JPH01260394A - Nuclear fusion apparatus - Google Patents

Nuclear fusion apparatus

Info

Publication number
JPH01260394A
JPH01260394A JP63088071A JP8807188A JPH01260394A JP H01260394 A JPH01260394 A JP H01260394A JP 63088071 A JP63088071 A JP 63088071A JP 8807188 A JP8807188 A JP 8807188A JP H01260394 A JPH01260394 A JP H01260394A
Authority
JP
Japan
Prior art keywords
magnetic field
toroidal magnetic
toroidal
nuclear fusion
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63088071A
Other languages
Japanese (ja)
Inventor
Takao Uchida
内田 孝穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63088071A priority Critical patent/JPH01260394A/en
Publication of JPH01260394A publication Critical patent/JPH01260394A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To reduce a ripple value of a toroidal magnetic field with simple formation by arranging oxide superconductors in parallel with a toroidal magnetic field in a movable shielding body set between toroidal magnetic field coils. CONSTITUTION:A movable shielding body 4 is set in the outside of a blanket 3 so as to surround a plasma 2 inside a truss type vacuum vessel 1 in which the plasma 2 is confined therein. Toroidal magnetic field coils 5 and poloidal magnetic fields 6 are set in the circumference of the vacuum vessel 1 to form magnetic fields. Further, oxide superconductors 10 are arranged in a shielding vessel 9 which is one of the movable shielding body 4 on a parallel with toroidal magnetic fields of the outside toroidal magnetic field coils 5. Thereby the oxide superconductors can reduce the ripple magnetic field for repelling magnetic fluxes under a superconductive condition and a nuclear fusion apparatus of simple formation can be obtained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は核融合装置に係り、特にトカマク型核融合装置
のトーラス方向に発生するトロイダル磁場の乱れ(リッ
プル磁場)を低減する手段に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a nuclear fusion device, and in particular to reducing disturbances in a toroidal magnetic field (ripple magnetic field) generated in the torus direction of a tokamak type nuclear fusion device. Concerning the means to do so.

(従来の技術) トカマク型核融合装置は、一般に第5図および第6図に
示すように構成されている。すなわち。
(Prior Art) A tokamak-type nuclear fusion device is generally configured as shown in FIGS. 5 and 6. Namely.

図中1は内部にプラズマ2を閉じ込め、高真空を維持す
るトーラス型真空容器である。この真空容器1の内側に
はプラズマ2を囲むようにブランケット3が設けられ、
その外側には可動遮蔽体4が一体に設けられている。
In the figure, 1 is a torus-shaped vacuum vessel that confines plasma 2 inside and maintains a high vacuum. A blanket 3 is provided inside the vacuum container 1 so as to surround the plasma 2,
A movable shield 4 is integrally provided on the outside thereof.

真空容器1の周囲にはトロイダル磁場コイル5およびボ
ロイダル磁場コイル6が配置され、両コイル5,6によ
ってプラズマ2の閉じ込めに必要な磁界が形成されるよ
うになっている。
A toroidal magnetic field coil 5 and a voloidal magnetic field coil 6 are arranged around the vacuum vessel 1, and both coils 5 and 6 form a magnetic field necessary for confining the plasma 2.

ところで、このような核融合装置では第6図に示すよう
にトロイダル磁場コイル5が装置の中心側では密に配置
され、一方装置の外側では互いに離間して配置されてい
るため、トロイダル磁場コイル5の配置によって形成さ
れるトロイダル磁場の等磁界線は第7図の点線で示すよ
うに、トロイダル方向(トーラス方向)に均一の磁場強
さではなく、コイル5,5間において外側に膨らんだ形
となる。この不均一磁場をリップル磁場といい、リップ
ル磁場が大きいと不安定さが増大し、プラズマ2の閉じ
込めが不可能になる。
By the way, in such a nuclear fusion device, as shown in FIG. 6, the toroidal magnetic field coils 5 are arranged densely at the center of the device, but are spaced apart from each other on the outside of the device. As shown by the dotted lines in Fig. 7, the isomagnetic field lines of the toroidal magnetic field formed by the arrangement of are not uniform magnetic field strength in the toroidal direction (torus direction), but have a shape that bulges outward between the coils 5, 5. Become. This non-uniform magnetic field is called a ripple magnetic field, and when the ripple magnetic field is large, instability increases and it becomes impossible to confine the plasma 2.

トロイダル磁場のリップル磁場を緩和する方法としては
As a method to relax the ripple magnetic field of the toroidal magnetic field.

■ トロイダル磁場コイル5の外側導体部をより外側に
移動してプラズマ外縁部の磁場の乱れを緩和する方法。
■ A method of mitigating disturbances in the magnetic field at the outer edge of the plasma by moving the outer conductor of the toroidal magnetic field coil 5 further outward.

■ 第6図に示すように真空容器1のポスト部7に第8
図に示すような磁性体8を取付け、この磁性体8により
トロイダル磁場の磁力線をコイル側に引寄せて磁場の乱
れを全体的に緩和する方法。
■ As shown in Figure 6, the 8th
A method of attaching a magnetic body 8 as shown in the figure, and using this magnetic body 8 to draw the lines of magnetic force of the toroidal magnetic field toward the coil side, thereby alleviating disturbances in the magnetic field.

などがある。and so on.

しかしながら、前者の方法はトロイダル磁場コイル5が
大型化し、使用している超電導コイルの応力値の増大、
コイル用電源の増加、装置全体の大型化によるコストア
ップ等を招く欠点がある。
However, in the former method, the toroidal magnetic field coil 5 becomes larger, and the stress value of the superconducting coil used increases.
This method has disadvantages such as an increase in the cost due to an increase in the power supply for the coil and an increase in the size of the entire device.

一方、後者の方法はトロイダル磁場コイル5および装置
全体を小型化できる反面、次のような問題があった。
On the other hand, although the latter method allows the toroidal magnetic field coil 5 and the entire device to be miniaturized, it has the following problems.

(発明が解決しようとする課題) すなわち、従来の磁性体8は第6図に示すように真空容
器1のポスト部7に設置されており、ポスト部7は可動
遮蔽体4の引抜幅を最大にとるため三角状となりその断
面空間も小さい。このため、磁性体8の必要とする空間
を確保することができない場合があり、また、磁性体8
をプラズマ2に近づけて効果的にリップル磁場の低減を
はかることができないこと等の問題点があった。
(Problem to be Solved by the Invention) In other words, the conventional magnetic body 8 is installed on the post portion 7 of the vacuum container 1 as shown in FIG. Because of this, it has a triangular shape and its cross-sectional space is small. For this reason, it may not be possible to secure the space required for the magnetic body 8, and the space required for the magnetic body 8 may not be secured.
There have been problems such as the inability to effectively reduce the ripple magnetic field by bringing the magnetic field closer to the plasma 2.

本発明は、このような問題点に着目してなされたもので
、その目的とするところはトロイダル磁場のリップル値
を低減し、プラズマの閉じ込めを安定して行なうことが
できる核融合装置を提供することにある。
The present invention has been made with attention to these problems, and its purpose is to provide a nuclear fusion device that can reduce the ripple value of the toroidal magnetic field and stably confine plasma. There is a particular thing.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために本発明は、トロイダル磁場コ
イル間に設置された可動遮蔽体にトロイダル磁場と平行
に酸化物系超電導体を配置したことを特徴とするもので
ある。
(Means for Solving the Problems) In order to achieve the above object, the present invention is characterized in that an oxide-based superconductor is arranged in a movable shield installed between toroidal magnetic field coils in parallel with the toroidal magnetic field. It is something.

(作用) 上記の構成とすると、酸化物超電導体は超電導状態にお
いて磁束を反撥するので、トロイダル磁場のリップル磁
場を緩和できると共に構造の簡素化を計ることができる
(Function) With the above configuration, since the oxide superconductor repels magnetic flux in the superconducting state, the ripple magnetic field of the toroidal magnetic field can be relaxed and the structure can be simplified.

(実施例) 以下、本発明の実施例を図面を参照して説明する。なお
、従来と同一部分には同一符号を付し、その説明は省略
する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. Incidentally, the same parts as in the prior art are given the same reference numerals, and the explanation thereof will be omitted.

第1図は本発明の一実施例を示し1図中9は可動遮蔽体
4の遮蔽容器で酸化物系超電導体10を遮蔽容器9の中
に配置する。
FIG. 1 shows an embodiment of the present invention. In FIG. 1, reference numeral 9 denotes a shielding container for a movable shielding member 4, and an oxide superconductor 10 is placed in the shielding container 9. In FIG.

このような構成において、トロイダル磁場コイル5によ
って発生したトロイダル磁場中にある酸化物系超電導体
10にはトロイダル磁場に対抗した磁場が発生する。こ
の対抗した磁場は結果的にトロイダル磁場を中心側へ押
し込む作用となり、トロイダル磁場コイル5間のリップ
ル磁場を低減することができる。
In such a configuration, a magnetic field opposing the toroidal magnetic field is generated in the oxide-based superconductor 10 in the toroidal magnetic field generated by the toroidal magnetic field coil 5. This opposing magnetic field results in the effect of pushing the toroidal magnetic field toward the center, and the ripple magnetic field between the toroidal magnetic field coils 5 can be reduced.

(他の実施例) 第2図ないし第4図は他の実施例を示す。第4図は酸化
物系超電導体10を可動遮蔽体4の遮蔽容器9の外側に
取付けた構造を示す。
(Other Embodiments) FIGS. 2 to 4 show other embodiments. FIG. 4 shows a structure in which the oxide superconductor 10 is attached to the outside of the shielding container 9 of the movable shielding body 4. As shown in FIG.

また、第3図は酸化物系超電導体を支持体11に取付け
た構造を、第4図は酸化物系超電導体10を薄膜として
支持板11に取付けた構造を示す。
Further, FIG. 3 shows a structure in which the oxide-based superconductor is attached to the support plate 11, and FIG. 4 shows a structure in which the oxide-based superconductor 10 is attached as a thin film to the support plate 11.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、トロイダル磁場コ
イル及び核融合装置全体を大型化させることなくトロイ
ダル磁場のリップル磁場を低減することができる核融合
装置を提供できる。
As described above, according to the present invention, it is possible to provide a nuclear fusion device that can reduce the ripple magnetic field of the toroidal magnetic field without increasing the size of the toroidal magnetic field coil and the entire nuclear fusion device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のトーラス型の核融合装置の
要部を示す横断面図、第2図は他の実施例のトーラス型
核融合装置の要部を示す横断面図、第3図及び第4図は
部分詳細図、第5図は従来の核融合装置の縦断面図、第
6図は同装置の一部分を示す横断面図、第7図はトロイ
ダル磁場コイルの配置及び磁力線を示す説明図、第8図
は従来の磁性体を示す斜視図である。 1・・・トーラス形真空容器、 2・・・プラズマ、3
・・・ブランケット、  4・・・可動遮蔽体、5・・
・トロイダル磁場コイル、 6・・・ポロイダル磁場コイル、 7・・・ポスト部、
8・・・磁性体、  9・・・遮蔽容器、10・・・酸
化物系超電導体、 11・・・支持板。 代理人 弁理士 則 近 憲 佑 同  第子丸 健 第1図 第2図 第3図  第4図 第5図
FIG. 1 is a cross-sectional view showing the main parts of a torus-type fusion device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the main parts of a torus-type fusion device according to another embodiment. Figures 3 and 4 are partial detailed views, Figure 5 is a vertical cross-sectional view of a conventional fusion device, Figure 6 is a cross-sectional view of a portion of the same device, and Figure 7 is the arrangement of toroidal magnetic field coils and lines of magnetic force. FIG. 8 is a perspective view showing a conventional magnetic body. 1... Torus-shaped vacuum vessel, 2... Plasma, 3
... Blanket, 4... Movable shield, 5...
- Toroidal magnetic field coil, 6... Poloidal magnetic field coil, 7... Post part,
8... Magnetic material, 9... Shielding container, 10... Oxide-based superconductor, 11... Support plate. Agent Patent Attorney Yudo Ken Chika Ken Daishimaru Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)放射状に配置したトロイダル磁場コイルによりト
ロイダル磁場を発生せしめるトーラス型核融合装置にお
いて、外側のトロイダル磁場コイル間にトロイダル磁場
に平行に酸化物系超電導体を設置したことを特徴とする
核融合装置。
(1) A torus-type nuclear fusion device that generates a toroidal magnetic field using toroidal magnetic field coils arranged radially, in which an oxide-based superconductor is installed parallel to the toroidal magnetic field between the outer toroidal magnetic field coils. Device.
(2)酸化物系超電導体は外側遮蔽体に取付けたことを
特徴とする請求項(1)記載の核融合装置。
(2) The nuclear fusion device according to claim (1), wherein the oxide superconductor is attached to the outer shield.
(3)酸化物系超電導体は板状の支持板上に薄膜として
形成したことを特徴とする請求項(2)記載の核融合装
置。
(3) The nuclear fusion device according to claim (2), wherein the oxide superconductor is formed as a thin film on a plate-shaped support plate.
JP63088071A 1988-04-12 1988-04-12 Nuclear fusion apparatus Pending JPH01260394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63088071A JPH01260394A (en) 1988-04-12 1988-04-12 Nuclear fusion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63088071A JPH01260394A (en) 1988-04-12 1988-04-12 Nuclear fusion apparatus

Publications (1)

Publication Number Publication Date
JPH01260394A true JPH01260394A (en) 1989-10-17

Family

ID=13932621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63088071A Pending JPH01260394A (en) 1988-04-12 1988-04-12 Nuclear fusion apparatus

Country Status (1)

Country Link
JP (1) JPH01260394A (en)

Similar Documents

Publication Publication Date Title
US4740758A (en) Apparatus for generating a magnetic field in a volume having bodies influencing the field pattern
CN1079572C (en) Active shield plane gradient coil used in polar plate magnetic pole
US4902993A (en) Magnetic deflection system for charged particles
JPS61227400A (en) Superconductive magnet system for particle accelerator of synchrotron radiation source
JPS6454714A (en) Active shield type superconducting magnet device
US4263096A (en) Toroidal magnet system
US5812042A (en) Superconducting magnet formed by laminating hollow conductor plates
US20040041673A1 (en) Low-leakage magnetic-field magnet and shield coil assembly
EP0609604A1 (en) Magnetic field generation device of use in superconductive type MRI
US4153889A (en) Method and device for generating a magnetic field of a potential with electric current components distributed according to a derivative of the potential
JPH01260394A (en) Nuclear fusion apparatus
JPS625161A (en) Magnet for mri
US4430600A (en) Modular low aspect ratio-high beta torsatron
USRE30466E (en) Method and device for generating a magnetic field of a potential with electric current components distributed according to a derivative of the potential
JPH0564872B2 (en)
EP0110400A2 (en) Superconducting wire and method of producing the same
JP4228110B2 (en) Open magnet system
JPS6312109A (en) Superconducting magnet
JPS624847B2 (en)
JPH0570921B2 (en)
JPH01253690A (en) Magnetic shielding apparatus
JP4109803B2 (en) Toroidal magnetic field generator
JPS61263205A (en) High energy particle deflecting magnet
JPH0373598A (en) Magnetic shielding device
JPS62150803A (en) Superconducting electromagnet for deflecting charged particles