JPH01261225A - Production of calcium carbonate of aragonite crystal form - Google Patents

Production of calcium carbonate of aragonite crystal form

Info

Publication number
JPH01261225A
JPH01261225A JP63089705A JP8970588A JPH01261225A JP H01261225 A JPH01261225 A JP H01261225A JP 63089705 A JP63089705 A JP 63089705A JP 8970588 A JP8970588 A JP 8970588A JP H01261225 A JPH01261225 A JP H01261225A
Authority
JP
Japan
Prior art keywords
aragonite
cao
water
calcium carbonate
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63089705A
Other languages
Japanese (ja)
Other versions
JP2652032B2 (en
Inventor
Hiroshi Shibata
洋志 柴田
Toshio Fujiwara
敏男 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruo Calcium Co Ltd
Original Assignee
Maruo Calcium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruo Calcium Co Ltd filed Critical Maruo Calcium Co Ltd
Priority to JP63089705A priority Critical patent/JP2652032B2/en
Priority to KR1019890003606A priority patent/KR970001526B1/en
Publication of JPH01261225A publication Critical patent/JPH01261225A/en
Application granted granted Critical
Publication of JP2652032B2 publication Critical patent/JP2652032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like

Abstract

PURPOSE:To efficiently produce calcium carbonate of aragonite crystal form industrially, by slaking CaO with H2 to form water slurry of Ca(OH)2 and carbonating the slurry under a specific condition. CONSTITUTION:Lime stone is calcined to form CaO, which is slaked with H2O having the molar ratio to CaO of <=15 in case of <=70 deg.C water temperature and with water in any amount in case of >70 deg.C water temperature to give water slurry of Ca(OH)2. Then the water slurry is adjusted to 5-40wt.% concentration and 5-65 deg.C temperature and carbonated with a CO2 gas in an amount of 4l/min/kg Ca(OH)2 (calculated as 100% CO2 gas) to give the aimed calcium carbonate. The aragonite excellently exhibits its characteristics in the field especially of paper manufacturing and plastics. In paper manufacturing field, since aragonite has more excellent dispersibility than calcite, aragonite exhibits excellent opacifying power when used as a loading material or pigment of coating color.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アラゴナイト結晶形炭酸カルシウム(以下、
アラゴナイトと略す)の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to aragonite crystal form calcium carbonate (hereinafter referred to as
The present invention relates to a method for producing aragonite.

炭酸カルシウムは古くからゴム、プラスチック、塗料、
シーリング材、製紙等の分野で工業用原材料として広く
使用され、それぞれ優れた機能を発揮している。例えば
ゴム分野では補強性、■料分野ではダレ止め効果、プラ
スチックでは加工作業性の向上環の目的で使用されてい
る。これらの炭酸カルシウムは、結晶形から分類すれば
殆ど全てカルサイト結晶形炭酸カルシウム(以下、カル
サイトと略す)である。アラゴナイトは製紙の分野で一
部使用されており、例えばコーティングカラーの顔料、
薄紙のてん料等である。アラゴナイトはカルサイトに比
べて各分野で優れた物性を発揮し、又、今後−層その用
途開発が期待されている。
Calcium carbonate has long been used in rubber, plastics, paints,
It is widely used as an industrial raw material in fields such as sealants and paper manufacturing, and each exhibits excellent functionality. For example, it is used for reinforcement in the rubber field, to prevent sag in the materials field, and to improve processing workability in plastics. Almost all of these calcium carbonates are calcite crystal calcium carbonate (hereinafter abbreviated as calcite) when classified based on their crystal forms. Aragonite is used in some areas of paper manufacturing, for example as a pigment for coating colors,
Filling for thin paper, etc. Aragonite exhibits superior physical properties in various fields compared to calcite, and further applications are expected to be developed in the future.

従って、アラゴナイトの効率的な工業的生産方法の確立
が待望されているのが現状である。
Therefore, it is currently desired to establish an efficient industrial production method for aragonite.

(従来技術と問題点) アラゴナイトはカルサイトに比べて粒子の分散性が優れ
ている。又、カルサイトにはない柱状というCryst
al habbitは、カルサイトでは期待できない色
ルの特性を発揮する。従って、従来から工業的にアラゴ
ナイトをより効率的に生産することが試みられて来た。
(Prior art and problems) Aragonite has better particle dispersibility than calcite. Also, Cryst has a columnar shape that is not found in Calcite.
al habitat exhibits color properties that cannot be expected from calcite. Therefore, attempts have been made to industrially produce aragonite more efficiently.

例えば、Ca (OH) zスラリーとCO,ガスとの
気)色反応に関する技術としては、炭酸化工程でCO□
ガス量を各段階で調整して行う方法(特公昭55 51
852) 、Ca(OH)zスラリーにあらかじめ結晶
核形成剤を加える方法(特開昭59−223225) 
、炭酸化の各段階で加温する方法(特開昭63−303
16)等がある。
For example, as a technology related to the color reaction between Ca (OH) z slurry and CO gas, CO□
Method of adjusting the amount of gas at each stage
852), a method of adding a crystal nucleating agent to Ca(OH)z slurry in advance (JP-A-59-223225)
, method of heating at each stage of carbonation (Japanese Patent Application Laid-Open No. 63-303
16) etc.

しかし乍ら、これらの方法は品質及び製造設備の点で多
(の問題点を含んでいる。まず品質面では、これらの方
法は各生成条件を非常に微Iflに規定しないと、高純
度なアラゴナイトは得られない。
However, these methods have many problems in terms of quality and manufacturing equipment.Firstly, in terms of quality, these methods cannot produce high purity unless each production condition is specified to a very small Ifl. Aragonite is not available.

従って製造設備も大変y5雑となり、高価なものとなる
。その結果として、製造コストの高騰が免れない。
Therefore, the manufacturing equipment becomes very complicated and expensive. As a result, manufacturing costs inevitably rise.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記実情に鑑み鋭意研究の結果、前述のよ
うな従来技術が直面する問題点を一挙に解決することに
成功し、本発明を完成した。
In view of the above-mentioned circumstances, the inventors of the present invention have conducted extensive research, and as a result have succeeded in solving all of the problems faced by the prior art as described above, and have completed the present invention.

即ち、本発明は、石灰石を焼成して生成させたCaOを
、水温が70℃以下の場合は、CaOにえ、Iするモル
比で15倍以下の11□0で消化し、水温が70℃を越
える場合は、任意の量のH2Oで消化して生成させたC
a (OR) zの水スラリーを濃度5〜40−tχ、
温度を5〜65℃に調整し、攪拌しながらCO,ガス(
100%CO,とじて)を41 /win /kg−C
a (Oiり 2以下の量で炭酸化させることにより、
アラゴナイト結晶形炭酸カルシウムを生成させることを
特徴とするアラゴナイト結晶形炭酸カルシウムの製造方
法を内容とするものである。
That is, in the present invention, when the water temperature is 70°C or less, CaO produced by calcining limestone is digested at a molar ratio of 11□0, which is 15 times or less, to CaO and I when the water temperature is 70°C. If the amount exceeds the
a (OR) z water slurry at a concentration of 5 to 40-tχ,
Adjust the temperature to 5-65℃, and add CO, gas (
100% CO, 41/win/kg-C
a (Oi Ri) By carbonating in an amount of 2 or less,
The content is a method for producing aragonite crystalline calcium carbonate, which is characterized by producing aragonite crystalline calcium carbonate.

本発明で使用するCa (OH) zは、゛水温が70
℃以下の場合は、CaOに対するモル比で15倍以下の
H,Oで、好ましくは9倍以下のHiOで消化して生成
させたものである。水温が70℃以上の場合はこのよう
な制限はなく、任意の量でよい、 Ca(OR)2の水
スラリー濃度は5〜40wtχ、好ましくは8〜20w
t%程度が良い、温度は5〜65℃、好ましくは15〜
45℃程度が良い。C1hのガス量(CO,ガスlOO
%純度として)は、41 /sin/ kg−Ca (
OH) z以下とする必要があり1、より好ましくは2
 Il/m’tn / kg −Ca(OH)を以下で
ある。
The Ca (OH) z used in the present invention is
If the temperature is below 0.degree. C., it is produced by digestion with H, O at a molar ratio of 15 times or less to CaO, preferably 9 times or less HiO. When the water temperature is 70°C or higher, there is no such restriction and any amount may be used. The concentration of Ca(OR)2 water slurry is 5 to 40wtχ, preferably 8 to 20w.
About t% is good, the temperature is 5-65℃, preferably 15-65℃
A temperature of about 45°C is good. Gas amount of C1h (CO, gas lOO
% purity) is 41/sin/kg-Ca (
OH) must be less than or equal to 1, more preferably 2
Il/m'tn/kg -Ca(OH) is as follows.

CO□のガス濃度は、好ましくは10〜40%、より好
ましくは20〜35%程度が良い。
The gas concentration of CO□ is preferably about 10 to 40%, more preferably about 20 to 35%.

Ca (OH) tはその製造方法によってCotとの
反応性が異なる0例えば、石灰石を高温で短時間のうち
に焼成してCaOとCO2に分解し、このCaOに過剰
の水を加えて生成させたCa(Ol1)zはCOlとの
反応性が乏しい。一方、出来るだけ低温で、長時間かけ
て石灰石を分解したCaOに少量の水で消化して生成さ
せたCa (OH) *はCotとの反応性が良い。
Ca (OH) t has different reactivity with Cot depending on its production method. For example, limestone is calcined at high temperature for a short time to decompose it into CaO and CO2, and excess water is added to this CaO to generate it. Ca(Ol1)z has poor reactivity with COl. On the other hand, Ca (OH) *, which is produced by digesting CaO by decomposing limestone with a small amount of water at the lowest possible temperature over a long period of time, has good reactivity with Cot.

アラゴナイトの生成に関しては、前者より後者を使用し
た方がはるかに生成しやすい。
Regarding the generation of aragonite, it is much easier to generate using the latter than the former.

本発明者らはかかる観点からアラゴナイトを生成するC
a (Ol1) zについて研究を進めた。石灰石の焼
成温度の違いによって生成するCaOの結晶粒子の大き
さは異なる。これらを同一条件で消化した場合、生成す
るCa (OH) zの結晶粒子の大きさは、CaOの
結晶粒子が小さい程小さい結晶粒子が生成する。即ち、
Ca (OH) zの結晶粒子が小さい程、アラゴナイ
トが生成しやすい。このような結晶粒子の小さいCa 
(OH) Zを生成させるためには、出来るだけ高温状
態で消化させるのがよい。CaO+lI□O−= Ca
 (OH) zは強い発熱反応であるため、消化時の水
の量が少ない方が反応系内の温度は高くなる。
From this point of view, the present inventors have discovered that C
We conducted research on a (Ol1) z. The size of CaO crystal particles produced differs depending on the firing temperature of limestone. When these are digested under the same conditions, the smaller the Ca (OH) z crystal particles produced, the smaller the CaO crystal particles. That is,
The smaller the crystal particles of Ca (OH) z, the easier it is to generate aragonite. Ca with such small crystal particles
In order to generate (OH) Z, it is best to perform digestion at as high a temperature as possible. CaO+lI□O−= Ca
(OH) Since z is a strongly exothermic reaction, the smaller the amount of water during digestion, the higher the temperature in the reaction system.

従って出来るだけ少量の水で消化する方が結晶粒子が小
さい、即ち、アラゴナイトが生成しゃすいCa (OH
) zが得られる。具体的には、水温が70℃以下の場
合は、モル比でCaO/ II2O=1 / 15、好
ましくはl/9よりも11.0の量を減らせば良い。
Therefore, it is better to digest with as little water as possible because the crystal particles are smaller, that is, aragonite is formed.
) z is obtained. Specifically, when the water temperature is 70° C. or lower, the molar ratio of CaO/II2O is 1/15, preferably 11.0 less than 1/9.

水温が70℃以上の場合は、11.0の量は任意の滑で
結晶粒子が小さいCa (Ol1) zを生成するが、
上述の説明より、この場合でもH2Oの量が出来るだけ
少ない方が好ましいことは言うまでもない。石灰石を出
来るだけ低温で長時間かけて分解させたCaOは、消化
時のCaOに対する水の比率が比較的多くても、アラゴ
ナイトを生成するCa(OH)zを与える。逆に高温で
短時間で分解させたCaOは、消化時のCaOに対する
水の比率を少なくしないとアラゴナイトを生成するCa
 (0)1) tを与えない、勿論これらの比率は上述
の範囲内での加減である。このことはアラゴナイトが出
来るCa(OR)zを作るためには、石灰石の焼成条件
とCaOの消化条件の2点が大きく関係し、その中でも
CaOの消化条件の方がはるかに大きく影響するが、石
灰石の焼成条件も十分考慮しなければならないと言うこ
とである。
When the water temperature is above 70°C, an amount of 11.0 will produce Ca (Ol1) z with arbitrary smoothness and small crystal particles, but
From the above explanation, it goes without saying that even in this case, it is preferable that the amount of H2O is as small as possible. CaO obtained by decomposing limestone at the lowest possible temperature over a long period of time gives Ca(OH)z, which produces aragonite, even if the ratio of water to CaO during digestion is relatively high. On the other hand, CaO decomposed in a short time at high temperature will produce aragonite unless the ratio of water to CaO during digestion is reduced.
(0)1) t is not given.Of course, these ratios are adjusted within the above range. This means that in order to produce Ca(OR)z, which is the product of aragonite, there are two major factors: the calcination conditions for limestone and the conditions for digestion of CaO. Of these, the conditions for digestion of CaO have a far greater influence. This means that the firing conditions for limestone must also be carefully considered.

一方、これらのCa (OH) zの結晶状態をX線回
折で観察すると、Ca (OH) zはミラー指数で表
される結晶面が6点検出される。 !IIち、(02O
,1)、(12O2O)、(12O,1)、(12O゜
2)  (1,1,O)、(1,1,1)である、これ
らの結晶面の中でX線回折強度比1/Toが消化状態の
相異(結果として活性度の相異)によって異なるのは(
0,O,l1面である。具体的には7ラゴナイトを生成
するCa (Off) tはアラゴナイトを生成しない
Ca (OH) zに比べて(0,O,I)面の強度比
が小さ(、その値(1/1.)は75以下である。下限
は特に限定されないが、50程度が好ましい。しかし乍
ら、このようなX線回折強度比を有するCa (Off
) tを使用すれば必ず7ラゴナイトを高純度で生成す
る訳ではなく、上述のような反応条件下で炭酸化を行う
必要がある。特にCotのガス量は厳守しなければアラ
ゴナイトを高純度で生成させることはできない。
On the other hand, when the crystal state of Ca (OH) z is observed by X-ray diffraction, six crystal planes expressed by Miller indices are detected in Ca (OH) z. ! II, (02O
,1), (12O2O), (12O,1), (12O゜2) (1,1,O), (1,1,1), and the X-ray diffraction intensity ratio 1 among these crystal planes. The reason why /To differs depending on the state of digestion (as a result, the degree of activity) is (
0, O, l1 plane. Specifically, Ca (Off) t, which produces 7lagonite, has a smaller intensity ratio of the (0, O, I) plane than Ca (OH) z, which does not produce aragonite (and its value (1/1)). is 75 or less.The lower limit is not particularly limited, but is preferably about 50.However, it is important to note that Ca (Off
) The use of t does not necessarily produce highly pure 7lagonite, and carbonation must be carried out under the reaction conditions described above. In particular, aragonite cannot be produced with high purity unless the amount of Cot gas is strictly observed.

こうしてできたアラゴナイトは長径0.5〜10゜0μ
m、短径0.02〜1.0μm、アスペクト比5以上の
柱状もしくは針状形状をしている。粒子の大小の調整に
ついては、Ca (Oi1) z水スラリーの温度が低
い程粒子は小さ(なり、Ca(Oi1)を水スラリーの
温度が高い程粒子が大きくなる。
The aragonite made in this way has a major axis of 0.5~10゜0μ.
m, has a columnar or needle-like shape with a minor axis of 0.02 to 1.0 μm and an aspect ratio of 5 or more. Regarding adjustment of the size of the particles, the lower the temperature of the Ca(Oi1) water slurry, the smaller the particles (become), and the higher the temperature of the Ca(Oi1) water slurry, the larger the particles.

上記の如くして得られるアラゴナイトは各使用用途に応
じてスラリーでも、ペーストでも製品となる。スラリー
の場合は3〜35%、ペーストの場合は分散を入れて4
5〜65%程度の濃度が好 。
The aragonite obtained as described above can be made into a slurry or paste depending on the intended use. 3-35% for slurry, 4% including dispersion for paste
A concentration of about 5 to 65% is preferable.

ましい、また、アラゴナイトスラリーを脱水、乾燥して
粉体として製品化しても良い。
Alternatively, the aragonite slurry may be dehydrated and dried to produce a product as a powder.

〔作用・効果〕[Action/Effect]

本発明のアラゴナイトは、従来カルサイトが使用されて
いた分野の中でも特に製紙、プラスチックの分野でその
特性を顕著に発揮する。製紙分野では、カルサイトに比
ベアラゴナイトは分散性が優れているため、紙の填料と
して又コーティングカラーの顔料として使用した場合、
優れた隠ペイ性を発揮する。従って、従来隠ペイ性付与
のために使用されていたTi01が大幅に節減できる。
The aragonite of the present invention exhibits its properties particularly in the fields of paper manufacturing and plastics, among the fields where calcite has conventionally been used. In the paper manufacturing field, bare aragonite has superior dispersibility compared to calcite, so when used as a paper filler or as a coating color pigment,
Demonstrates excellent concealment performance. Therefore, Ti01, which was conventionally used to provide concealment properties, can be significantly reduced.

また、コーティングカラーの顔料としてカオリン等と併
用使用した場合、従来からこの分野に使用されている立
方体形状のカルサイトに比べて、優れた印刷適性を示す
、特に印刷光沢、ピンキングが良い。
In addition, when used in combination with kaolin etc. as a coating color pigment, it shows superior printability compared to the cubic calcite conventionally used in this field, especially in printing gloss and pinking.

更に、白紙光沢もカルサイトより優れている。コーティ
ングカラーに使用した場合のこれらの優れた物性は、ア
ラゴナイトのCrystal habbitである柱状
又は針状という方向性をもった粒子形状に起因する。
Furthermore, white paper gloss is also superior to calcite. These excellent physical properties when used in a coating color are due to the crystal habit of aragonite, which is a columnar or needle-like directional particle shape.

〔実施例〕〔Example〕

以下、本発明を実施例及び比較例を挙げて更に詳細に説
明するが、本発明はこれらにより何ら制限されるもので
はない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited by these in any way.

実施例1 石灰石を900℃で24時間焼成してCaOとC02に
分解させた。このCaOに水温20℃のHtOをCaO
に対するモル比で6倍量加え(wtXでCaO/lhO
= 1 / 2 ) Ca(On)zを生成させ、1時
間以上放置させた後、更にH2Oを加えて濃度が130
g/lとなるようなCa (Off) z水スラリーに
調整した。
Example 1 Limestone was calcined at 900°C for 24 hours to decompose it into CaO and CO2. Add HtO at a water temperature of 20°C to this CaO.
(CaO/lhO in wtX)
= 1/2) After generating Ca(On)z and leaving it for more than 1 hour, H2O was further added until the concentration was 130.
The Ca (Off) z water slurry was adjusted to have a concentration of g/l.

その後、温度を35℃に調整したCa (O)1) !
水スラリー301にCoztl度30%である空気とC
O□混合ガスを61 / sin / kg−Ca(O
H) zの割合で吹き込んでCa (OR) xを炭酸
化した。こうして出来た炭酸カルシウムをX線でアラゴ
ナイト含有量を、また、電子顕微鏡で粒子形状を観察し
た。結果を第1表に示す、尚、用いたCa (OH) 
tのX線回折強度比(j/1゜)は65.6であった。
After that, the temperature was adjusted to 35 °C and Ca(O)1)!
Water slurry 301 with air and C having a Coztl degree of 30%
O□ Mixed gas at 61/sin/kg-Ca(O
H) Ca (OR) x was carbonated by blowing at a rate of z. The aragonite content of the calcium carbonate thus produced was observed using X-rays, and the particle shape was observed using an electron microscope. The results are shown in Table 1, and the Ca(OH) used
The X-ray diffraction intensity ratio (j/1°) at t was 65.6.

実施例2 実施例1において、石灰石の焼成温度を1400℃で5
時間とした以外は全て実施例1と同様に操作した。尚、
用いたCa(Ot1)zのX″+Q回折強度比(■/!
。)は67、lであった。
Example 2 In Example 1, the firing temperature of limestone was set at 1400°C for 5
All operations were performed in the same manner as in Example 1 except for changing the time. still,
X″+Q diffraction intensity ratio of the Ca(Ot1)z used (■/!
. ) was 67.l.

実施例3 実施例1において、消化時の水温を100℃、消化時の
HxOの量をCaOに対するモル比で22倍l(wtχ
でCaO/H20″=1/7)とした以外は全て実施例
1と同様に操作した。用いたCa(OH)zのX線回折
強度比(I/1゜)は66.7であった。
Example 3 In Example 1, the water temperature during digestion was 100°C, and the amount of HxO during digestion was 22 times the molar ratio to CaO (wtχ
All operations were performed in the same manner as in Example 1, except that CaO/H20'' = 1/7).The X-ray diffraction intensity ratio (I/1°) of the Ca(OH)z used was 66.7. .

比較例1 実施例1において、消化時の水の量をCaOに対するモ
ル比で17倍i1(wtχでCaO/l1go = 1
15.5)とした以外は全て実施例1と同様に操作した
。尚、用いたCa(OH)zのXi、?!回折強度比(
1/!。)は79.9であった。
Comparative Example 1 In Example 1, the amount of water during digestion was increased by 17 times the molar ratio to CaO i1 (wtχ, CaO/l1go = 1
15.5) All operations were carried out in the same manner as in Example 1, except that the procedure was as follows. In addition, Xi of Ca(OH)z used, ? ! Diffraction intensity ratio (
1/! . ) was 79.9.

比較例2 実施例1において、炭酸化時の混合ガス量を201 /
+*in / kg−Ca(OH)zとした以外は全て
実施例1と同様に操作した。尚、用いたCa (Ol1
) 2のX線回折強度比N/Io )は78.6であっ
た。
Comparative Example 2 In Example 1, the amount of mixed gas during carbonation was changed to 201 /
All operations were performed in the same manner as in Example 1 except that +*in/kg-Ca(OH)z. In addition, the Ca (Ol1
) The X-ray diffraction intensity ratio N/Io ) of 2 was 78.6.

比較例3 実施例1において、消化時の水温を60℃、消化時の1
1□0の量をCaOに対するモル比で25倍1(wtχ
でCaO/u、o I−+1 / 8 )とした以外は
全て実施例1と同様に段作した。尚、用いたCa (O
l1) zのX線回折強度比(■/1゜)は80.5で
あった。
Comparative Example 3 In Example 1, the water temperature during digestion was 60°C, and
The molar ratio of 1□0 to CaO is 25 times 1 (wtχ
Step production was performed in the same manner as in Example 1, except that CaO/u, o I-+1/8) was used. In addition, the Ca (O
l1) The X-ray diffraction intensity ratio (■/1°) of z was 80.5.

第   1   表 上記の結果かられかるように、本発明の実施例1〜3は
高純度にアラゴナイトを生成するが、比較例1〜3は全
くアラゴナイトを生成しないか、生成しても含有率が極
めて低い。
Table 1 As can be seen from the above results, Examples 1 to 3 of the present invention produce aragonite with high purity, but Comparative Examples 1 to 3 either do not produce aragonite at all or even if they do produce it, the content is low. Extremely low.

応用例1 実施例1及び2で生成させたアラゴナイトを紙の填料と
して使用し、第2表に示した配合で抄紙試験を実施した
。尚、比較のために、従来の紡錘形カルサイトを用い同
様の試験を実施した。その結果を第3表に示す。
Application Example 1 A paper making test was conducted using the aragonite produced in Examples 1 and 2 as a paper filler and the formulations shown in Table 2. For comparison, a similar test was conducted using conventional spindle-shaped calcite. The results are shown in Table 3.

第   2   表 配合 (a)パルプ(L/N = 1/3)  、    1
00部(重V部)(b) CaCO360部 (c)水          バルブ濃度2.5%(d
)カナオンデンプン        1部(e)硫酸バ
ンド           0.5部(f)サイズ剤(
バーサイズ八に−188)   0.2部(g)定着剤
(カイメン557H)       0.05部(h)
歩留向上剤01R41L)I)       (12O
2部※1 1−n、/ $1■  1/11閃−R■Ro=黒板反
射率 R■:完全に不透明な紙束の反射率 W:坪量 ※2 Sf:未充填紙の比散乱係数 Sa:充填紙の比散乱係数 y:充填量 第   3   表 以上の結果より、本発明品を紙の填料として使用すれば
、(Iれた白色度、不透明度、紙S値、顔ネ4S(直が
得られることがわかる。
Table 2 Mixture (a) Pulp (L/N = 1/3), 1
00 parts (heavy V part) (b) 360 parts of CaCO (c) Water Bulb concentration 2.5% (d
) Canaon starch 1 part (e) Bandon sulfate 0.5 part (f) Sizing agent (
Bar size Hachi-188) 0.2 parts (g) Fixing agent (Kaimen 557H) 0.05 parts (h)
Retention aid 01R41L)I) (12O
2 parts *1 1-n, / $1 ■ 1/11 flash - R ■ Ro = blackboard reflectance R ■: Reflectance of completely opaque paper stack W: Basis weight *2 Sf: Specific scattering of unfilled paper Coefficient Sa: Specific scattering coefficient of filled paper y: Filling amount From the results shown in Table 3, if the product of the present invention is used as a paper filler, (You can see that you can get direct results.

応用例2 次に、実施例!で得られたアラゴナイトを塗工用顔料と
してのテストを実施した。同時に、比較のために従来か
ら塗工用顔料として広く使用されている一辺約0.5μ
mの立方体炭酸カルシウムを用いて同時にテストした。
Application example 2 Next, an example! The aragonite obtained in the above was tested as a coating pigment. At the same time, for comparison, a pigment of approximately 0.5μ per side, which has been widely used as a coating pigment, is used.
Simultaneously tested with m cubic calcium carbonate.

塗工試験結果(片面塗工物性)を第4表に示した。The coating test results (physical properties of single-sided coating) are shown in Table 4.

向、カラー処方、■1方法及び塗工物性測定条件は下記
の通りとした。
The direction, color prescription, method (1), and coating property measurement conditions were as follows.

(イ)カラー処方 試料スラリー : 100重量部 Latex JSRO’692 :  13重量部5L
arch MS 4600 ;   7重量部固形分濃
度  : 55重量% ステンレス容器に試料スラリー、ラテックス、スターチ
と水を投入しラボデイスパーで、分散を行いカラーを調
整した。
(a) Color prescription sample slurry: 100 parts by weight Latex JSRO'692: 13 parts by weight 5L
Arch MS 4600; 7 parts by weight Solid content concentration: 55% by weight Sample slurry, latex, starch and water were put into a stainless steel container and dispersed using a lab disper to adjust the color.

(ロ) 塗工方ン去 原紙(坪168/n(のコート原紙)を使用し、コーテ
ィングロートで15g/mの片面塗工を行った。これを
直ちに熱風乾燥機に入れ、120℃で2分間キユアリン
グを行った後に20℃、65%RHの高温恒湿槽中で1
2時間コンデショニングを行い、スーパーカレンダーを
かけて塗工紙を得た。
(b) Coating method Using base paper (coated base paper of 168 tsubo 168/n), one side was coated with a coating funnel at a rate of 15 g/m. This was immediately placed in a hot air dryer and heated at 120°C for 2 hours. After curing for 1 minute, it was placed in a high temperature and humidity chamber at 20℃ and 65% RH.
Conditioning was performed for 2 hours and supercalendering was performed to obtain coated paper.

スーパーカレンダー処理条件 線   圧:10kg/cd 温 度−60℃ 通紙回数=3回 カレンダー速度: 811/5in (ハ)塗工物性測定条件 塗工量:l0XIO(d+>の塗工紙の重量を化学天秤
で秤量し、原紙の秤量を差 し引いて測定、10枚の試験片の平 均値。
Super calender processing conditions Line pressure: 10 kg/cd Temperature -60°C Number of paper passes = 3 times Calendar speed: 811/5 in (c) Coating physical properties measurement conditions Coating amount: 10XIO (weight of coated paper with d+> Measured by weighing on a chemical balance and subtracting the weight of the base paper, average value of 10 test pieces.

白紙白色度: JIS−P−812310枚の試験片の
測定値の平均値。
White paper whiteness: Average value of the measured values of 10 test pieces of JIS-P-8123.

白紙光沢度: JIS−P−814210枚の試験片の
測定値の平均値。
White paper glossiness: Average value of measurements of 10 JIS-P-8142 test pieces.

印刷光沢度: JIS−P−814210枚の試験片の
測定値の平均値。
Print glossiness: Average value of measurements of 10 JIS-P-8142 test pieces.

周速1陽/sec、1回転層色、イ ンキ供給量0.4ml。Peripheral speed 1y/sec, 1 rotation layer color, i Ink supply amount 0.4ml.

(使用インキ:東洋インキ製 TKブライトG墨−口) R1−Dry −I’ick : 5点法で評価、10
枚の試験片の測定値の平均値。
(Ink used: Toyo Ink TK Bright G ink-mouth) R1-Dry-I'ick: Evaluation on a 5-point scale, 10
Average value of the measured values of two test pieces.

周速3+11/sec、15回回転層、インキ供給10
.35mj!。
Peripheral speed 3+11/sec, 15 rotation layers, ink supply 10
.. 35mj! .

(使用インキ二人日本インキ 製タックグレードTV=14墨) ■・Ink −Set  :目視評価しSet完了の時
間(編in )で表示。
(The ink used was Nippon Ink's tack grade TV = 14 ink.) - Ink-Set: Visually evaluated and displayed as the set completion time (edited in).

周速1m/5eeS1回転展色、イ ンキ(共給量0.3m1 (使用インキ:東洋インキ製 TKブライトG紅−口) R1−WeL着肉;印刷白色度を測定、白色度低下率で
表示。
Circumferential speed: 1 m/5ee S1 rotating color spread, ink (co-supplied amount: 0.3 m1 (ink used: Toyo Ink TK Bright G Red) R1-WeL inking; printing whiteness was measured and expressed as whiteness reduction rate.

周速3m1sec、 1回転層色、湿 し水2.5sf繰り込み、イン 主供給10.6ml。Circumferential speed 3m1sec, 1 rotation layer color, humidity Shimizu 2.5sf renormalization, in Main supply 10.6ml.

(使用インキ:東洋インキ製 TKブライトG紅−口) k&に濃度:印刷白色度を測定、白色度低下率で表示。(Ink used: Toyo Ink TK Bright G Red-Mouth) Density: Measures printing whiteness and displays the whiteness reduction rate.

に龜Kink 2m1n値 墨淵度:印別白色度を測定、白色度低下率で表示。Niku Kink 2m1n value Sumibuchi degree: Measures the whiteness of each stamp and displays it as a whiteness reduction rate.

亜麻仁油黒色INK 40sec値 測定機器 恒温恒湿槽:FR4nタバイ製作所 スーパーカレンダー:熊谷理工■ R1・■型テスター;■明製作所 グロスメーター:村上色彩技研 GM−3Mハンター式
比色度計: I’k1441 TSS型■東洋精機B型
粘度計:東京計器 第   4   表 第4表の結果から、本発明品は塗工用顔料としても優れ
た効果があることが理解される。
Flaxseed oil black INK 40sec value measuring equipment Temperature and humidity chamber: FR4n Tabai Seisakusho Super Calendar: Kumagai Riko ■ R1/■ type tester; ■ Mei Seisakusho gloss meter: Murakami Color Giken GM-3M Hunter type colorimeter: I'k1441 TSS type ■ Toyo Seiki B type viscometer: Tokyo Keiki Table 4 From the results shown in Table 4, it is understood that the product of the present invention has excellent effects as a coating pigment.

Claims (1)

【特許請求の範囲】 1、石灰石を焼成して生成させたCaOを、水温が70
℃以下の場合は、CaOに対するモル比で15倍以下の
H_2Oで消化し、水温が70℃を越える場合は任意の
量のH_2Oで消化して生成させたCa(OH)_2の
水スラリーを濃度5〜40wt%、温度を5〜65℃に
調整し、攪拌しながらCO_2ガス(100%CO_2
として)を4l/min/kg・Ca(OH)_2以下
の量で炭酸化させることにより、アラゴナイト結晶形炭
酸カルシウムを生成させることを特徴とするアラゴナイ
ト結晶形炭酸カルシウムの製造方法。 2、生成させたCa(OH)_2のミラー指数で示され
る結晶面(0、0、1)に対するX線回折強度化(I/
I_0)が75以下である請求項1記載の製造方法。 3、CO_2ガス(100%CO_2として)が2l/
min/kg・Ca(OH)_2以下の量である請求項
1又は2記載の製造方法。
[Claims] 1. CaO produced by calcining limestone is heated to a water temperature of 70°C.
℃ or less, digest with H_2O at a molar ratio of 15 times or less to CaO, and if the water temperature exceeds 70℃, digest with any amount of H_2O to produce a water slurry of Ca(OH)_2. 5 to 40 wt%, the temperature was adjusted to 5 to 65°C, and CO_2 gas (100% CO_2
1. A method for producing aragonite crystalline calcium carbonate, the method comprising producing aragonite crystalline calcium carbonate by carbonating (as) aragonite crystalline calcium carbonate in an amount of 4 l/min/kg・Ca(OH)_2 or less. 2. X-ray diffraction intensity enhancement (I/
The manufacturing method according to claim 1, wherein I_0) is 75 or less. 3. CO_2 gas (as 100% CO_2) is 2l/
The manufacturing method according to claim 1 or 2, wherein the amount is less than min/kg.Ca(OH)_2.
JP63089705A 1988-04-12 1988-04-12 Method for producing aragonite crystalline calcium carbonate Expired - Fee Related JP2652032B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63089705A JP2652032B2 (en) 1988-04-12 1988-04-12 Method for producing aragonite crystalline calcium carbonate
KR1019890003606A KR970001526B1 (en) 1988-04-12 1989-03-22 Process for the preparation of aragonite type calcium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63089705A JP2652032B2 (en) 1988-04-12 1988-04-12 Method for producing aragonite crystalline calcium carbonate

Publications (2)

Publication Number Publication Date
JPH01261225A true JPH01261225A (en) 1989-10-18
JP2652032B2 JP2652032B2 (en) 1997-09-10

Family

ID=13978195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63089705A Expired - Fee Related JP2652032B2 (en) 1988-04-12 1988-04-12 Method for producing aragonite crystalline calcium carbonate

Country Status (2)

Country Link
JP (1) JP2652032B2 (en)
KR (1) KR970001526B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295010A (en) * 1991-03-22 1992-10-20 Okutama Kogyo Kk Production of aragonite columner calcium carbonate
WO2000056661A1 (en) * 1999-03-19 2000-09-28 Yabashi Industries Co., Ltd. Process for producing calcium carbonate
JP2008273761A (en) * 2007-04-26 2008-11-13 New Raimu Kenkyusha:Kk Method for manufacturing aragonitic acicular or columnar calcium carbonate agglomerate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720859B1 (en) * 2005-12-30 2007-05-23 한국지질자원연구원 Control of particle size of aragonite precipitated calcium carbonate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295010A (en) * 1991-03-22 1992-10-20 Okutama Kogyo Kk Production of aragonite columner calcium carbonate
WO2000056661A1 (en) * 1999-03-19 2000-09-28 Yabashi Industries Co., Ltd. Process for producing calcium carbonate
AU768281B2 (en) * 1999-03-19 2003-12-04 Yabashi Industries Co., Ltd. Process for producing calcium carbonate
JP2008273761A (en) * 2007-04-26 2008-11-13 New Raimu Kenkyusha:Kk Method for manufacturing aragonitic acicular or columnar calcium carbonate agglomerate

Also Published As

Publication number Publication date
JP2652032B2 (en) 1997-09-10
KR890015960A (en) 1989-11-27
KR970001526B1 (en) 1997-02-11

Similar Documents

Publication Publication Date Title
US5230734A (en) Calcium-magnesium carbonate composite and method for the preparation thereof
US9944535B2 (en) Precipitated calcium carbonate from pulp mill waste having an improved brightness, method for the production and use thereof
US4124688A (en) Process for preparing cubic crystals of calcium carbonate
WO2002002462A1 (en) Titanium dioxide-calcium carbonate composite particles
JP2556706B2 (en) Method for producing calcium carbonate for papermaking
JP2010077009A (en) Method for producing calcium carbonate
EP2976391B1 (en) Precipitated calcium carbonate, a method for its manufacture and uses thereof
JPS59223225A (en) Manufacture of calcium carbonate
JPH01261225A (en) Production of calcium carbonate of aragonite crystal form
JPH07196317A (en) Production of precipitated calcium carbonate light
JP2003063821A (en) Composite particle of silica-calcium carbonate and method for producing the same, as well as composite composition and composite containing the composite particles
JPH0640717A (en) Planer basic calcium carbonate
JPS62207714A (en) Production of calcium carbonate
JP2000272919A (en) Production of aragonite needle crystalline calcium carbonate
JPS63260815A (en) Production of calcium carbonate having aragonite crystal form
CN107001062B (en) The improved method for producing winnofil
JPS6217020A (en) Production of calcium carbonate
JPH0575697B2 (en)
TW201302614A (en) Precipitated calcium carbonate from pulp mill waste having an improved brightness, method for the production and use thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees