JPH01260401A - Method of controlling focal length of high-polymer gel lens and image forming method of sharp video utilizing said method - Google Patents

Method of controlling focal length of high-polymer gel lens and image forming method of sharp video utilizing said method

Info

Publication number
JPH01260401A
JPH01260401A JP8813088A JP8813088A JPH01260401A JP H01260401 A JPH01260401 A JP H01260401A JP 8813088 A JP8813088 A JP 8813088A JP 8813088 A JP8813088 A JP 8813088A JP H01260401 A JPH01260401 A JP H01260401A
Authority
JP
Japan
Prior art keywords
polymer gel
lens
gel
focal length
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8813088A
Other languages
Japanese (ja)
Other versions
JPH0555042B2 (en
Inventor
Shinzo Morita
慎三 森田
Shuzo Hattori
服部 秀三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP8813088A priority Critical patent/JPH01260401A/en
Publication of JPH01260401A publication Critical patent/JPH01260401A/en
Publication of JPH0555042B2 publication Critical patent/JPH0555042B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form a variable focal length lens which can be deformed by an electrical or electrochemical effect by deforming a transparent high-polymer gel which is molded to a lens shape by the heterogeneous volume phase change. CONSTITUTION:The high-polymer gel has the characteristic that the volume phase change thereof is induced by the electrical or electrochemical effect and the gel is thereby deformed; therefore, the phenomenon that the gel is anisotropically deformed by heterogeneously inducing the volume phase change is utilized. For example, the gel lens 3 is pulled in the film direction and is deformed by the shrinkage arising from the volume phase change, by which the focal length is increased, if the thin-film gel 1 is subjected to means such as voltage impression or pH control. The control of the focal length of the single lens having the simple structure by the electrical or electrochemical effect is thereby enabled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高分子ゲルよりなるレンズの焦点距離を制御
する方法および、かかる方法を利用して、撮像素子上に
高分子ゲルレンズを通して鮮明な映像を結像するようゲ
ルレンズの焦点距離を自動制御するシステムに関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a method for controlling the focal length of a lens made of polymer gel, and a method for controlling the focal length of a lens made of a polymer gel, and utilizing such a method to image a sharp image on an image sensor through a polymer gel lens. This invention relates to a system that automatically controls the focal length of a gel lens to form an image.

(従来の技術) 従来の光学レンズはガラスまたはプラスチックを成形し
た固定焦点レンズである。焦点可変レンズについては、
電歪材料を用い、材料の屈折率を制御する例が報告され
ている(昭和59年電気関係学会、東海支部連合大会講
演、講演番号303)。しかしながら、高分子ゲルをも
ってレンズを成形し、その形状変化を利用して、レンズ
の焦点距離を制御する方法は、未だ報告されていない。
BACKGROUND OF THE INVENTION Conventional optical lenses are fixed focus lenses molded from glass or plastic. Regarding variable focus lenses,
An example of controlling the refractive index of a material using an electrostrictive material has been reported (Lecture at the 1981 Electrical Related Society, Tokai Branch Union Conference, Lecture No. 303). However, a method for controlling the focal length of a lens by molding a lens using a polymer gel and utilizing changes in its shape has not yet been reported.

(発明が解決しようとする課題) 前記固定焦点レンズを用いた各種光学系またはレンズ系
の多(は、組合わされた複合レンズ相互間や物体または
映像との相対位置を調節して焦点距離を変化させ或いは
焦点距離に合わせて機構を調節するものであり、機械的
に極めて複雑且つ精密な構成を必要とするのみならず、
複合レンズを透過する光線の強度低下という問題を抱え
ていた。
(Problem to be Solved by the Invention) The focal length of various optical systems or lens systems using the fixed focal length lens can be changed by adjusting the relative position between the combined compound lenses or with respect to an object or image. The mechanism is adjusted according to the focal length or focal length, and not only requires an extremely complex and precise configuration mechanically, but also
The problem was that the intensity of the light rays passing through the compound lens decreased.

従って単レンズによりその位置を変えることなく焦点距
離を変化させる技術の出現はそれらの問題を解決に導く
可能性の故に、当業者の均しく渇仰するところであった
。前記電歪材料の電気的作用により屈折率を変化させる
方法はその期待に応える一つの方向として注目に値する
ものである。
Therefore, the advent of a technique for changing the focal length of a single lens without changing its position has been much desired by those skilled in the art because of its potential to solve these problems. The method of changing the refractive index by electrical action of the electrostrictive material is worthy of attention as one way to meet these expectations.

本発明者等はそれとは全く異なったアプローチより問題
の解決を試みた。すなわち、本発明者等は、高分子ゲル
が特定条件により不均一体積相転移を生じて変形する特
性を有するとの知見を得、引き続き、高分子ゲルを以っ
て成形したレンズについてこのような特性を利用し異方
的に変形せしめることにより、レンズの焦点距離を変化
させることに成功し本発明を完成した。
The present inventors attempted to solve the problem using a completely different approach. That is, the present inventors obtained the knowledge that polymer gel has the property of causing a non-uniform volume phase transition and deforming under specific conditions, and subsequently developed such a property for lenses molded using polymer gel. The present invention was completed by successfully changing the focal length of a lens by anisotropically deforming the lens by utilizing its characteristics.

本発明の目的は、電気的または電気化学的作用により変
形し得る焦点距離可変レンズを提供するにある。
An object of the present invention is to provide a variable focal length lens that can be deformed by electrical or electrochemical action.

別の目的は、かかる焦点距離可変レンズを用いて焦点を
自動制御し、撮像素子上に鮮明な映像を結像させる光学
系を提供するにある。
Another object is to provide an optical system that automatically controls the focus using such a variable focal length lens and forms a clear image on an image sensor.

(課題を解決するための手段) 上述の目的は、レンズ状に成形した透明な高分子ゲルを
その不均一体積相転移によって変形させることよりなる
高分子ゲルレンズの焦点距離制御方法によって達成され
る。
(Means for Solving the Problems) The above object is achieved by a method for controlling the focal length of a polymer gel lens, which comprises deforming a transparent polymer gel formed into a lens shape through a non-uniform volume phase transition.

かかる不均一体積相転移は、高分子ゲルに対する電圧の
印加によって生起させることができる。
Such a heterogeneous volume phase transition can be caused by applying a voltage to the polymer gel.

電圧の印加は高分子ゲルに接続した電極間で行い、その
場合は特に金、白金等の非酸化性貴金属電極を用いるこ
とが好ましい。
The voltage is applied between electrodes connected to the polymer gel, and in that case, it is particularly preferable to use a non-oxidizing noble metal electrode such as gold or platinum.

又、電圧の印加を、高分子ゲルと接触する電解質水溶液
を介して行なうこともできる。
Alternatively, the voltage can be applied via an aqueous electrolyte solution that is in contact with the polymer gel.

前記不均一体積相転移は、高分子ゲルを水と接触させて
膨潤させることによっても生起し、更に接触する水性媒
体のpHを変化させることによっても生ずる。
The heterogeneous volume phase transition can also be caused by bringing the polymer gel into contact with water and causing it to swell, and can also be caused by changing the pH of the aqueous medium with which it comes into contact.

高分子ゲルレンズの変形を、それ自体の体積相転移特性
によることなく、該高分子ゲルレンズの周縁に接続して
レンズを枠体に支持する薄膜ゲルの不均一体積相転移の
変形応力を利用して行なうこともできる。
The deformation of the polymer gel lens is not caused by its own volume phase transition characteristics, but by utilizing the deformation stress of the nonuniform volume phase transition of the thin film gel that is connected to the periphery of the polymer gel lens and supports the lens in the frame. You can also do it.

上記レンズ自体と、それと結合一体化された異種の高分
子ゲル層との間における体積相転移特性の差異を利用し
て両者間に歪変形を生ぜしめ焦点距離を変化させること
も可能である。
It is also possible to change the focal length by making use of the difference in volume phase transition characteristics between the lens itself and a different type of polymer gel layer that is bonded and integrated with the lens to create strain deformation between the two.

上述の高分子ゲルレンズ焦点距離の制御方法を利用して
、該高分子ゲルレンズを透過した光を過像素子上に結像
させ、撮像素子からのビデオ信号をゲルレンズにフィー
ドバックして焦点距離を自動制御し、鮮明な結像を得る
ことができる。
Using the method for controlling the focal length of a polymer gel lens described above, the light that has passed through the polymer gel lens is imaged on an imaging element, and the video signal from the imaging element is fed back to the gel lens to automatically control the focal length. It is possible to obtain clear images.

以下、本発明を添付図面を参照して詳述する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

本発明に適用するレンズの構成素材である高分子ゲル自
体は公知物質であり、例えばポリメタクリル酸ゲル、ア
クリルアミド−アクリル酸ナトリウム共重合ゲルなどの
しドロゲルが知られており、それらの何れも適用可能で
ある。
The polymer gel itself that is the constituent material of the lens applied to the present invention is a known substance, for example, polymethacrylic acid gel, acrylamide-sodium acrylate copolymer gel, and other hydrogels are known, and any of these gels can be applied. It is possible.

この様なゲルを以てレンズを成形するには、ゲルのブロ
ック体より所望の形状に切り出してもよいが、最も好ま
しい方法は、目的とするレンズの曲面に相当する成形面
を有する型内でゲル形成原料を重合させ離型することで
ある。得られた重合体はレンズとしての優れた光学特性
を発揮するため、充分に透明であることを要し、原料素
材の選択、製造過程における不純物、着色物質、気泡等
の混入防止等には特別の配慮が望まれる。
To mold a lens using such a gel, it is possible to cut out a gel block into a desired shape, but the most preferable method is to form the gel in a mold with a molding surface that corresponds to the curved surface of the desired lens. It involves polymerizing raw materials and releasing them from the mold. In order for the obtained polymer to exhibit excellent optical properties as a lens, it needs to be sufficiently transparent, and special care must be taken to select raw materials and prevent contamination of impurities, colored substances, air bubbles, etc. during the manufacturing process. It is recommended that consideration be given to

このような高分子ゲルは電気的または電気化学的作用に
よって体積相転移を起こし、変形する特性がある。本発
明方法にあっては、かかる体積相転移を不均一に生起さ
せて、異方的に変形する現象を利用して以下の方式によ
りレンズの焦点距離の制御作用を行なう。
Such polymer gels have the characteristic of causing volume phase transition and deformation by electrical or electrochemical action. In the method of the present invention, the focal length of the lens is controlled by the following method by causing such a volume phase transition non-uniformly and utilizing the phenomenon of anisotropic deformation.

(作 用) (1)ゲルレンズ自体を変形駆動体とする方式(イ)電
圧印加の作用 ゲルレンズの両面に電極を接触または接続し、直流電圧
を印加し、約400〜700μへの電流を通電すると、
ゲルレンズの焦点距離は経時的に増加する。
(Function) (1) Method of using the gel lens itself as a deformation driver (a) Effect of voltage application When electrodes are contacted or connected to both sides of the gel lens, a DC voltage is applied, and a current of about 400 to 700 μ is passed. ,
The focal length of a gel lens increases over time.

電圧印加を停止して、ゲルレンズを水中に浸漬すると、
ゲルは膨潤し、焦点距離は経時的に減少する。この方式
においては電極酸化の問題を回避するため、金、白金な
どの非酸化性貴金属よりなる電極を用いることが好まし
い。
When the voltage application is stopped and the gel lens is immersed in water,
The gel swells and the focal length decreases over time. In this method, in order to avoid the problem of electrode oxidation, it is preferable to use an electrode made of a non-oxidizing noble metal such as gold or platinum.

また電圧印加は電解質水溶液を介して行なうこともでき
、この場合は貴金属以外の電極を適用し得る。すなわち
、ゲルレンズを電解質水溶液中に浸漬し、レンズの両面
に電極を配置して、IOV 、10mA程度の電圧を印
加すると、ゲルレンズは異方的に変形し、焦点距離は減
少する。
Further, voltage application can also be performed via an electrolyte aqueous solution, and in this case, electrodes other than noble metals can be applied. That is, when a gel lens is immersed in an electrolyte aqueous solution, electrodes are placed on both sides of the lens, and a voltage of about 10 mA at IOV is applied, the gel lens deforms anisotropically and its focal length decreases.

(ロ)pHの作用 ゲルレンズはそれと接触する水性媒体piを変えるとそ
の体積相転移を示す。従って、例えば平面と曲面とより
なるゲルレンズの平面側をガラス板などに接着固定した
組立レンズを水性媒体中に置き、pHを変化させれば光
軸方向に異方的に変形し焦点距離が変化する。
(b) Effect of pH A gel lens exhibits its volume phase transition when the aqueous medium pi in contact with it is changed. Therefore, for example, if an assembled lens, in which the flat side of a gel lens consisting of a flat surface and a curved surface is adhesively fixed to a glass plate, is placed in an aqueous medium and the pH is changed, it will deform anisotropically in the optical axis direction and the focal length will change. do.

(2)ゲルレンズを被変形材とする方式(イ)薄膜ゲル
の不均一体積相転移による変形応力の作用 高分子薄膜ゲルを電圧印加、pH制御によって主として
その拡がり方向に変形し、該薄膜ゲルに接続したゲルレ
ンズに張力を作用させて変形し、焦点を制御する。
(2) Method using a gel lens as the deformed material (a) Effect of deformation stress due to non-uniform volume phase transition of thin film gel A thin polymer film gel is deformed mainly in its spreading direction by applying a voltage and controlling pH. The connected gel lens is deformed by applying tension to control its focus.

この場合のゲルレンズ系は次のような構造となすことが
できる。
The gel lens system in this case can have the following structure.

a)第1図に示すごとく薄膜ゲル1を枠体2に張設し、
薄膜ゲル上の中央部分にレンズ状ゲル3を重ね合わせて
適宜な接着剤4により接着固定する。
a) As shown in Fig. 1, the thin film gel 1 is stretched on the frame 2,
A lens-shaped gel 3 is superimposed on the center portion of the thin gel film and fixed with an appropriate adhesive 4.

b)第2図に示すごとく枠体2に張設される薄膜ゲル1
の中央部に透孔を穿設し、透孔に見合う寸法のゲルレン
ズ3を嵌め込み、レンズ周縁と透孔内周縁とを接着剤4
などにより接合する。
b) Thin film gel 1 stretched over frame 2 as shown in FIG.
A through hole is drilled in the center of the hole, a gel lens 3 of a size suitable for the through hole is fitted, and the lens periphery and the inner periphery of the through hole are bonded with adhesive 4.
Join by etc.

C)第3図に示すごとく、薄膜ゲル1とレンズ状ゲル3
とを予め一体成形し枠体2に張設固定する。これらの組
立体を液媒中に設置する場合は薄膜ゲルに対して垂直方
向に液媒を流通させるために、薄膜ゲルに透孔5または
切れ目を設けることが良い。
C) As shown in Figure 3, thin film gel 1 and lenticular gel 3
are integrally molded in advance and stretched and fixed to the frame body 2. When these assemblies are installed in a liquid medium, it is preferable to provide through holes 5 or cuts in the thin gel to allow the liquid to flow in a direction perpendicular to the thin gel.

d)第4図は上記の変形例であり、繊維状またはリボン
状ゲル6でレンズ状ゲル3を枠体2に張設してあり、こ
れら繊維状またはリボン状ゲル6は、第1〜3図の例に
おける薄膜ゲル1と同様な挙動を示す。
d) FIG. 4 shows a modification of the above, in which a lenticular gel 3 is stretched over the frame 2 using fibrous or ribbon-shaped gels 6, and these fibrous or ribbon-shaped gels 6 It exhibits the same behavior as the thin film gel 1 in the example shown.

すなわち、 上記第1〜4図に示したレンズ系において、薄膜ゲルに
、前記の説明に準じ、電圧印加、pH制御などの手段を
施せば、体積相転移による収縮によって、ゲルレンズは
膜方向に引張られ、変形して焦点距離が長くなる。
That is, in the lens system shown in FIGS. 1 to 4 above, if the thin film gel is subjected to voltage application, pH control, etc. in accordance with the above explanation, the gel lens will be stretched in the film direction due to contraction due to volume phase transition. is deformed and its focal length becomes longer.

電圧印加の方法は円形枠を導体として一方の電極とし、
ゲルを浸漬した液に他方の電極を浸して行なう。
The voltage application method uses a circular frame as a conductor and one electrode.
This is done by immersing the other electrode in the solution in which the gel was immersed.

(3)ゲルレンズ自体の変形と被変形とを協働させる方
式 この方式においては、高分子薄膜ゲルを用いることなく
、異種の高分子ゲルよりなる複数のレンズ素材を層状ま
たは同心状に組み合わせて、これら異種素材の体積相転
移の差異を利用し、歪変形を生せしめる。第5図は高分
子ゲルレンズ3とそれと異なった高分子ゲルよりなるレ
ンズ3゛とを層状に積層した例を示し、第6図は異種の
高分子ゲルレンズ3″と3′″とを同心円状に組合せて
一体化したものである。
(3) Method of cooperating the deformation of the gel lens itself with the deformed object In this method, multiple lens materials made of different types of polymer gels are combined in layers or concentrically, without using a thin polymer gel. The difference in volume phase transition between these different materials is used to generate strain deformation. Fig. 5 shows an example in which a polymer gel lens 3 and a lens 3'' made of a different polymer gel are laminated in a layered manner, and Fig. 6 shows an example in which polymer gel lenses 3'' and 3'' of different types are stacked concentrically. They are combined and integrated.

例えばアクリルアミド−アクリル酸ナトリウム共重合ゲ
ルと、ポリアクリルアミドゲルを比べると、電圧印加、
piによって共重合ゲルの方が大きな変形を行なうので
層状、または同心円状に接合して作成したゲルレンズの
状態でレンズの焦点距離を制御できる。“次いで、上記
高分子ゲルレンズの焦点距離制御方法を応用した光セン
サーの自動焦点制御システムについて述べる。
For example, when comparing acrylamide-sodium acrylate copolymer gel and polyacrylamide gel, when voltage is applied,
Since the copolymer gel undergoes greater deformation due to pi, the focal length of the lens can be controlled in the state of the gel lens created by bonding in layers or concentric circles. “Next, we will describe an automatic focus control system for an optical sensor that applies the above method for controlling the focal length of a polymer gel lens.

第7図において、高分子ゲルレンズ3を透過した透過光
をCCD撮像素子7上に結像させる。CCDCD素像素
子7のビデオ信号を信号処理回路8へ転送し、それを微
分処理する。処理信号の高調波成分が最大となるとき焦
点距離が合ったと判定する。従って、処理信号をゲルレ
ンズの焦点可変因子にフィードバックして、焦点距離が
合うまでゲルレンズを前述の方法によって制御し、制御
されたレンズを通してCCD撮像素子上に鮮明な映像を
結像させる。
In FIG. 7, the transmitted light that has passed through the polymer gel lens 3 is imaged on the CCD image sensor 7. In FIG. The video signal of the CCDCD image element 7 is transferred to a signal processing circuit 8 and subjected to differential processing. It is determined that the focal length is correct when the harmonic component of the processed signal becomes maximum. Therefore, the processed signal is fed back to the focus variable factor of the gel lens, and the gel lens is controlled in the manner described above until the focal length is adjusted, and a clear image is formed on the CCD image sensor through the controlled lens.

(発明の効果) 本発明方法によれば簡単な構造の単レンズの焦点距離を
電気的または電気化学的作用によって制御し得るから、
レンズを利用した各種光学系に応用することにより、そ
の構造を極めて単純化、簡素化することができ、上述の
如く小型映像センサーとして利用可能であるのみならず
、また、焦点可変メガネや、眼内レンズへの応用も期待
される。
(Effects of the Invention) According to the method of the present invention, the focal length of a single lens with a simple structure can be controlled by electrical or electrochemical action.
By applying it to various optical systems using lenses, the structure can be extremely simplified and simplified, and it can be used not only as a small image sensor as mentioned above, but also for variable focus glasses and eyewear. Application to internal lenses is also expected.

また光学系における複合レンズの数を減少せしめ得るか
ら、透過光の強度損失を減らすことができる。
Furthermore, since the number of compound lenses in the optical system can be reduced, the loss in intensity of transmitted light can be reduced.

(実施例) 次に本発明を実施例について説明する。実施例中の「%
」および1部」は重量基準である。
(Example) Next, the present invention will be described with reference to an example. “%” in Examples
"and 1 part" are by weight.

実施例■ メタクリル酸100部に対し1、架橋剤としてN、N 
′−メチレンビスアクリルアミド、CH2(NHCOC
HC)12) 2.1部の割合で配合し、架橋開始剤、
過硫酸カリウム、K、S20..1部を加え、内径17
皿の試験管内で架橋重合させてゲルを作製した。
Example ■ 1 for 100 parts of methacrylic acid, N as a crosslinking agent, N
'-Methylenebisacrylamide, CH2 (NHCOC
HC)12) 2.1 parts of crosslinking initiator,
Potassium persulfate, K, S20. .. Add 1 part, inner diameter 17
The gel was prepared by cross-linking polymerization in a test tube in a dish.

このゲルをかまぼこ状に切り出し、メシュ状金電極面に
ゲルの平面をのせて直流電圧の陰極に接続した。陽極は
半円面上に金線を直接接触させた。
This gel was cut into a semicylindrical shape, and the flat surface of the gel was placed on the surface of a mesh-like gold electrode, which was then connected to a DC voltage cathode. For the anode, a gold wire was brought into direct contact with the semicircular surface.

このような電極配置で、電流を400−700 μA流
したとき、第8図に示すように、ゲルレンズの焦点距離
が時間と共に増加した。電圧印加を止めて、ゲルレンズ
を水中に入れると、膨潤し、焦点距離は時間と共に減少
した。
With this electrode arrangement, when a current of 400-700 .mu.A was applied, the focal length of the gel lens increased with time, as shown in FIG. 8. When the voltage application was stopped and the gel lens was placed in water, it swelled and the focal length decreased over time.

実施例2 アクリルアミド−アクリル酸ナトリウム共重合ゲルはア
クリルアミドとアクリル酸ナトリウムをN、N′−メチ
レンビスアクリルアミドで架橋熱重合したものである。
Example 2 Acrylamide-sodium acrylate copolymer gel is obtained by crosslinking and thermally polymerizing acrylamide and sodium acrylate with N,N'-methylenebisacrylamide.

ゲル合成は次の様にして行なった。Gel synthesis was performed as follows.

七ツマ−; アクリルアミド        4.98 gアクリル
酸          4.80 mlイオン化剤; NaOH2,80g 架橋剤; メチレンビスアクリルアミド  0.216g重合開始
剤; 重合促進剤; テトラメチルメチレンジアミン 0.240m1以上の
試薬を50m1の水に溶かし、ろ過した後、ガラス試験
管に移して、3時間60’Cに保ち熱重合させてゲル化
させた。内径17胴の試験管内で作製したゲルについて
、試験管先端の半球状の部分を切り取り、0.5%食塩
水中に浸し、凸面に正極、平面に負極を配してIOV、
 10m八程への電圧を一定時間印加して変形させ、そ
の焦点距離の変化を測定した。その結果焦点距離は、電
圧印加と共に減少するのが見られた。
Acrylamide 4.98 g Acrylic acid 4.80 ml Ionizing agent; NaOH2, 80 g Crosslinking agent; Methylenebisacrylamide 0.216 g Polymerization initiator; Polymerization accelerator; Tetramethylmethylene diamine 0.240 ml or more of reagents in 50 ml The mixture was dissolved in water, filtered, transferred to a glass test tube, and kept at 60'C for 3 hours for thermal polymerization to form a gel. Regarding the gel produced in a test tube with an inner diameter of 17, the hemispherical part at the tip of the test tube was cut off, immersed in 0.5% saline, and the positive electrode was placed on the convex surface and the negative electrode was placed on the flat surface.
A voltage of about 10 m was applied for a certain period of time to deform it, and the change in focal length was measured. As a result, the focal length was seen to decrease with voltage application.

実施例3 サイエンティフィック・アメリカン、244巻、110
頁(1981年)  (Scientific Ame
rican、 24C110、(1981) )掲載の
論文「ゲルズJ (Gets)記載の方法で作成したポ
リアクリルアミドゲルでレンズを作製し、水に浸漬し、
pH5以上で充分膨潤させた後、円周を固定してpHを
3に変化させたところ、その体積が減少し、焦点距離が
増加した。
Example 3 Scientific American, Volume 244, 110
Page (1981) (Scientific Ame
rican, 24C110, (1981)), a lens was made from a polyacrylamide gel prepared by the method described in Gets J (Gets), immersed in water,
After sufficient swelling at pH 5 or higher, when the circumference was fixed and the pH was changed to 3, the volume decreased and the focal length increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は、本発明方法に用いるゲルレンズ系の
具体例を示す垂直断面図、 第4図は、本発明方法に用いるゲルレンズ系の別の具体
例を示す平面図、 第5図および第6図は本発明方法に用いる更に別の具体
例を示すそれぞ垂直断面図および平面図であり、 第7図は、本発明にがかる撮像素子上の結像方法を示す
説明図、また 第8図は、本発明方法による高分子ゲルレンズの焦点距
離の経時変化を示すグラフである。 1・・・薄膜ゲル     2・・・枠体3・・・高分
子ゲルレンズ 4・・・接着剤5・・・透孔     
  6・・・リボン状ゲル7・・・CCD撮像素子  
8・・・信号回路6一
1 to 3 are vertical sectional views showing a specific example of the gel lens system used in the method of the present invention. FIG. 4 is a plan view showing another specific example of the gel lens system used in the method of the present invention. 6 are a vertical sectional view and a plan view, respectively, showing still another specific example used in the method of the present invention, and FIG. 7 is an explanatory diagram showing a method of forming an image on an image sensor according to the present invention, FIG. 8 is a graph showing the change over time in the focal length of a polymer gel lens according to the method of the present invention. 1...Thin film gel 2...Frame 3...Polymer gel lens 4...Adhesive 5...Through hole
6... Ribbon-shaped gel 7... CCD image sensor
8...Signal circuit 6-

Claims (1)

【特許請求の範囲】 1、レンズ状に成形した透明な高分子ゲルをその不均一
体積相転移によって変形させることよりなる高分子ゲル
レンズの焦点距離制御方法。 2、不均一体積相移転を高分子ゲルに対する電圧の印加
によって生起せしめる請求項1記載の高分子ゲルレンズ
の焦点距離制御方法。 3、電圧の印加を高分子ゲルに接続した電極間で行う請
求項2記載の高分子ゲルレンズの焦点距離制御方法。 4、電圧の印加を高分子ゲルと接触する電解質水溶液を
介して行う請求項2記載の高分子ゲルレンズの焦点距離
制御方法。 5、不均一体積相転移を高分子ゲルの水による膨潤によ
って生起せしめる請求項1記載の高分子ゲルレンズの焦
点距離制御方法。 6、不均一体積相転移を高分子ゲルと接触する水性媒体
のpH変化によって生起せしめる請求項1記載の高分子
ゲルレンズの焦点距離制御方法。 7、レンズ状に成形した透明な高分子ゲルを、その周縁
において一体的に結合した薄膜ゲルによって枠体に支持
し、該薄膜ゲルの不均一体積相転移によって生じた応力
で高分子ゲルを変形させることよりなる高分子ゲルレン
ズの焦点距離制御方法。 8、レンズ状高分子ゲルが薄膜ゲルに積層して接合され
た請求項7記載の高分子ゲルレンズの焦点距離制御方法
。 9、薄膜ゲルが中央部に透孔を有し、該透孔の内周縁が
レンズ状高分子ゲルの周縁と接合された請求項7記載の
高分子ゲルレンズの焦点距離制御方法。 10、レンズ状高分子ゲルと薄膜ゲルとが一体的に成形
されてなる請求項7記載の高分子ゲルレンズの焦点距離
制御方法。 11、薄膜ゲルが繊維状又はリボン状である請求項7記
載の高分子ゲルレンズの焦点距離制御方法。 12、レンズ状に成形した透明な高分子ゲルを含む複数
の高分子ゲルを層状又は同心円状に組み合わせて、それ
らの体積相転移の差異を利用してレンズ状高分子ゲルを
変形させることよりなる高分子ゲルレンズの焦点距離制
御方法。 13、高分子ゲルンズ透過光を撮像素子上に結像させ、
撮像素子からのビデオ信号を微分処理し、処理信号を上
記ゲルレンズにフィードバックして前記処理信号の高調
波成分が最大となるように請求項1記載の方法により高
分子ゲルレンズの焦点距離を制御することよりなる高分
子ゲルレンズを通して撮像素子上に鮮明な映像を結像さ
せる方法。
[Claims] 1. A method for controlling the focal length of a polymer gel lens, which comprises deforming a transparent polymer gel formed into a lens shape through a non-uniform volume phase transition. 2. The method of controlling the focal length of a polymer gel lens according to claim 1, wherein the non-uniform volume phase transition is caused by applying a voltage to the polymer gel. 3. The method for controlling the focal length of a polymer gel lens according to claim 2, wherein the voltage is applied between electrodes connected to the polymer gel. 4. The method for controlling the focal length of a polymer gel lens according to claim 2, wherein the voltage is applied via an electrolyte aqueous solution that is in contact with the polymer gel. 5. The method for controlling the focal length of a polymer gel lens according to claim 1, wherein the non-uniform volume phase transition is caused by swelling the polymer gel with water. 6. The method of controlling the focal length of a polymer gel lens according to claim 1, wherein the non-uniform volume phase transition is caused by a pH change of an aqueous medium that is in contact with the polymer gel. 7. A transparent polymer gel formed into a lens shape is supported on a frame by a thin film gel integrally bonded at its periphery, and the polymer gel is deformed by the stress generated by the non-uniform volume phase transition of the thin film gel. A method for controlling the focal length of a polymer gel lens. 8. The method for controlling the focal length of a polymer gel lens according to claim 7, wherein the lens-shaped polymer gel is laminated and bonded to a thin film gel. 9. The method for controlling the focal length of a polymer gel lens according to claim 7, wherein the thin film gel has a through hole in the center, and the inner peripheral edge of the through hole is joined to the peripheral edge of the lens-shaped polymer gel. 10. The method for controlling the focal length of a polymer gel lens according to claim 7, wherein the lens-shaped polymer gel and the thin film gel are integrally molded. 11. The method for controlling the focal length of a polymer gel lens according to claim 7, wherein the thin film gel is in the form of a fiber or a ribbon. 12. It consists of combining a plurality of polymer gels, including a transparent polymer gel shaped into a lens shape, in a layered or concentric form, and deforming the lens-shaped polymer gel by utilizing the difference in their volume phase transitions. Focal length control method for polymer gel lenses. 13. Forming an image of the light transmitted through the polymer gel on an image sensor,
Differentially processing the video signal from the image sensor, feeding back the processed signal to the gel lens, and controlling the focal length of the polymer gel lens by the method according to claim 1 so that the harmonic component of the processed signal is maximized. A method of forming a clear image on an image sensor through a polymer gel lens.
JP8813088A 1988-04-12 1988-04-12 Method of controlling focal length of high-polymer gel lens and image forming method of sharp video utilizing said method Granted JPH01260401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8813088A JPH01260401A (en) 1988-04-12 1988-04-12 Method of controlling focal length of high-polymer gel lens and image forming method of sharp video utilizing said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8813088A JPH01260401A (en) 1988-04-12 1988-04-12 Method of controlling focal length of high-polymer gel lens and image forming method of sharp video utilizing said method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5030683A Division JPH0750204B2 (en) 1993-02-19 1993-02-19 Method for controlling focal length of polymer gel lens and method for forming clear image using the same

Publications (2)

Publication Number Publication Date
JPH01260401A true JPH01260401A (en) 1989-10-17
JPH0555042B2 JPH0555042B2 (en) 1993-08-16

Family

ID=13934340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8813088A Granted JPH01260401A (en) 1988-04-12 1988-04-12 Method of controlling focal length of high-polymer gel lens and image forming method of sharp video utilizing said method

Country Status (1)

Country Link
JP (1) JPH01260401A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114608A (en) * 2005-10-21 2007-05-10 Seiko Precision Inc Variable focus lens, and focusing device and imaging apparatus using variable focus lens
JP2012230411A (en) * 2003-12-19 2012-11-22 Guillon Michel Multi-focal contact lenses manufactured from responsive polymer gel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230411A (en) * 2003-12-19 2012-11-22 Guillon Michel Multi-focal contact lenses manufactured from responsive polymer gel
JP2014211646A (en) * 2003-12-19 2014-11-13 ミシェル ギヨン、 Multiple focal point contact lens manufactured from responsive polymer gel
JP2007114608A (en) * 2005-10-21 2007-05-10 Seiko Precision Inc Variable focus lens, and focusing device and imaging apparatus using variable focus lens
JP4697788B2 (en) * 2005-10-21 2011-06-08 セイコープレシジョン株式会社 Variable focus lens, and focus adjustment device and imaging device using the same

Also Published As

Publication number Publication date
JPH0555042B2 (en) 1993-08-16

Similar Documents

Publication Publication Date Title
US11016311B2 (en) Rigid, gas-permeable polymer as over-mold and sealant for adaptive opthalmic lens
US5574598A (en) Varifocal lens
CN109634002A (en) A kind of mechanism of diaphragm, its driving method and compound eye imaging system
KR20090132562A (en) Light-redirecting article
CN111630442A (en) Lens with adjustable focal length
JP2008058841A (en) Variable shape liquid type varifocal lens
CN103777256A (en) Manufacturing method and application for flexible curved micro-lens array
JPH01260401A (en) Method of controlling focal length of high-polymer gel lens and image forming method of sharp video utilizing said method
CN108710166B (en) Micro-lens array based on polyvinyl alcohol/glycerin gel and manufacturing method
JP2006227573A (en) Method for manufacturing light-diffusing sheet material
JP7246068B2 (en) Optical element and method for producing optical element
JP2021009364A (en) Optical element, microlens array, and display system using microlens array
JP2002189212A (en) Display device and method for manufacturing the same
JP2008089782A (en) Liquid crystal optical element, its manufacturing method, and strobe unit using the same
JPH0627305A (en) Method for controlling focal length of high-polymer gel lens and method for forming bright image by utilizing this method
CN112068308A (en) Electrically-driven sheet type zoom lens and design method and manufacturing method thereof
CN112014911A (en) Variable-focus liquid lens and design method and manufacturing method thereof
JP4321946B2 (en) Mold for light diffusion sheet and method for manufacturing light diffusion sheet
JPH0450804A (en) Manufacture of mirolens array
JP2007225686A (en) Optical sheet, and light source device and display device
CN105711069A (en) Preparation method of brightness enhancement film
WO2021066755A2 (en) Manufacturing process of high density microneedles
JP4161697B2 (en) Method for producing master for producing aperture-converting polymer optical waveguide and method for producing aperture-converting polymer optical waveguide using the method
CN115407537A (en) Backlight module and display device
JP4164916B2 (en) Lenticular screen

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term