JPH01260509A - Travel controller - Google Patents

Travel controller

Info

Publication number
JPH01260509A
JPH01260509A JP63088198A JP8819888A JPH01260509A JP H01260509 A JPH01260509 A JP H01260509A JP 63088198 A JP63088198 A JP 63088198A JP 8819888 A JP8819888 A JP 8819888A JP H01260509 A JPH01260509 A JP H01260509A
Authority
JP
Japan
Prior art keywords
amount
camera
deviation
dislocation
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63088198A
Other languages
Japanese (ja)
Inventor
Yasu Abe
阿部 縁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63088198A priority Critical patent/JPH01260509A/en
Publication of JPH01260509A publication Critical patent/JPH01260509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To perform travel following an orbit even when it is the one whose dynamic characteristic is unknown by using a quantity of dislocation as an ambiguous value, and setting the experimental knowledge of the human as a control rule. CONSTITUTION:The title device is provided with an image processing device 9 which digitizes information obtained from a camera 10 which photographs a targeted path and calculates the quantity of dislocation from the path, and the device infers a controlled variable from the quantity of dislocation by a CPU1, a ROM2, and a RAM3, and outputs it to an actuator 6 via an I/O interface 5. Here, visual information obtained from the camera 10 is constituted so that it can decide the manipulated variable of the steering angle of a traveling vehicle by a fuzzy inference. In other words, the quantity of dislocation is handled as an ambiguous quantity, and the experimental knowledge of the human is used as the control rule. In such a way, it is possible to perform the travel following the orbit even when it is the one whose dynamic characteristic is unknown.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は原子力発電所等で点検及び補修作業用として使
用するロボットの走行制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a travel control device for a robot used for inspection and repair work in nuclear power plants and the like.

(従来の技術) 原子力発電所等では点検並びに補修作業用としてロボッ
トが用いられている。そして、このようなロボットを安
全かつ能率良く作動させるためにはカメラによる画像情
報を用いていた。すなわち目標通路を示す印などをカメ
ラで撮影し、その印に沿って走行するように操舵制御登
行うように、したものである。
(Prior Art) Robots are used in nuclear power plants and the like for inspection and repair work. In order to operate such robots safely and efficiently, image information from cameras has been used. That is, a camera is used to take pictures of marks indicating the target path, and the steering is controlled so that the vehicle travels along the marks.

しかして、このような走行制御装置は次のO)式に基づ
いた制御方式で行われていた。
However, such a travel control device has been operated using a control method based on the following equation (O).

すなわち、yを目標通路との位置のずれ、θを目標通路
との方向のずれ・東を操舵角とすチと操舵角ψは次の(
1)式により表される。
In other words, y is the positional deviation from the target path, θ is the direction deviation from the target path, and east is the steering angle, and the steering angle ψ is as follows (
1) It is expressed by the formula.

−2= 1V  =−(k、y  + k  、 0 )   
             (]、)たたし、k、、に
、  定数 次にy、0をカルマンフィルタにより推定し、1−記○
〕式により操舵角’IJ+を求め、この操舵角ψに従っ
て走行するように制御されていた。
-2=1V=-(k,y+k,0)
(],)Tap,k,,constant,then y,0 is estimated by Kalman filter, 1-noted ○
] formula, the steering angle 'IJ+ was determined, and the vehicle was controlled to travel in accordance with this steering angle ψ.

このような走行制御方式ではに、、に、、、の定数を求
めるために予備走行をくり返しながら決定していた。
In such a travel control system, the constants of , , , , etc. are determined by repeating preliminary travel.

(発明が解決しようとする課題) 上記した従来の走行制御方式では定数に、、に2を、走
行車の特性を評価しながら決定しなりればならないので
非常に多くの時間を費していた。
(Problem to be solved by the invention) In the conventional driving control method described above, constants , , and 2 have to be determined while evaluating the characteristics of the traveling vehicle, which takes a lot of time. .

本発明はこのような欠点を解決するためになされたもの
で、その目的は、ずれ量をあいまいな値として用い、人
間の経験的知識を制御ルールにすることで動特性の分か
っていないものに対しても軌道に追従した走行が行え、
さらにゲイン調整をしなくとも■櫻軌道になめらかに収
束することの可能な走行制御装置を提供することにある
The present invention was made to solve these drawbacks, and its purpose is to use the amount of deviation as an ambiguous value, and to use human experiential knowledge as a control rule, so that it can be applied to objects whose dynamic characteristics are unknown. It can also run while following the trajectory,
Furthermore, it is an object of the present invention to provide a travel control device that can smoothly converge to the Sakura trajectory without the need for gain adjustment.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するため、本発明は、目標通路を映すカ
メラと、カメラから得た情報をデジタル化し通路からの
すれ量を割算する画像処理装置を有し、CI−’ Uと
ROMとRA、 Mによりずれ皿から制御量を推論し、
I10インタフェースを介してアクチュエータに出力す
る走行制御装置において、カメラから得られた視覚情報
をファジィ推論で走行車の操舵角の操作量を決定するよ
うに構成したことを特徴どするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a camera that images the target passage, and an image processing device that digitizes information obtained from the camera and divides the amount of deviation from the passage. , CI-' Infer the control amount from the displacement plate by U, ROM, RA, and M,
A driving control device that outputs output to an actuator via an I10 interface is characterized in that it is configured to determine the manipulated amount of the steering angle of a traveling vehicle by fuzzy inference based on visual information obtained from a camera.

(作用) 本発明の走行制御装置によると、ずれ量をあいまい量と
して扱い人間の経験的知識を制御ルールとして用いるの
で、動特性の評価をせすに人間の感覚に合った制御を行
うことが可能である。
(Function) According to the travel control device of the present invention, since the amount of deviation is treated as an ambiguous amount and human experiential knowledge is used as a control rule, it is possible to perform control that matches human senses without evaluating dynamic characteristics. It is possible.

また、入力用メンバーシップ関数4均−・に分布さぜ、
出力用メンバーシップ関数を零に近いほど大きく分布さ
せたことにより、目標位置になめらかに近つくようにな
りゲイン調整は不要になる。
In addition, the input membership function is distributed in a 4-uniform manner,
By distributing the output membership function so that it is closer to zero, the target position can be approached smoothly and gain adjustment is not necessary.

(実施例) 本発明の実施例を図面により説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.

第」図は本発明の一実施例の走行制御装置の構成図であ
る。図に示すように、ファジィ推論するためのCP U
 1と、ファジィ推論に用いる入出力用メンバーシップ
関数、制御ルールを記憶するR○M2とそれによって割
算を行うRAM3がマルチパス4にそれぞれ接続されて
いる。また、走行車前方の通路を撮影するカメラ10と
、そのカメラ10で得た情報をデジタル化し、走行車が
通路からどれだけずれているかを画像により割算する画
像処理装置9が、ずれ量を出力するための通信インタフ
ェース8とそのすれ量を計算機側へ入力するための通信
インタフェース7を介してマルチパス1に接続されてい
る。また、ずれ量からファジィ推論をして求めた操作量
にアクチュエータ6(走行車の車軸の方向を変化させる
モーター)に伝送するためのI/Oインタフェース5が
マルチパス4に接続されている。人間が操作するための
操作卓13は無線による送信機]2、受信機11を介し
て入力用通信インタフェース7に信号を送るように構成
されている。
FIG. 1 is a configuration diagram of a travel control device according to an embodiment of the present invention. As shown in the figure, CPU for fuzzy inference
1, an input/output membership function used for fuzzy inference, an R○M 2 for storing control rules, and a RAM 3 for performing division using the input/output membership functions and control rules are connected to the multipath 4, respectively. In addition, a camera 10 that photographs the path in front of the vehicle and an image processing device 9 that digitizes the information obtained by the camera 10 and divides the amount of deviation of the vehicle from the path by the image calculate the amount of deviation. It is connected to the multipath 1 via a communication interface 8 for outputting and a communication interface 7 for inputting the amount of wear to the computer side. Further, an I/O interface 5 is connected to the multipath 4 for transmitting the operation amount obtained by fuzzy inference from the amount of deviation to the actuator 6 (a motor that changes the direction of the axle of the vehicle). A console 13 for human operation is configured to send signals to an input communication interface 7 via a wireless transmitter 2 and a receiver 11.

次に、本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

制御の全体的な流れはまず、カメラ10で走行車が走行
する通路を撮影する。画像処理装置9により画像データ
からずれ量を求め、このずれ量を通信インタフェース7
.8を介して削算部14へ送る。
The overall flow of control is as follows: First, the camera 10 photographs the path along which the vehicle is traveling. The image processing device 9 calculates the amount of deviation from the image data, and the communication interface 7 calculates the amount of deviation.
.. 8 to the reduction unit 14.

計算部14ではROM 2に記憶されているメンバーシ
ップ関数と制御ルールを用いてファジィ推論を行い操舵
角を求め■10インタフェース5を介してアクチュエー
タ6に出力する。スター1−、ス1へノブの指令は人間
が操作卓13により行う。
The calculation unit 14 performs fuzzy inference using the membership functions and control rules stored in the ROM 2 to determine the steering angle and outputs it to the actuator 6 via the interface 5. The knob commands for Star 1- and S1 are given by a human using the console 13.

次に、カメラで撮影した通路の画像からずれ量を求める
方法を第2図を参照して詳細に説明する。
Next, a method for determining the amount of deviation from the image of the passage taken by the camera will be explained in detail with reference to FIG. 2.

第2図は走行車が走行する通路をカメラ10で撮影した
画像から、画像処理によりずれ量を求めるときの説明図
である。
FIG. 2 is an explanatory diagram when calculating the amount of deviation by image processing from an image taken by camera 10 of a path along which a vehicle travels.

通路は、2本の平行する白線で示されており、これをカ
メラ10で撮影すると第2図の線]9のように映る。こ
の画像を画像処理装置9に送り以下のような画像処理を
する。まず走行車の注視点螢走行事の前方何mの所と定
めておき、その地点に相当する画面」二の場所にマスク
18を設定する。マスク18の中の画像データを平均化
フィルタリング処理をして微分処理し、ある一定のしき
い値で2値化し、ある一定の面積を持つものだけを取り
出すと2つの白線の部分20が抽出できる。抽出された
それぞれの白線20と画面の中心線17との距離a11
a2を求め、 この差から走行車がどちらにどれだけず
れているかを求める。
The passage is indicated by two parallel white lines, and when this is photographed with the camera 10, it appears as shown in line]9 in Fig. 2. This image is sent to the image processing device 9 and subjected to the following image processing. First, the number of meters in front of the vehicle's gaze point is determined, and the mask 18 is set at a location on the screen corresponding to that point. The image data in the mask 18 is subjected to averaging filtering processing, differential processing, binarization using a certain threshold, and by extracting only those with a certain area, the two white line parts 20 can be extracted. . Distance a11 between each extracted white line 20 and the center line 17 of the screen
Find a2 and use this difference to find out how far the vehicle is moving.

次にH]算部において、ずれ量からファジィ推論を行い
操舵角詮求める方法について述べる。
Next, a method of calculating the steering angle by performing fuzzy inference from the amount of deviation in the H] calculation section will be described.

入力変数はずれ量eつとeつの変化量△eyであり、出
力変数は操舵角△■である。eつ、△eつ。
The input variables are the amount of deviation e and the amount of change Δey, and the output variable is the steering angle Δ■. etsu, △etsu.

△Vをあいまいな値として表すため、そ九ぞれのメンバ
ーシップ関数を設定する。これはe8゜△eX+ △V
の値を、NB (負に大きい) NM (負に中位)N
S(負に小さい)Z○(はぼ0)PS(正に小さい) 
PM (正に中位)PB(正に大きい)の7つの集合に
分類し、どの集合にどのくらい適合しているかを示す関
数である。ここでe8゜△eつに対するメンバーシップ
関数を第3図のように均一に分布させ、八■に対するメ
ンバーシップ関数を第4図にようにOに近いものほど幅
を大きく分布させる。
In order to represent △V as an ambiguous value, membership functions are set for each of them. This is e8゜△eX+ △V
The value of NB (negatively large) NM (negatively medium) N
S (negatively small) Z○ (habo 0) PS (positively small)
It is a function that classifies into seven sets of PM (just medium) and PB (just large) and shows how much it fits into which set. Here, the membership functions for e8°△e are uniformly distributed as shown in FIG. 3, and the membership functions for eight ■ are distributed such that the closer to O, the wider the width as shown in FIG.

入力に対して出力を推論する制御規則は人間の経験的な
知識を用いて、例えば、 eXがPBで△lll、LがPBなら△VをPSにせよ
というような形で記述する。この規則を用いて多アジイ
推論を行い操舵角を求める。
Control rules for inferring outputs from inputs are written using human experiential knowledge, for example, if eX is PB and △llll, and L is PB, then △V should be PS. Using this rule, multi-adjustment inference is performed to find the steering angle.

求められた操舵角をアクチュエータへ出力するため、あ
らかじめ第5図のように設定しておいた角度と電圧の関
係により操舵角を電圧←変換し、アクチュエータへ出力
する。
In order to output the determined steering angle to the actuator, the steering angle is converted into a voltage according to the relationship between the angle and the voltage set in advance as shown in FIG. 5, and is output to the actuator.

」二連したように、本実施例によれば、ずれ量をあいま
いな値とし、人間の知識を制御規則とすることにより、
制御対象の動特性を評価することなく、通路に追従した
走行が行える。また出力用メンバーシップ関数を0に近
いものほど幅を大きく分布させたことによって、均一に
分布させたものより早くなめらかに目標通路に収束する
ようになリゲイン調整が不要となる。
''As mentioned above, according to this embodiment, by setting the deviation amount to an ambiguous value and using human knowledge as the control rule,
It is possible to travel by following the path without evaluating the dynamic characteristics of the controlled object. Further, by distributing the output membership function so that the closer it is to 0, the wider the width, the convergence to the target path is faster and smoother than when the output membership function is uniformly distributed, and no regain adjustment is required.

〔発明の効果〕〔Effect of the invention〕

以」二説明したように、本発明の走行制御装置によれば
、動特性が既知でなくても人間の経験的知識だけで軌道
に追従した走行が行える。またゲイン調整をしなくとも
なめらかに目標軌道に到達できるのでゲイン調整にとら
れる時間を省くことができる。
As explained above, according to the travel control device of the present invention, travel can be performed while following the trajectory using only human experiential knowledge, even if the dynamic characteristics are not known. Furthermore, since the target trajectory can be smoothly reached without the need for gain adjustment, the time taken for gain adjustment can be saved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は走行する
通路をカメラで撮影しその画像を画像処理してずれ量を
計算する方法を説明するための図、第3図はずれ量から
ファジィ推論により操作量を求める際に用いるもので入
力変数のファジィ台集合を表わすメンバーシップ関数、
第4図は同じく出力変数のファジィ台集合を表わすメン
バーシップ関数、第5図は角度で表わされた操作量を車
の方向を変化させるモータへ出方するため電圧に変換す
るのに用いるモータの特性を示すグラフである。 1・・ CP U          2− ROM3
  RAM      4・・マルチパス5− I 1
0インタフエース 6 ・アクチュエータ 7 人力用通信インタフェース 8・出力用通信インタフェース 9・・・画像処理装置  10・・・カメラ11  受
信機     12・・・送信機13−・操作卓   
  14・・計算部15・・・走行車搭載部  16・
・画面17  画面の中心   18・・・マスク19
  通路を示す線  20・・・抽出される通路代理人
 弁理士 猪股祥晃(ほか1名)第1図 第 5 図
Fig. 1 is a configuration diagram of an embodiment of the present invention, Fig. 2 is a diagram for explaining a method of photographing the path on which the vehicle is traveling with a camera and calculating the amount of deviation by image processing the image. A membership function that represents a fuzzy table set of input variables, which is used when calculating a manipulated variable from a quantity by fuzzy inference,
Figure 4 shows the membership function representing a fuzzy set of output variables, and Figure 5 shows the motor used to convert the manipulated variable expressed in angle into voltage to be output to the motor that changes the direction of the car. It is a graph showing the characteristics of. 1... CPU 2- ROM3
RAM 4...Multipath 5-I1
0 interface 6 - Actuator 7 Human power communication interface 8 - Output communication interface 9... Image processing device 10... Camera 11 Receiver 12... Transmitter 13-- Operation console
14... Calculation section 15... Traveling vehicle mounting section 16.
・Screen 17 Center of screen 18...Mask 19
Line indicating passage 20... Extracted passage agent Patent attorney Yoshiaki Inomata (and one other person) Figure 1 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)走行する通路の情報を抽出するカメラと、前記カ
メラで得た情報をデジタル化し、通路からのずれ量を計
算する画像処理装置と、前記ずれ量を出力する通信イン
タフェースと、前記ずれ量を走行制御用計算機へ入力す
る通信インタフェースと、前記ずれ量から制御量を推論
するCPUと、前記推論に用いる入出力用メンバーシッ
プ関数と制御ルールを記憶するROMと、それによつて
計算を行うRAMと、アクチュエータを駆動するための
I/Oインタフェースと、外部指令用操作卓と、移動装
置へ操作データを伝送する無線機とから構成された走行
制御装置において、前記カメラから得られた視覚情報を
ファジィ推論で操舵角の操作量を決定するように構成し
たことを特徴とする走行制御装置。
(1) A camera that extracts information about the path traveled, an image processing device that digitizes the information obtained by the camera and calculates the amount of deviation from the path, a communication interface that outputs the amount of deviation, and the amount of deviation. a communication interface that inputs the information into the travel control computer, a CPU that infers a control amount from the amount of deviation, a ROM that stores input/output membership functions and control rules used for the inference, and a RAM that uses it to perform calculations. In the travel control device, which is composed of an I/O interface for driving the actuator, a console for external commands, and a radio for transmitting operation data to the mobile device, the visual information obtained from the camera is transmitted. A travel control device characterized by being configured to determine a steering angle operation amount using fuzzy inference.
JP63088198A 1988-04-12 1988-04-12 Travel controller Pending JPH01260509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63088198A JPH01260509A (en) 1988-04-12 1988-04-12 Travel controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63088198A JPH01260509A (en) 1988-04-12 1988-04-12 Travel controller

Publications (1)

Publication Number Publication Date
JPH01260509A true JPH01260509A (en) 1989-10-17

Family

ID=13936203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63088198A Pending JPH01260509A (en) 1988-04-12 1988-04-12 Travel controller

Country Status (1)

Country Link
JP (1) JPH01260509A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03250980A (en) * 1990-02-28 1991-11-08 Sanyo Electric Co Ltd Automatic focus device
JPH03282705A (en) * 1990-03-30 1991-12-12 Shinko Electric Co Ltd Steering angle controller for unmanned carrier vehicle
JPH04209014A (en) * 1990-11-30 1992-07-30 Fujita Corp Monitor and control equipment for travel state of unmanned traveling vehicle
CN103737592A (en) * 2013-12-27 2014-04-23 柳州职业技术学院 Manipulator precise control system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03250980A (en) * 1990-02-28 1991-11-08 Sanyo Electric Co Ltd Automatic focus device
JPH03282705A (en) * 1990-03-30 1991-12-12 Shinko Electric Co Ltd Steering angle controller for unmanned carrier vehicle
JPH04209014A (en) * 1990-11-30 1992-07-30 Fujita Corp Monitor and control equipment for travel state of unmanned traveling vehicle
CN103737592A (en) * 2013-12-27 2014-04-23 柳州职业技术学院 Manipulator precise control system and method

Similar Documents

Publication Publication Date Title
JP2769052B2 (en) Autonomous mobile machine, control apparatus and method for mobile machine
DE4300941B4 (en) System for controlling a moving body
CN109085823B (en) Automatic tracking driving method based on vision in park scene
JPH03113513A (en) Speed-sensitive steering controller for self-traveling vehicle
Argyros et al. Semi-autonomous navigation of a robotic wheelchair
JPH0370803B2 (en)
US20100246899A1 (en) Method and Apparatus for Dynamic Estimation of Feature Depth Using Calibrated Moving Camera
US6377878B1 (en) Convergent method of and apparatus for distributed control of robotic systems using fuzzy logic
Hwang et al. A distributed active-vision network-space approach for the navigation of a car-like wheeled robot
Cao et al. Fuzzy logic control for an automated guided vehicle
Vans et al. Vision based autonomous path tracking of a mobile robot using fuzzy logic
JPH01260509A (en) Travel controller
Zhuang et al. Robust auto-parking: Reinforcement learning based real-time planning approach with domain template
Kovács et al. Application of the approximate fuzzy reasoning based on interpolation in the vague environment of the fuzzy rulebase in the fuzzy logic controlled path tracking strategy of differential steered AGVs
Tso et al. Methodological development of fuzzy-logic controllers from multivariable linear control
Baklouti et al. Motion planning in dynamic and unknown environment using an interval type-2 TSK fuzzy logic controller
DE112019006440T5 (en) Path determining device, robot, and path determining method
Mohan et al. Navigation of two wheeled mobile robots cooperatively carrying an object
Rubio et al. Path following fuzzy system for a nonholonomic mobile robot based on frontal camera information
Cho et al. A study on the fuzzy control navigation and the obstacle avoidance of mobile robot using camera
Kundur et al. Active vision-based control schemes for autonomous navigation tasks
Hoshino et al. Motion Planner based on CNN with LSTM through Mediated Perception
Cardoso et al. Fuzzy logic steering controller for a guided vehicle
Antonelli et al. Experiments of fuzzy lane following for mobile robots
Aye et al. Image-based fuzzy control of a car-like mobile robot for parking problems