JPH01261012A - Many times reflection type ultrasonic wave delay line - Google Patents

Many times reflection type ultrasonic wave delay line

Info

Publication number
JPH01261012A
JPH01261012A JP8975788A JP8975788A JPH01261012A JP H01261012 A JPH01261012 A JP H01261012A JP 8975788 A JP8975788 A JP 8975788A JP 8975788 A JP8975788 A JP 8975788A JP H01261012 A JPH01261012 A JP H01261012A
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic wave
transducer
delay line
mode conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8975788A
Other languages
Japanese (ja)
Inventor
Takeo Yokoyama
横山 武男
Masatoshi Beppu
別府 正寿
Hiroyoshi Hirasawa
平沢 裕愛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP8975788A priority Critical patent/JPH01261012A/en
Publication of JPH01261012A publication Critical patent/JPH01261012A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To make a fractional band wide and to prevent the disturbance in the frequency characteristic by providing a slot to a mode conversion face in a direction perpendicular to each transducer, applying a sound absorbing agent to the mode conversion face and each side face of a packing member and packing the sound absorbing agent to the groove part. CONSTITUTION:An ultrasonic wave B0 comprising a lateral wave component from an input transducer 13 and an output transducer 14 is converted into an ultrasonic wave signal B1 comprising a longitudinal wave component by mode conversion faces 11A, 11B. The ultrasonic wave signals B1, B1 run against slots 2A, 2B and since the ultrasonic wave absorbing agent 18 is packed in the slots 2A, 2B, the ultrasonic wave signals B1, B1 are absorbed herein, part of them is reflected at a prescribed angle and attenuated. That is, the spurious signal is largely attenuated herein by the operation of the sound absorbing agent 16 packed in the slots 2A, 2B. Thus, the disturbance in the characteristic at a band with a high frequency is avoided.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は入出力トランスデューサ上にバッキング材を接
合した多数回反射型超音波遅延線に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multi-reflection type ultrasonic delay line in which a backing material is bonded onto an input/output transducer.

[従来の技′#I] 近年映像機器の伝送帯域中は画質の向上に伴ない広帯域
化の方向に有り、発明者らは先に特許62−23575
0@公報にて、このような分野に適した比較的簡単な構
成で広帯域特性を得ることが出来る多数回反射型超音波
遅延線を提案している。第10図及び第11図にこのに
うに構成された多数回反射型超音波遅延線を示す。
[Conventional Technique'#I] In recent years, the transmission band of video equipment has been trending toward wider bands as image quality has improved, and the inventors have previously published patent No. 62-23575.
In the 0@ publication, we have proposed a multi-reflection type ultrasonic delay line that is suitable for such fields and can obtain broadband characteristics with a relatively simple configuration. FIGS. 10 and 11 show a multi-reflection type ultrasonic delay line constructed in this manner.

第10図及び第11図において、10aないし10dは
各々信号反射面を示し、10eはトランスデユーサ結合
面を示す。このトランスデユーサ結合面10e上には、
下面電極13A、14Aが設けられ、その上面に各々入
力トランスデューサ13、出力トランスデューサ14が
接合され、その上面に、更に各トランスデユーサ13.
14からの超音波信号をモード変換して反射する反射面
(モード変換面>11A、11Bを有し、前記各トラン
スデユーサ13.14との結合面側に各々スズを真空蒸
肴した上面電極13B、14Bを設けてなるバッキング
材11が接合されている。
In FIGS. 10 and 11, 10a to 10d each represent a signal reflecting surface, and 10e represents a transducer coupling surface. On this transducer coupling surface 10e,
Lower surface electrodes 13A and 14A are provided, the input transducer 13 and the output transducer 14 are connected to the upper surfaces of the lower electrodes 13A and 14A, respectively, and each transducer 13.
A reflecting surface (mode conversion surface > 11A, 11B) that modulates and reflects the ultrasonic signal from 14, and an upper surface electrode on which tin is vacuum-evaporated on the coupling surface side with each transducer 13 and 14, respectively. A backing material 11 formed by providing 13B and 14B is joined.

前記バッキング材11のモード変換面11A。Mode conversion surface 11A of the backing material 11.

11Bは第14図に示すように入力トランスデューサ1
3.14から出力される横波成分からなる超音波信号8
゜を全て縦波成分からなる超音波信@B2に変換する機
能をもっており、これによってバッキング材11側に送
られた超音波信号B。
11B is the input transducer 1 as shown in FIG.
3. Ultrasonic signal 8 consisting of transverse wave components output from 14
It has a function of converting ゜ into an ultrasonic signal @B2 consisting entirely of longitudinal wave components, and thereby the ultrasonic signal B sent to the backing material 11 side.

が再び入力トランスデューサ13.14によって電気信
号に変換されることを防止している。具体的には第14
図に示すようにバッキング材11側に出力された横波成
分の超音波信号B。はモード変換面11A、11Bにて
縦波成分に略全で変換され、スプリアス信号の一部は第
14図に示すように再び入力トランスデューサ13.1
4に入射されるが、入力トランスデューサ13.14は
横波信号用トランスデユーサなので、これを電気信号に
変換することはない。この結果スプリアス信号、例えば
、帯域特性に悪影響を及ぼす奇数回反射のスプリアス3
Td、5Td等による影響を略完全に除去している。
is prevented from being converted back into an electrical signal by the input transducer 13,14. Specifically, the 14th
As shown in the figure, an ultrasonic signal B of a transverse wave component is output to the backing material 11 side. Almost all of the spurious signals are converted into longitudinal wave components at the mode conversion surfaces 11A and 11B, and a part of the spurious signal is transferred to the input transducer 13.1 again as shown in FIG.
However, since the input transducers 13 and 14 are transducers for transverse wave signals, they are not converted into electrical signals. As a result, spurious signals, e.g., spurious signals with an odd number of reflections that adversely affect the band characteristics.
The influence of Td, 5Td, etc. is almost completely eliminated.

ここで、この反射面11A、すなわちモード変換面につ
いて詳述する。
Here, this reflective surface 11A, that is, the mode conversion surface will be described in detail.

第7図(b)に示すように個数媒体■と流体媒体■との
境界面55に横波Bnがαの角度で入射すると、反射波
は横波B1の他に縦波B2も現われる。横波の反射角α
は入射角αに等しいが、縦波の反射角βはこれと異なる
。これらの反射における反射角相互の関係は、 3inα/Sin  β−C1)I/Cslとなる。な
お、Cplは媒体■中のvt波の伝播速度、Cslは媒
体I中の縦波の伝播速度である。
As shown in FIG. 7(b), when a transverse wave Bn is incident on the interface 55 between the multi-piece medium 2 and the fluid medium 2 at an angle α, a longitudinal wave B2 appears in addition to the transverse wave B1 as reflected waves. Reflection angle α of transverse wave
is equal to the incident angle α, but the reflection angle β of the longitudinal wave is different from this. The relationship between the reflection angles in these reflections is as follows: 3inα/Sinβ−C1)I/Csl. Note that Cpl is the propagation velocity of the VT wave in the medium (1), and Csl is the propagation velocity of the longitudinal wave in the medium I.

入射横波βと反射横波β1の強度8 + / B oは
媒体■のポアソン比σ(第6図(b))をパラメータと
して入射角αに依存し、反射横波B1の強度がO(零)
になる入射角においては、入射横波Boは完全に縦波B
2への変換が起きる。例えば、媒体1がポアソン比的0
.22の鉛ガラス、流体媒体■が空気の場合、入射角α
が約28゛ (これを、モード変換角という)で入射横
波B+の強度が0になり、入射横波B。は完全に縦波B
2への変換が起きる。
The intensity of the incident transverse wave β and the reflected transverse wave β1, 8 + / B o, depends on the angle of incidence α using the Poisson's ratio σ of the medium (Fig. 6 (b)) as a parameter, and the intensity of the reflected transverse wave B1 is O (zero).
At the angle of incidence, the incident transverse wave Bo is completely transformed into a longitudinal wave B
A conversion to 2 occurs. For example, if medium 1 is Poisson's ratio 0
.. When the lead glass in No. 22 and the fluid medium ■ are air, the angle of incidence α is
is about 28゛ (this is called the mode conversion angle), the intensity of the incident transverse wave B+ becomes 0, and the incident transverse wave B. is completely longitudinal wave B
A conversion to 2 occurs.

また、入射波が縦波のときは、入射縦波AON反射反射
波縦波、横波A2の関係は第5図(a)に示すようにな
り、その強A + / A aは媒体1のポアソン比σ
(第6図(a))をパラメータとして入射角αに依存し
、反射縦波A1の強度が0(零)になる入射角がある。
When the incident wave is a longitudinal wave, the relationship between the incident longitudinal wave AON, the reflected reflected wave longitudinal wave, and the transverse wave A2 is as shown in Figure 5 (a), and the intensity A + / A a is the Poisson wave of the medium 1. ratio σ
There is an incident angle at which the intensity of the reflected longitudinal wave A1 becomes 0 (zero), depending on the incident angle α using (FIG. 6(a)) as a parameter.

媒体■がポアソン比的0゜22の鉛ガラス、流体媒体■
が空気の場合、入射角αが約55°で反射縦波A1の強
度がOになり、入射縦波A。は完全に横波A2への変換
が起きる。
Medium ■ is lead glass with Poisson's ratio of 0°22, fluid medium ■
When is air, the intensity of the reflected longitudinal wave A1 becomes O when the angle of incidence α is about 55°, and the intensity of the reflected longitudinal wave A1 becomes O. is completely converted into a transverse wave A2.

なあ、横波のときは、臨界角(第6図(b)参照(ポア
ソン比0.22の例では約37°))があり、臨界角以
上になると縦波へのモード変換が行われないので入射角
αは臨界角以下でなければならない。
By the way, in the case of transverse waves, there is a critical angle (see Figure 6 (b) (approximately 37° in the example of Poisson's ratio 0.22)), and if the critical angle is exceeded, mode conversion to longitudinal waves will not occur. The angle of incidence α must be less than or equal to the critical angle.

このように、このモード変換面11A、11Bは、第1
4図に示すようにIPi音波信号Boを入射角α、すな
わちモード変換角αで入射するような傾斜面となってい
る。
In this way, the mode conversion surfaces 11A and 11B are
As shown in FIG. 4, the surface is inclined so that the IPi sound wave signal Bo is incident at an incident angle α, that is, a mode conversion angle α.

そしてこのバッキング材11上には第12図。And on this backing material 11 is shown FIG.

第13図に示すように入・出力トランスデューサ接合面
を除く各面を覆うように超音波吸音材16が塗布されて
いる。
As shown in FIG. 13, an ultrasonic sound absorbing material 16 is applied so as to cover each surface except for the interface between the input and output transducers.

このように構成された頂音波遅延線は入力1〜ランスデ
ユーサ13に電気信号を入力すると、これを横波成分か
らなる超音波信号に変換する。そして、この超音波信号
は超音波遅延媒体10内を伝播し、所定時間(Td )
経過後、出力トランスデユーサ14の作用により再び電
気信号に変換されて、外部菰@(図示せず)に送出する
。この場合、特に帯域特性に悪影響を及ぼす奇数回反射
スプリアス(3Td>、(5Td)等がバッキング材1
1のモード変換面11A、11Bの作用により、縦波成
分の超音波信号に略全で変換されるので、(3Td)、
(5Td>等のスプリアスの影響を排除している。
When an electrical signal is input to the input 1 to the transducer 13, the apex acoustic delay line configured in this manner converts the electrical signal into an ultrasonic signal consisting of a transverse wave component. This ultrasonic signal then propagates within the ultrasonic delay medium 10 for a predetermined time (Td).
After this period, the output transducer 14 converts the signal into an electrical signal and sends it to an external device (not shown). In this case, spurious reflections (3Td>, (5Td), etc.) having an odd number of reflections, which have a particularly negative effect on the band characteristics, are caused by the backing material 1.
Due to the action of the mode conversion surfaces 11A and 11B of No. 1, almost all of the ultrasonic signals are converted into longitudinal wave components, so (3Td),
(The influence of spurious signals such as 5Td> is eliminated.

第15図は第12図、第13図に示す超音波遅延線の帯
域特性グラフを示し、中心周波数f、を14[MH2]
とした場合の実験結果である。この図において、−3[
dB]減衰した点、すなわち図中X+点は7.85 [
MH7]、X2点は20.7 [MH2]r−あり、コ
レニヨッテ、W+−−6,15[MH2] 、W2 =
−6,7[MH2]となる。従って、比帯域(W/fo
)は、W=IW+ l + l W2 l =12.8
5 [MH2]であるから(W/fl])=約92[%
]となり、容易に広帯域特性を得ることが出来るように
なっている。
Fig. 15 shows a band characteristic graph of the ultrasonic delay line shown in Figs. 12 and 13, and the center frequency f is 14 [MH2].
These are the experimental results when In this figure, −3[
dB] attenuated point, that is, the point X+ in the figure, is 7.85 [
MH7], X2 point is 20.7 [MH2] r-, Colleniotte, W+--6, 15 [MH2], W2 =
−6,7 [MH2]. Therefore, the fractional band (W/fo
) is W=IW+ l + l W2 l =12.8
5 [MH2], so (W/fl]) = approximately 92[%
], making it possible to easily obtain broadband characteristics.

なお、バッキング材11の各トランスデユーサ13.1
4の結合面及びこのバッキング材11の厚さ方向で、前
記各トランスデユーサ13.14に直交する面、すなわ
ち電極13B、14Bが蒸着される面は、鏡面加工され
ている。
Note that each transducer 13.1 of the backing material 11
4 and the surface perpendicular to each transducer 13, 14 in the thickness direction of the backing material 11, that is, the surface on which the electrodes 13B, 14B are deposited, are mirror-finished.

(発明が解決しようとする問題点コ しかしながら、上記従来例による超音波遅延線は、比帯
域(W/fn)が高く(約92[%])広帯域を実現で
きるが、第15図に示づように周波数の高い領域(P区
間)において、スプリアス信号の影響で特性が乱れる。
(Problems to be Solved by the Invention) However, the ultrasonic delay line according to the above conventional example has a high fractional bandwidth (W/fn) (approximately 92[%]) and can realize a wide band; In the high frequency region (section P), the characteristics are disturbed due to the influence of spurious signals.

このため特に映像信号帯域30[1’vlH2]以上と
いうような高品位テレビシステムの輪郭保証回路等に当
該超音波遅延線を使用すると、前記スプリアス信号の影
響で両会が乱れ(画面にしま模様が入る等)、画像が劣
化してしまい、実用上高品位テレビシステムには使用出
来ないという不都合があった。
Therefore, if the ultrasonic delay line is used in the contour guarantee circuit of a high-definition television system with a video signal band of 30 [1'vlH2] or more, the interference will be disturbed due to the influence of the spurious signal (striped pattern on the screen). This has the disadvantage that it cannot be used in practical high-definition television systems because the image quality deteriorates.

[発明の目的] 本発明は上記従来上の有する不都合を改善し、比帯域を
広帯域化し、しかもスプリアス信号による周波数特性の
乱れを皆無とすることが出来る、高品位テレビシステム
等への使用に適した多数回反射型超音波遅延線を提供す
ることを、目的とする。
[Object of the Invention] The present invention is suitable for use in high-definition television systems, etc., which can improve the above-mentioned conventional disadvantages, widen the specific band, and eliminate disturbances in frequency characteristics due to spurious signals. An object of the present invention is to provide a multi-reflection type ultrasonic delay line.

[問題点を解決するための手段] そこで本発明では入力トランスデューサと出力トランス
デューサと前記各トランスデユーサの超音波遅延媒体と
の結合面の反対面に接合され、前記各トランスデユーサ
から該各バッキング材に入射される横波成分の超音波信
号を縦波成分の超音波信号へ、又は縦波成分の超音波信
号を横波成分の超音波信号へ変換するモード変換面を有
するバッキング材とを具備するという構成を採用し、こ
れによって前記目的を達成しようとするものである。
[Means for Solving the Problems] Accordingly, in the present invention, the input transducer, the output transducer, and the ultrasonic delay medium are bonded to the opposite surface of each transducer, and each backing is connected from each of the transducers to the A backing material having a mode conversion surface that converts an ultrasonic signal of a transverse wave component incident on the material into an ultrasonic signal of a longitudinal wave component, or converts an ultrasonic signal of a longitudinal wave component to an ultrasonic signal of a transverse wave component. The purpose of the present invention is to achieve the above object by employing this configuration.

[実施例] 以下、本発明の一実施例を第1図ないし第5図に基づい
て説明する。ここで、上記従来技術と同様の構成部材に
は同一の信号を付すものとする。
[Example] Hereinafter, an example of the present invention will be described based on FIGS. 1 to 5. Here, the same signals are attached to the same components as in the above-mentioned prior art.

第1図及び第2図において、10aないし10dは各々
信号反射面を示し、10eはトランスデユーサ結合面を
示す。このトランスデユーサ結合面10e上には、上面
電極13A、14Aが設けられ、その上面に各々入力ト
ランスデューサ13゜出力トランスデューサ14が接合
され、その上面に、更に各トランスデユーサ13.14
からの超音波信号をモード変換して反射する反射面(モ
ード変換面>11A、11Bを有し、前記各トランスデ
ユーサ13.14との結合面側に各々スズを真空蒸着し
た上面電極13B、14Bを設けてなるバッキング材1
2が接合されている。そして、このバッキング材12に
は第1図、第2図に示すようにモード変換面11Aに入
力トランスデューサ13に対して垂直方向に深さd(i
n)の溝部(スリット>2Aが、またモード変換面11
Bに出力トランスデューサ14に対して垂直方向に深さ
d(am)の溝部(スリット)2Bが設けられている。
In FIGS. 1 and 2, 10a to 10d each represent a signal reflecting surface, and 10e represents a transducer coupling surface. Upper surface electrodes 13A and 14A are provided on this transducer coupling surface 10e, and an input transducer 13.degree.
an upper surface electrode 13B having a reflecting surface (mode conversion surface>11A, 11B) that modulates and reflects the ultrasonic signal from the transducers 13 and 11B, and having tin vacuum-deposited on the coupling surface side with each of the transducers 13 and 14; Backing material 1 provided with 14B
2 are joined. As shown in FIGS. 1 and 2, this backing material 12 has a mode conversion surface 11A with a depth d(i
n) groove (slit>2A) is also the mode conversion surface 11
A groove portion (slit) 2B having a depth of d (am) is provided in the direction perpendicular to the output transducer 14 at B.

この各溝部2A、2Bには超音波吸音剤16が充填され
、バッキング材12上には上述した従来例同様第3図、
第4図に示す如く、入・出カドランスジューサ結合面を
除く各面を覆うように超音波吸音剤16が塗布されてい
る。その他の構成は、前述した上記従来例と同様に構成
されているので説明を省略する。
Each of the grooves 2A and 2B is filled with an ultrasonic sound absorbing agent 16, and the backing material 12 is filled with the ultrasonic sound absorbing material 16 shown in FIG.
As shown in FIG. 4, an ultrasonic sound absorbing agent 16 is applied so as to cover each surface except for the joint surfaces of the input and output transducers. The rest of the configuration is the same as that of the conventional example described above, so a description thereof will be omitted.

次に、前記バッキング材12における、超音波信号の伝
搬作用を第5図に基づいて説明する。
Next, the propagation effect of ultrasonic signals in the backing material 12 will be explained based on FIG. 5.

第5図において、入力トランスデューサ13゜出力トラ
ンスデューサ14からの横波成分からなる超音波B、を
上述した従来例同様モード変換面11A、11Bにて縦
波成分からなる超音波信号B1に変換する。この超音波
信号B+、B+は図示のように溝部2A、2Bにぶつか
る。この溝部2A、2Bには前述したように超音波吸音
剤16が充填されているので、超音波信号B+、B+は
ここで吸音され、その一部は、更に所定の角度で反射し
、減衰する。すなわち、従来例に比べ、溝部2A、2B
に充填された吸音剤16の働きでスプリアス信号はここ
で大きく減衰すると考えられる。
In FIG. 5, an ultrasonic wave B consisting of a transverse wave component from an input transducer 13° and an output transducer 14 is converted into an ultrasonic signal B1 consisting of a longitudinal wave component at mode conversion surfaces 11A and 11B, as in the conventional example described above. The ultrasonic signals B+, B+ collide with the grooves 2A, 2B as shown. Since the grooves 2A and 2B are filled with the ultrasonic sound absorbing agent 16 as described above, the ultrasonic signals B+ and B+ are absorbed here, and a part of them is further reflected at a predetermined angle and attenuated. . That is, compared to the conventional example, the grooves 2A, 2B
It is thought that the spurious signal is greatly attenuated here due to the action of the sound absorbing material 16 filled in.

第8図は本実施例による超音波遅延線の周波数特性を示
す線図で、上記従来例同様中心周波数fQ=14[MH
2]とした場合の実験結果である。
FIG. 8 is a diagram showing the frequency characteristics of the ultrasonic delay line according to this embodiment, and the center frequency fQ=14 [MH
2] is the experimental result.

この図において、−3[dB]は減衰した点、図中71
点は7.85 [MH2]、Y2は20.7[MH2]
であり、比帯域<W/fo)は約92[%1で従来例と
同様広帯域特性を得ることが出来た。更に、本実施例に
おいては、周波数の高い領域における特性の乱れがない
実験結果を得ることができた。
In this figure, -3 [dB] is the attenuated point, 71 in the figure.
The point is 7.85 [MH2], Y2 is 20.7 [MH2]
The fractional band <W/fo) was approximately 92%1, and broadband characteristics could be obtained as in the conventional example. Furthermore, in this example, it was possible to obtain experimental results in which the characteristics were not disturbed in the high frequency region.

本実施例は以上のように構成されているので、映像信号
帯域幅が30 [MH2]以上というような高品位テレ
ビシステムの輪郭補正回路等に使用しても画像を劣化さ
せることのない超音波遅延線を提供できる。
Since this embodiment is configured as described above, it is possible to use ultrasonic waves without deteriorating images even when used in contour correction circuits, etc. of high-definition television systems where the video signal bandwidth is 30 [MH2] or more. Can provide delay line.

なお、本実施例ではモード変換面11A、11Bに各々
1つの溝部2A、2Bを設けたが、これは各面11A、
11Bに複数の溝部を設けてもよく、また、モード変換
面11A、11Bとが交わる頂点部に溝部を設けてもよ
い(第9図参照)。
Note that in this embodiment, one groove portion 2A, 2B was provided on each of the mode conversion surfaces 11A, 11B;
A plurality of grooves may be provided in 11B, or a groove may be provided at the apex where mode conversion surfaces 11A and 11B intersect (see FIG. 9).

[発明の効果] 本発明は以上のように構成されているので、比帯域を広
帯域化するとともにスプリアス信号による周波数特性の
乱れを皆無とした、高品位テレビシステム等への使用に
適した多数回反射型超音波遅延線を提供できる。
[Effects of the Invention] Since the present invention is configured as described above, the ratio band is widened and there is no disturbance in the frequency characteristics due to spurious signals, and the present invention is suitable for use in high-definition television systems, etc. A reflective ultrasonic delay line can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す斜視図、第2図は第1
図に示す多数回反射型遅延線の正面図、第3図及び第4
図は第1図に示す多数回反射型遅延線のバッキング材に
吸音剤を塗布した状態を示す説明図、第5図は第1図に
示す遅延線のバッキング材の機能説明図、第6図(a)
、(b>及び第7図(a)、(b)は第1図及び第10
図に示す遅延線のバッキング材によるモード変換原理を
示す説明図、第8図は第1図に示す遅延線の帯域特性を
示す線図、第9図は本発明の他の実施例に係る遅延線の
バッキング材の他の構成を示す構成図、第10図及び第
11図は従来技術に係る遅延線の構成図、第12図及び
第13図は第10図及び第11図に示す遅延線に吸音剤
を塗布した状態を示す説明図、第14図は従来例の遅延
線のバッキング材の動作説明図、第15図は従来例の遅
延線の帯域線の帯域特性を示す線図である。 10・・・・・・・・・超音波遅延媒体12・・・・・
・・・・バッキング材 13・・・・・・・・・入力トランスデューサ14・・
・・・・・・・出力トランスデューサ16・・・・・・
・・・吸音剤 2A、28.4A、4B、5A ・・・・・・・・・溝部 11A、IIB・・・・・・・・・モード変換面43A
、14A・・・・・・・・・下面電極13B、14B・
・・・・・・・・上面電極Bo・・・・・・・・・入射
超音波信号B1・・・・・・・・・反射超音波信号?!
47 図 第 3 図 1θ 第4図 OC 第 6 (α) 、*sb入pr4!Ji 第 7 (0L) (b) 図 (b) 4176図 第72図 1θ @ /3図
FIG. 1 is a perspective view showing one embodiment of the present invention, and FIG. 2 is a perspective view showing one embodiment of the present invention.
Front view of the multi-reflection delay line shown in Figures 3 and 4.
The figure is an explanatory diagram showing the backing material of the multi-reflection type delay line shown in Figure 1 coated with a sound absorbing material, Figure 5 is a functional explanatory diagram of the backing material of the delay line shown in Figure 1, and Figure 6 (a)
, (b> and FIGS. 7(a) and (b) are similar to FIGS. 1 and 10.
8 is a diagram showing the band characteristics of the delay line shown in FIG. 1, and FIG. 9 is a diagram showing the delay line according to another embodiment of the present invention. FIGS. 10 and 11 are configuration diagrams of delay lines according to the prior art; FIGS. 12 and 13 are configuration diagrams showing other configurations of line backing materials; FIGS. 12 and 13 are configuration diagrams of delay lines shown in FIGS. FIG. 14 is an explanatory diagram showing the operation of the backing material of the conventional delay line, and FIG. 15 is a diagram showing the band characteristics of the band line of the conventional delay line. . 10... Ultrasonic delay medium 12...
... Backing material 13 ... Input transducer 14 ...
......Output transducer 16...
...Sound absorbing material 2A, 28.4A, 4B, 5A ...Groove 11A, IIB ...Mode conversion surface 43A
, 14A... lower surface electrodes 13B, 14B.
・・・・・・Top electrode Bo・・・・・・Incoming ultrasonic signal B1・・・・・・Reflected ultrasonic signal? !
47 Figure 3 Figure 1θ Figure 4 OC 6th (α), *sb entry pr4! Ji 7th (0L) (b) Figure (b) Figure 4176 Figure 72 1θ @ /3 Figure

Claims (1)

【特許請求の範囲】[Claims] 入力トランスデューサと出力トランスデューサと前記各
トランスデューサの超音波遅延媒体との結合面の反対面
に接合され、前記各トランスデューサから該各バッキン
グ材に入射される横波成分の超音波信号を縦波成分の超
音波信号へ、又は縦波成分の超音波信号を横波成分の超
音波信号へ変換するモード変換面を有するバッキング材
とを具備した多数回反射型超音波遅延線において、前記
モード変換面に前記各トランスデューサに対して垂直と
なる方向に溝部を設け、該モード変換面及びバッキング
材の各側面に吸音剤を塗布するとともに、溝部に吸音剤
を充填したことを特徴とする多数回反射型超音波遅延線
The input transducer, the output transducer, and the ultrasonic delay medium of each of the transducers are bonded to the opposite surface of the coupling surface, and the transverse wave component ultrasonic signal input from each of the transducers to the backing material is converted into a longitudinal wave component ultrasonic wave. a multi-reflection type ultrasonic delay line comprising a backing material having a mode converting surface for converting an ultrasonic signal of a longitudinal wave component into an ultrasonic signal of a transverse wave component, and a backing material having a mode converting surface for converting an ultrasonic signal of a longitudinal wave component into an ultrasonic signal of a transverse wave component. A multi-reflection type ultrasonic delay line characterized in that a groove is provided in a direction perpendicular to the mode conversion surface and each side surface of the backing material is coated with a sound absorbing agent, and the groove is filled with a sound absorbing agent. .
JP8975788A 1988-04-12 1988-04-12 Many times reflection type ultrasonic wave delay line Pending JPH01261012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8975788A JPH01261012A (en) 1988-04-12 1988-04-12 Many times reflection type ultrasonic wave delay line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8975788A JPH01261012A (en) 1988-04-12 1988-04-12 Many times reflection type ultrasonic wave delay line

Publications (1)

Publication Number Publication Date
JPH01261012A true JPH01261012A (en) 1989-10-18

Family

ID=13979596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8975788A Pending JPH01261012A (en) 1988-04-12 1988-04-12 Many times reflection type ultrasonic wave delay line

Country Status (1)

Country Link
JP (1) JPH01261012A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030863A1 (en) * 2004-09-17 2006-03-23 Nikon Corporation Optical low-pass filter and imaging device
JP2006227252A (en) * 2005-02-17 2006-08-31 Nikon Corp Optical low-pass filter, imaging device and acoustooptical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030863A1 (en) * 2004-09-17 2006-03-23 Nikon Corporation Optical low-pass filter and imaging device
US7940309B2 (en) 2004-09-17 2011-05-10 Nikon Corporation Optical low pass filter and image-capturing device
JP2006227252A (en) * 2005-02-17 2006-08-31 Nikon Corp Optical low-pass filter, imaging device and acoustooptical device
JP4696584B2 (en) * 2005-02-17 2011-06-08 株式会社ニコン Optical low-pass filter

Similar Documents

Publication Publication Date Title
US2839731A (en) Multi-facet ultrasonic delay line
JPH01261012A (en) Many times reflection type ultrasonic wave delay line
US2727214A (en) Acoustic delay line using solid rods
US4242653A (en) Triple transit suppression for bulk acoustic delay lines
US3942139A (en) Broadband microwave bulk acoustic delay device
US3582834A (en) Microwave ultrasonic delay line
US3832655A (en) Ultrasonic delay line
US3654575A (en) Wave transmission time device
JPH075698Y2 (en) Ultrasonic delay line
US3735292A (en) Ultrasonic delay line having offset boundary surfaces at point where beam strikes surface
JPH01157110A (en) Multi-reflection type ultrasonic delay line
US4467295A (en) Solid ultrasonic delay line
JPS6189709A (en) Ultrasonic wave delay line
JPH054341Y2 (en)
JPH02220511A (en) Ultrasonic wave delay line
JPS6392116A (en) Ultrasonic wave delay line
JPS60102008A (en) Ultrasonic wave delay line
JPS60256214A (en) Surface acoustic wave device
JPS60114013A (en) Ultrasonic wave delay line
US4691178A (en) Ultrasonic delay line
JPS6149513A (en) Ultrasonic delay line
JPS589603B2 (en) comb filter
JPH04138709A (en) Ultrasonic solid-state delay line
JPH04103211A (en) Ultrasonic wave solid-state delay line
JPH0115167B2 (en)