negative pressure chamber 5, the valve 13a opens the injection port 9a, fuel is injected, and the pressure inside the fuel injection chamber 9 decreases. When the pressure difference between negative pressure and atmospheric pressure and the pressure due to the fuel pressure difference before and after the main jet 12 are balanced, the pressures applied to the negative pressure diaphragm 6 and the fuel diaphragm 11 are balanced, and in this state, the air-fuel ratio of the mixture is adjusted. remains constant.

第5図は、このような燃料制御部3の空気と燃料の流量
制御範囲を異ならせた、主にメインゾーンを制御するメ
イン系燃料制iTJ部14と主にスローゾーンを制御す
るスロー系燃料制御部15とを設け、広範囲に亘って混
合気の空燃比を制御せしめるようにした燃料噴射装置を
示すものであり、実願昭63−12254号等を以って
本件出願人により堤案されている。
FIG. 5 shows a main system fuel control iTJ section 14 that mainly controls the main zone and a slow system fuel control section 14 that mainly controls the slow zone, in which the air and fuel flow rate control ranges of the fuel control section 3 are different. This shows a fuel injection device which is equipped with a control section 15 to control the air-fuel ratio of the air-fuel mixture over a wide range, and was proposed by the applicant in Utility Model Application No. 12254/1983. ing.

ところで、第4図において負圧室5に設けられていて負
圧ダイアフラム6を大気室7側に弾圧するスプリング1
6の荷重W、を両ダイアフラム6及び11と連結棒13
を含めたダイアフラムバルブDV全体の重! w t 
と等しくした場合、例えばスローゾーンにおいて始動時
は空気流量が小さいために第6図(A>に示すように負
圧が発生せず、同図(B)に示すように空気流量の変化
に対して燃料流量が所定の一定空燃比を得るための目は
値に対して大きさXのズレを生じてしまい、結局同図(
C)に示すように適正空燃比(A/F)となるよう(中
流量以上)に合わせると、アイドリング11時にA/F
がリーンとなってしまうという欠点があった。
By the way, in FIG. 4, a spring 1 is provided in the negative pressure chamber 5 and presses the negative pressure diaphragm 6 toward the atmospheric chamber 7.
6 load W, both diaphragms 6 and 11 and connecting rod 13
The weight of the entire diaphragm valve DV including! wt
For example, when starting in the slow zone, the air flow rate is small, so negative pressure is not generated as shown in Figure 6 (A>), and as shown in Figure 6 (B), there is no negative pressure due to the change in air flow rate. In order to obtain a predetermined constant air-fuel ratio for the fuel flow rate, a deviation of size X occurs with respect to the value, and in the end, the same figure (
As shown in C), if you adjust the air-fuel ratio (A/F) to the proper air-fuel ratio (medium flow rate or higher), the A/F will change when idling at 11.
The disadvantage was that it became lean.

そこで、アイドリング状態から空燃比を目標値に一敗さ
せるために第4図に示されたスプリング16のA 重W
 + をダイアフラムバルブDVの重量W2より小さく
するか、又は第7図に示すように大気室7側に負圧ダイ
アフラム6を負圧室5側へA ffl W 3 によっ
て弾圧する補正用スプリング17と該スプリング17の
荷重W、を調整する調整スクリュ18とを設けるかして
、空気流量に封する負圧ダイアフラム6の作動を鋭敏に
し、これによって空気fLtの変化に対して燃料流量を
スローゾーンの初期からほぼ目411aに達せしめるこ
とを可能にしく第8図(A)) 、混合気の空燃比をア
イドリング時からほぼ目標値に制御することができる(
同図(B))ようにしたものがあった。
Therefore, in order to bring the air-fuel ratio back to the target value from the idling state, the spring 16 shown in FIG.
+ is made smaller than the weight W2 of the diaphragm valve DV, or as shown in FIG. By providing an adjustment screw 18 that adjusts the load W of the spring 17, the operation of the negative pressure diaphragm 6 that seals the air flow is made more sensitive, thereby adjusting the fuel flow to the initial stage of the slow zone in response to changes in the air fLt. The air-fuel ratio of the air-fuel mixture can be controlled from idling to almost the target value (Fig. 8 (A)).
There was one that was made as shown in Figure (B)).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、このような構成にすると負圧ダイアフラム6を
負圧室5側へ押圧する力が強いため、エンジンの停止時
においてもバルブ13aが開弁じたままの状態となって
燃料漏れが生じたり、或いは再始動時にエンジンキーを
ONして燃料ポンプが作動した状態でエンジンが回転し
始める前に燃料が噴射口9aから吐出してしまう等の不
具合があった0 本発明はこのような課題に鑑み、アイドリング時からス
ローゾーンにおける混合気の空燃比を一定に維持できる
ようにすると共に、エンジンの停止時や再始動時等にお
ける燃料の不必要な吐出を確実に防止できるようにした
燃料噴射装置の空燃比制御機構を提供することを目的と
する。
However, with such a configuration, the force pushing the negative pressure diaphragm 6 toward the negative pressure chamber 5 is strong, so the valve 13a remains open even when the engine is stopped, resulting in fuel leakage. Alternatively, when restarting the engine, there have been problems such as when the engine key is turned on and the fuel pump is activated, fuel is discharged from the injection port 9a before the engine starts rotating.The present invention has been developed in view of these problems. , a fuel injection device that can maintain a constant air-fuel ratio of the air-fuel mixture in the slow zone from idling, as well as reliably prevent unnecessary fuel discharge when stopping or restarting the engine. The purpose is to provide an air-fuel ratio control mechanism.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る燃料噴射装置の空燃比制御機構は、スロー
系燃料制御部とメイン系燃料制御部とを備えた燃料噴射
装置において、 エアバルブの下流側の負圧をスロー系j!!!料制御部
の負圧室に導入させるスロー系負圧通路と、エアバルブ
の下流側の負圧とマニホールド負圧との合成負圧をスロ
ー系負圧通路に導入させるバイパス負圧通路と、前記合
成負圧のスロー系負圧通路への印加量を調整する調圧手
段とを備えていて、スロー系燃料制御部によってスロー
ゾーンにおける混合気の空燃比を一定に制御させるよう
にしたものである。
The air-fuel ratio control mechanism for a fuel injection device according to the present invention is a fuel injection device that includes a slow system fuel control section and a main system fuel control section, and controls negative pressure on the downstream side of an air valve to the slow system j! ! ! a slow system negative pressure passage that introduces the negative pressure on the downstream side of the air valve and the manifold negative pressure into the negative pressure chamber of the air valve; a bypass negative pressure passage that introduces the composite negative pressure of the negative pressure downstream of the air valve and the manifold negative pressure into the slow system negative pressure passage; The system includes a pressure regulating means for adjusting the amount of negative pressure applied to the slow system negative pressure passage, and the slow system fuel control section controls the air-fuel ratio of the air-fuel mixture in the slow zone to be constant.

又、スロー系燃料制御部において、マニホールド負圧が
生じるまでは、バルブを閉弁させる圧力が、バルブを開
弁させる圧力より大きいか又は等しいように弾性部材が
配置されている。
Further, in the slow system fuel control section, the elastic member is arranged so that the pressure that closes the valve is greater than or equal to the pressure that opens the valve until the manifold negative pressure is generated.

〔作 用〕[For production]

従って、エンジンの作動によってマニホールド負圧が発
生するとエアバルブの下流側の負圧と合成された合成負
圧として所定量がスロー系負圧通路に導入され、エアバ
ルブの下流側の負圧と再び合成された負圧がスロー系燃
料制御部の負圧室に印加されるので、この負王室内の負
圧が空気流量と比例し、混合気の空燃比を初期段階から
一定に制御できる。
Therefore, when manifold negative pressure is generated due to engine operation, a predetermined amount of negative pressure is combined with the negative pressure on the downstream side of the air valve and introduced into the slow system negative pressure passage, and is combined again with the negative pressure on the downstream side of the air valve. Since the negative pressure inside the negative pressure chamber is applied to the negative pressure chamber of the slow system fuel control section, the negative pressure inside the negative chamber is proportional to the air flow rate, and the air-fuel ratio of the mixture can be controlled to be constant from the initial stage.

又、エンジンの停止時等にはバルブは十分な圧力で閉弁
されており、マニホールド負圧が発生するとバルブの作
動が鋭敏になる。
Further, when the engine is stopped, etc., the valve is closed with sufficient pressure, and when negative pressure in the manifold is generated, the valve operation becomes sensitive.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図を中心に説明する。第
1図は第5図と同様な燃料噴射装置の概略断面図である
が、スロー系燃料制御部15と吸気通路l以外は省略さ
れている0図中、19はヘンチュリ部2の下流側に設け
られたエアパルプ、20はエアバルブ19の下流側に設
けられたスロットルバルブ、21はエアバルブ19の最
小開度における開口部19aの下流側で吸気通路1に開
口しているスロー系負圧通路であって、エアバルブ19
の下流側の空気流量に応じた負圧P1を負圧室5内に導
入せしめる。21aはスロー系負圧通路21に設けられ
た絞り、22は一端がスロットルバルブ20の下流側で
吸気通路lに開口すると共に他端が絞り21aの下流側
でスロー系負圧通路21に接続されているバイパス負圧
通路、22aはバイパス負圧通路22に設けられた絞り
、23は絞り23aを介してエアバルブ19とスロー/
 トルバルブ20の間における吸気通路lとバイパス負
圧通路22とを連通せしめる分岐バイパス負圧通路であ
って、マニホールド負圧P、をスロー系負圧通路21に
導入せしめて負圧ダイアフラム6の変位を鋭敏にせんと
するものであるが、第2図に示すようにマニホールド負
圧P2は変化が大きすぎるので各絞り22a、23aに
よって負圧P2とエアバルブ19の下流側の負圧P1 
とを絞ると共に両負圧P1 とP2を合成せしめて第一
の合成負圧P、としてバランスさせ且つスロー及びメイ
ンゾーンに亘って比較的安定せしめている(第2図参照
)、24はバイパス負圧通路22において分岐バイパス
負圧通路23との連通部とスロー系負圧通路21との接
続部の間に設けられた調圧手段即ちアジャストスクリュ
ーであって、第一の合成負圧P、のスロー系負圧通路2
1への印加量を調整する。25は一端が噴射口9aと接
続されていて他端がスロットルバルブ20の下流側で吸
気通路1に開口するブリードエア通路26に接続された
燃料吐出通路、27は大気室7内に設けられていて負圧
ダイアフラム6を負圧室5側に弾圧する第一スプリング
、2Bは燃圧室10内に設けられていて燃料ダイアフラ
ム11を燃料噴射室9側に弾圧する第ニスプリングであ
る。そして、第一スプリング27の荷重W、と第ニスプ
リング28の荷重W4とについて次に示す関係を有する
ように構成せしめられている。即ち、エンジンの停止時
等において、 第一スプリング27の荷重WS≦ダイアフラムバルブD
Vの重I w t +第ニスプリング28のm重W4 
          −−−−  (i)であり、また
エンジンの作動時において第一の合成負圧P1がスロー
系負圧通路21に印加されて負圧P、  と合成された
第二の合成負圧Pbが負圧室5内に導入されて圧力W、
が生じると、第一スプリング27の荷重W3 +第二の
合成負圧による圧力W、〉ダイアフラムバルブDVのf
filwz +第ニスプリング28の荷重w4−−(i
i  ) となるように構成されている。
An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a schematic sectional view of the fuel injection device similar to FIG. 5, but in FIG. 20 is a throttle valve provided on the downstream side of the air valve 19; 21 is a slow negative pressure passage that opens into the intake passage 1 downstream of the opening 19a at the minimum opening of the air valve 19; Air valve 19
A negative pressure P1 corresponding to the air flow rate on the downstream side of the negative pressure chamber 5 is introduced into the negative pressure chamber 5. Reference numeral 21a denotes a throttle provided in the slow system negative pressure passage 21, and 22 has one end opened to the intake passage l downstream of the throttle valve 20, and the other end connected to the slow system negative pressure passage 21 downstream of the throttle 21a. 22a is a throttle provided in the bypass negative pressure passage 22, and 23 is connected to the air valve 19 through the throttle 23a.
This branch bypass negative pressure passage connects the intake passage l and the bypass negative pressure passage 22 between the slow valve 20 and introduces the manifold negative pressure P into the slow system negative pressure passage 21 to prevent the displacement of the negative pressure diaphragm 6. However, as shown in FIG. 2, the manifold negative pressure P2 changes too much, so each throttle 22a, 23a reduces the negative pressure P2 and the negative pressure P1 downstream of the air valve 19.
24 is a bypass negative pressure. A pressure regulating means, ie, an adjustment screw, provided in the pressure passage 22 between the communication part with the branch bypass negative pressure passage 23 and the connection part with the slow system negative pressure passage 21, which controls the first synthetic negative pressure P. Slow system negative pressure passage 2
Adjust the amount of application to 1. 25 is a fuel discharge passage whose one end is connected to the injection port 9a and the other end is connected to a bleed air passage 26 that opens into the intake passage 1 on the downstream side of the throttle valve 20; and 27 which is provided in the atmospheric chamber 7. A first spring 2B that presses the negative pressure diaphragm 6 toward the negative pressure chamber 5 is a second spring that is provided in the fuel pressure chamber 10 and presses the fuel diaphragm 11 toward the fuel injection chamber 9. The load W of the first spring 27 and the load W4 of the second spring 28 are configured to have the following relationship. That is, when the engine is stopped, etc., the load of the first spring 27 WS≦diaphragm valve D
Weight of V I w t + m weight of second spring 28 W4
----- (i), and when the engine is operating, the first composite negative pressure P1 is applied to the slow system negative pressure passage 21, and the second composite negative pressure Pb is combined with the negative pressure P. Introduced into the negative pressure chamber 5, the pressure W,
occurs, the load W3 of the first spring 27 + the pressure W due to the second combined negative pressure, > f of the diaphragm valve DV
filwz + load of second spring 28 w4--(i
i).

本実施例は以上の構成を有しており、次にその作用を説
明する。
The present embodiment has the above configuration, and its operation will be explained next.

まず、エンジン停止時においては負圧は発生しでいない
ので式(i)の状態にあり、バルブ13aは閉弁状態に
維持されるために燃料漏れが生じることはない、そして
エンジンの始動によりマニホールド負圧が絞り22aを
介してバイパス負圧通路22に導入されるが、初期には
スロットルバルブ20は最小開度の状態にあってエアバ
ルブI9の開口部19a、19bを流れる空気流量が非
常に少なくて負圧P、は生じないが(第3図(A))、
マニホールド負圧P□と合成されて第一の合成負圧P、
(第2図)が所装置だけスロー系負圧通路21に印加さ
れ、初期段階から空気流量とほぼ比例する第二の合成負
圧Pb  (第3図(A))が負圧室5に導入される。
First, when the engine is stopped, no negative pressure is generated, so the state of equation (i) is satisfied, and the valve 13a is maintained in the closed state, so no fuel leakage occurs, and when the engine is started, the manifold Negative pressure is introduced into the bypass negative pressure passage 22 via the throttle 22a, but initially the throttle valve 20 is at its minimum opening and the flow rate of air flowing through the openings 19a and 19b of the air valve I9 is very small. Although negative pressure P is not generated (Fig. 3 (A)),
Combined with the manifold negative pressure P□ to create a first combined negative pressure P,
(Fig. 2) is applied to the slow system negative pressure passage 21 only for the specified device, and a second synthetic negative pressure Pb (Fig. 3 (A)) that is almost proportional to the air flow rate is introduced into the negative pressure chamber 5 from the initial stage. be done.

このためにアイドリング時から弐(■)の状態となって
負圧ダイアフラム6の作動が鋭敏になり、初期段階から
第3図CB>に示されたように混合気の空燃比をほぼ目
標値に制御せしめることができる。そして、スロットル
バルブ20の開度が増大しても目標値の空燃比を維持で
きる。又、再始動時においてもエンジンキーをONにし
て燃料ポンプが作動した状態でもエンジンが回転し始め
る前は、負圧が発生していないのでバルブ13aは閉弁
状態に維持せしめられる。
As a result, the operation of the negative pressure diaphragm 6 becomes more sensitive during idling, and the air-fuel ratio of the air-fuel mixture reaches almost the target value from the initial stage, as shown in Figure 3 CB>. It can be controlled. Even if the opening degree of the throttle valve 20 increases, the air-fuel ratio at the target value can be maintained. Further, even when restarting the engine, even if the engine key is turned on and the fuel pump is operated, the valve 13a is maintained in the closed state because no negative pressure is generated before the engine starts rotating.

上記のように本実施例によれば、スローゾーンにおける
混合気の空燃比を初期段階からほぼ目標値に維持できる
と共に、エンジンの停止時等における燃料漏れを確実に
防止できる。又、構造も比較的簡単であり、スプリング
の荷重を調整する手段を用いていないのでフリクション
が発生せずヒステリシスが少なくて済む。
As described above, according to this embodiment, the air-fuel ratio of the air-fuel mixture in the slow zone can be maintained at approximately the target value from the initial stage, and fuel leakage can be reliably prevented when the engine is stopped. Further, the structure is relatively simple, and since no means for adjusting the spring load is used, no friction occurs and hysteresis is reduced.

尚、本実施例ではエアバルブとして板バルブを用いたが
、ピストンバルブを用いても良いことは云うまでもない
In this embodiment, a plate valve is used as the air valve, but it goes without saying that a piston valve may also be used.

又、本実施例では第ニスプリング28を付加してバルブ
13aの閉弁力を強めるように構成したが、これに替え
て第ニスプリング28を除去し、第一スプリング27の
荷重を小さ(するようにしてバルブ133の閉弁力を強
めるように構成しても良い。
Further, in this embodiment, the second spring 28 is added to strengthen the closing force of the valve 13a, but instead, the second spring 28 is removed to reduce the load on the first spring 27. The structure may be such that the closing force of the valve 133 is strengthened in this manner.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明に係る燃料噴射装置の空燃比側fi
1機構によれば、マニホールド負圧とエアバルブの下流
側の負圧との合成負圧の印加量を調圧手段で調整してス
ロー系負圧通路に導入せしめるようにしたスロー系燃料
制御部によって、スローゾーンにおける混合気の空燃比
を初期段階から一定に制御せしめると共にエンジンの停
止時等における燃料の不必要な吐出を確実に防止でき、
更に構造が比較的簡単でヒステリシスが少ないという多
くの利点を有する。
As mentioned above, the air-fuel ratio side fi of the fuel injection device according to the present invention
According to the first mechanism, the slow system fuel control unit adjusts the applied amount of the composite negative pressure of the manifold negative pressure and the negative pressure on the downstream side of the air valve with a pressure regulating means and introduces it into the slow system negative pressure passage. , it is possible to control the air-fuel ratio of the mixture in the slow zone at a constant level from the initial stage, and also to reliably prevent unnecessary discharge of fuel when the engine is stopped, etc.
Furthermore, it has many advantages such as a relatively simple structure and low hysteresis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る燃料噴射装置の空燃比制御機構の
一実施例についての要部断面図、第2図は空気2itl
に対する各負圧の変化を示す図、第3図(A)は第1図
の実施例における第二の合成負圧を示す図、(B)は混
合気の空燃比を示す図、第4図は従来装置の原理を示す
要部断面図、第5図は同じ〈従来装置の全体を示す概略
断面図、第6図(A)乃至(C)は第4図の従来装置の
特性を示す図、第7図は第4図の従来装置を改良した装
置を示す概略断面図、第8図(A)及び(B)は第7図
に係る装置の特性を示す図である。 I・・・・吸気通路、5・・・・負圧室、6・・・・負
圧ダイアフラム、13a・・・・バルブ、14・・・・
メイン系燃料制御部、15・・・・スロー系燃料制御部
、19・・・・エアバルブ、20・・・・スロットルバ
ルブ、21・・・・スロー系負圧通路、22・・・・バ
イパス負圧通路、23・・・・分岐バイパス負圧通路、
24・・・・アシヤストスクリニー、27・・・・第一
スプリング、28・・・・第ニスプリング。 1−2図 才3図 −“コ;ミ、νし三ttすづシ二 1U −一−スロtソト1しハ゛ル丁聞(−空気二糺を −$入:At
FIG. 1 is a sectional view of essential parts of an embodiment of the air-fuel ratio control mechanism of a fuel injection device according to the present invention, and FIG.
Figure 3 (A) is a diagram showing the second combined negative pressure in the embodiment of Figure 1, (B) is a diagram showing the air-fuel ratio of the air-fuel mixture, Figure 4 5 is a schematic sectional view showing the entire conventional device, and FIGS. 6(A) to (C) are diagrams showing the characteristics of the conventional device in FIG. 4. , FIG. 7 is a schematic sectional view showing a device improved from the conventional device shown in FIG. 4, and FIGS. 8(A) and (B) are diagrams showing characteristics of the device according to FIG. 7. I...Intake passage, 5...Negative pressure chamber, 6...Negative pressure diaphragm, 13a...Valve, 14...
Main system fuel control section, 15... Slow system fuel control section, 19... Air valve, 20... Throttle valve, 21... Slow system negative pressure passage, 22... Bypass negative Pressure passage, 23...branch bypass negative pressure passage,
24... Assist screen, 27... First spring, 28... Second spring. 1-2 Figure 3 Figure - "K; Mi, ν and 3tt Suzushi 2 1U - 1 - Slot t Soto 1 and Hole (-2 air holes - $ Input: At

Claims (2)

【特許請求の範囲】[Claims] (1)空気流量に応じた負圧が導入される負圧室を仕切
る負圧ダイアフラムと、該負圧ダイアフラムの変位に応
じて燃料の噴射口を開閉せしめるバルブを含む、スロー
系燃料制御部とメイン系燃料制御部とを備えた燃料噴射
装置において、 エアバルブの下流側の負圧を前記スロー系燃料制御部の
負圧室に導入せしめるスロー系負圧通路と、 前記エアバルブの下流側の負圧とマニホールド負圧との
合成負圧を前記スロー系負圧通路に導入せしめるバイパ
ス負圧通路と、 該バイパス負圧通路に設けられていて前記合成負圧のス
ロー系負圧通路への印加量を調整する調圧手段とを備え
ていて、 前記スロー系燃料制御部によってスローゾーンにおける
混合気の空燃比を一定に制御せしめるようにしたことを
特徴とする空燃比制御機構。
(1) A slow system fuel control unit including a negative pressure diaphragm that partitions a negative pressure chamber into which negative pressure according to the air flow rate is introduced, and a valve that opens and closes a fuel injection port according to the displacement of the negative pressure diaphragm. a main system fuel control section; a slow system negative pressure passage that introduces negative pressure downstream of the air valve into the negative pressure chamber of the slow system fuel control section; and a negative pressure downstream of the air valve. a bypass negative pressure passage that introduces a composite negative pressure of the and manifold negative pressure into the slow system negative pressure passage; and a bypass negative pressure passage provided in the bypass negative pressure passage that controls the amount of the composite negative pressure applied to the slow system negative pressure passage. An air-fuel ratio control mechanism, comprising: a pressure regulating means for adjusting the air-fuel ratio, the air-fuel ratio of the air-fuel mixture in the slow zone being controlled to be constant by the slow system fuel control section.
(2)前記スロー系燃料制御部において、マニホールド
負圧が生じるまでは、前記バルブを閉弁せしめる圧力が
、該バルブを開弁せしめる圧力よりも大きいか又は等し
いように弾性部材が配置されていることを特徴とする特
許請求の範囲(1)に記載の空燃比制御機構。
(2) In the slow system fuel control section, an elastic member is arranged so that the pressure that closes the valve is greater than or equal to the pressure that opens the valve until manifold negative pressure is generated. The air-fuel ratio control mechanism according to claim (1).
JP63092522A 1988-04-14 1988-04-14 Air-fuel ratio control mechanism of fuel injection equipment Pending JPH01262331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63092522A JPH01262331A (en) 1988-04-14 1988-04-14 Air-fuel ratio control mechanism of fuel injection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63092522A JPH01262331A (en) 1988-04-14 1988-04-14 Air-fuel ratio control mechanism of fuel injection equipment

Publications (1)

Publication Number Publication Date
JPH01262331A true JPH01262331A (en) 1989-10-19

Family

ID=14056669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63092522A Pending JPH01262331A (en) 1988-04-14 1988-04-14 Air-fuel ratio control mechanism of fuel injection equipment

Country Status (1)

Country Link
JP (1) JPH01262331A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0422270A1 (en) * 1989-10-10 1991-04-17 Mikuni Kogyo Kabushiki Kaisha Air-fuel ratio control device for injection carburetors
EP0424565A1 (en) * 1989-10-25 1991-05-02 Mikuni Kogyo Kabushiki Kaisha Air-fuel ratio control device for injection carburetors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0422270A1 (en) * 1989-10-10 1991-04-17 Mikuni Kogyo Kabushiki Kaisha Air-fuel ratio control device for injection carburetors
EP0424565A1 (en) * 1989-10-25 1991-05-02 Mikuni Kogyo Kabushiki Kaisha Air-fuel ratio control device for injection carburetors

Similar Documents

Publication Publication Date Title
JP2757261B2 (en) Fuel injection device
US4520785A (en) Gaseous fuel supply and control system for an internal combustion engine
JPS5845593B2 (en) Additional fluid control device for internal combustion engines
US4159701A (en) System for controlling fuel supply in internal combustion engine
JPH01262331A (en) Air-fuel ratio control mechanism of fuel injection equipment
JPS586056B2 (en) internal combustion engine carburetor
JPH01257761A (en) Mechanism for controlling air-fuel ratio of fuel injection device
JPS58110855A (en) Fuel controlling apparatus for engine
US5817257A (en) Fuel metering system
US2930368A (en) Economy control for split engine
US4100897A (en) Apparatus for regulating the fuel-air mixture delivered to an internal combustion engine
KR930001788B1 (en) Fuel controller in carburator
JPH0618057Y2 (en) Fuel pressure control valve
JPS6339397Y2 (en)
JPS6154942B2 (en)
JPS6120291Y2 (en)
JPH0130604Y2 (en)
US4328774A (en) Device for controlling negative pressure in suction pipe of internal combustion engine
JPH08165956A (en) Piston valve type carburetor
EP0424565A1 (en) Air-fuel ratio control device for injection carburetors
JPS6027811Y2 (en) Dual compound vaporizer
JPH05215045A (en) Auxiliary air supply device for engine
JPS601364A (en) Multi-barrel type carburetor with supercharger
JPH04117178U (en) Initial discharge prevention mechanism of fuel injection device
JPS62195430A (en) Idle engine speed control device of engine