JPH01260264A - Very-low-temperature refrigeration device - Google Patents

Very-low-temperature refrigeration device

Info

Publication number
JPH01260264A
JPH01260264A JP8715388A JP8715388A JPH01260264A JP H01260264 A JPH01260264 A JP H01260264A JP 8715388 A JP8715388 A JP 8715388A JP 8715388 A JP8715388 A JP 8715388A JP H01260264 A JPH01260264 A JP H01260264A
Authority
JP
Japan
Prior art keywords
gas
bearing
impurities
oil
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8715388A
Other languages
Japanese (ja)
Inventor
Kozo Matsumoto
松本 孝三
Shigeto Kawamura
河村 成人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8715388A priority Critical patent/JPH01260264A/en
Publication of JPH01260264A publication Critical patent/JPH01260264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To make a rotary machine excellent in ability to sustain continuous operation over long periods of time by drawing from a very-low-temperature refrigerating device cryogenic gas at a temperature level at which oils, impurities, and the like can be removed completely through solidification and using the cryogenic gas as static pressure-bearing gas in the rotary machine. CONSTITUTION:High pressure helium, after removal of oils therefrom by an oil separator 3, is conveyed from a compressor unit 1 to a refrigerator 5 wherein it is cooled from an ordinary temperature to a point for its liquefaction, causing all the impurities in the liquefied gas to solidify and attach to heat exchangers 6a, 6b, piping, and the like; the oil that may possibly mix into it at the compressor unit 1 has a high solidifying point and gets caught through solidification in the refrigerator 5 at early stages. The cryogenic gas which has been discharged from an internal adsorber 7 after complete removal of oils and impurities is made to branch off at the outlet into a bearing gas feed line 35 and is conveyed through a bearing gas feed valve 33 to a thrust bearing 25 which is a static gas-pressure bearing. Without admitting oils and impurities to the bearing the device enables a rotary machine to sustain continuous operation over long periods of time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は極低温冷凍装置に係り、特に静圧ガス軸受式の
回転機器を有するものに好適な極低温冷凍装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a cryogenic refrigeration system, and particularly to a cryogenic refrigeration system suitable for those having rotating equipment of a hydrostatic gas bearing type.

〔従来の技術〕[Conventional technology]

極低温冷凍装置、例えばヘリウム冷凍g装置では現在、
圧msとして油噴射式スクリュー圧縮機がほとんどの数
置で採用されている。これは、油噴射式スクリュー圧縮
機が長期連続運転性等の良い機器として、信頼性が高く
、操作性が優れているためであると共に、油分離技術の
進歩が有ったためである。現在、油分lII装置では、
吐出ガス中の油分を0.1 pp(Vol、)  以下
に除去可能である。
Currently, cryogenic refrigeration equipment, such as helium refrigeration equipment,
Oil injection type screw compressors are used in most of the pressure ms. This is because the oil injection screw compressor is a device with good long-term continuous operation, is highly reliable, and has excellent operability, and is also due to advances in oil separation technology. Currently, in the Oil II device,
The oil content in the discharged gas can be removed to 0.1 pp (Vol, ) or less.

一方、極低温冷凍装置の心臓部である膨張タービンは静
圧ガス軸受を採用しているものが大部分である。静圧ガ
ス軸受は、高圧のガスを細孔から噴射し1回転体を浮上
させるものであるが、浮上量は数μから数十μであり超
精密加工が必要であると共に、静圧軸受ガス中に固形物
等が混入するのはもとより、油等の不純物が混入するの
を防止しなければ正常な運転が不可能となる。
On the other hand, most expansion turbines, which are the heart of cryogenic refrigeration equipment, employ static pressure gas bearings. Hydrostatic gas bearings inject high-pressure gas through pores to levitate a rotating body, but the floating height is from several microns to several tens of microns, requiring ultra-precision machining. If it is not possible to prevent not only solid matter from getting into the tank but also impurities such as oil, normal operation will not be possible.

従来の装置は、圧縮機ユニブトからの常温ガスを静圧軸
受ガスとして直接導入していた。
Conventional equipment directly introduces room temperature gas from the compressor unit as hydrostatic bearing gas.

なお、この種の装置として関連するものには、例えば、
1983年7月の「ターボ機械第11舎第7号」、第3
7頁から第42負に記載の「He液化冷凍機用膨張ター
ビン」が挙げられる。
Note that related devices of this type include, for example,
"Turbo Machinery No. 11 Building No. 7", July 1983, No. 3
An example is "Expansion turbine for He liquefaction refrigerator" described in page 7 to page 42.

〔発明がへ決しようとする課題〕 上記従来技術は、圧縮機ユニブトの吐出ガス中に正常な
運転中でも微量の油分や不純物が混入していることに配
属されておらず、長期の連続運転な叉施する場合には、
油や不純物等が軸受部に入って膨張タービンの軸受性能
低下が発生する可能性が高いという問題があった。また
、誤操作、油分離装置の再生不良等によっては、大針の
油が混入して(ることが有る点について配属されておら
ず、この場合には、膨張タービンの損傷まで生じる可能
性が高く、分M、点検、洗浄1組立等に多大の時間と費
用が必要となるという問題があった。
[Problems to be solved by the invention] The above-mentioned prior art does not deal with the fact that trace amounts of oil and impurities are mixed in the discharge gas of the compressor unit even during normal operation, and it does not deal with the fact that small amounts of oil and impurities are mixed in the discharge gas of the compressor unit, and it is difficult to solve the problem of long-term continuous operation. When giving,
There is a problem in that there is a high possibility that oil, impurities, etc. will enter the bearing portion and deteriorate the bearing performance of the expansion turbine. In addition, due to incorrect operation or failure to regenerate the oil separator, large needles of oil may get mixed in. In this case, there is a high possibility of damage to the expansion turbine. There is a problem in that a large amount of time and cost are required for inspection, cleaning, assembly, etc.

本発明の目的は長期連続運転性に優れた極低温冷凍装置
を提供することにある。
An object of the present invention is to provide a cryogenic refrigeration system with excellent long-term continuous operability.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、油や不純物等が完全に固化除去される温度
レベルの低温ガスを極低温冷凍装置から導出し、回転機
器の静圧軸受ガスとして使用することにより、達成され
る。
The above object is achieved by extracting a low-temperature gas from a cryogenic refrigeration device at a temperature level at which oil, impurities, etc. are completely solidified and removed, and using it as a hydrostatic bearing gas for rotating equipment.

〔作  用〕[For production]

極低温冷凍!に置では、圧縮微ユニットから常温高圧の
冷媒ガスを冷yL我に導入し、冷凍機内で常温から液化
力゛ス湿度まで冷却していく、この間に液化ガス中の不
純物は全て固化し冷凍機内の熱交換器、配管、フィルタ
ー等に付着してい(。また、圧縮機ユニブトから混入す
る可能性がある油分は固化点が高く、早い時期に冷凍機
内に固化、付着する。油分および不純物が完全に除去さ
れた低温冷媒ガスを冷凍機から分岐導出させ、これを回
転機器の静圧軸受ガスに使用する。これによって、回転
機器の軸受部に油分や不純物が混入する二とがなく、長
期連続運転が可能となる。
Cryogenic freezing! In the refrigerator, refrigerant gas at room temperature and high pressure is introduced from the compressor unit into the refrigerator and cooled from room temperature to liquefaction humidity within the refrigerator. (In addition, oil that may be mixed in from the compressor unit has a high solidification point and solidifies and adheres to the inside of the refrigerator at an early stage.) Oil and impurities are completely removed. The removed low-temperature refrigerant gas is branched out from the refrigerator and used as static pressure bearing gas for rotating equipment.This eliminates the possibility of oil or impurities getting into the bearings of rotating equipment, allowing long-term continuous operation. Driving becomes possible.

〔実 施 例〕〔Example〕

以下1本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は、例えば、極低温冷凍gtiとしてヘリウム冷
凍装置を示し、回転機器として膨張タービンを示す。第
1図においてlは圧縮機ユニット。
FIG. 1 shows, for example, a helium refrigeration device as a cryogenic refrigeration gti, and an expansion turbine as a rotating device. In FIG. 1, l is a compressor unit.

2は圧11@W、 3は油分11!装置、4はヘリウム
冷凍機人口弁、5はヘリウム冷凍11R,6a〜6dは
熱又換器% 7は内部吸着器、8は膨張タービン人口弁
、9はジュールトムソン弁(以下、JT弁と略称)、1
0は液体窒素供給管、11 aおよびllbは低温移送
配管、戎は妓冷却設備、lは膨張タービン。
2 is pressure 11@W, 3 is oil content 11! 4 is a helium refrigerator artificial valve, 5 is a helium refrigerator 11R, 6a to 6d are heat exchangers, 7 is an internal adsorber, 8 is an expansion turbine artificial valve, 9 is a Joule-Thomson valve (hereinafter abbreviated as JT valve) ), 1
0 is a liquid nitrogen supply pipe, 11a and llb are low temperature transfer pipes, 戎 is a cooling equipment, and l is an expansion turbine.

4は制動弁、nは冷却器、器はジャーナル気体軸受、2
4はロータ、25は静圧ガス軸受式スラスト軸受(以下
、スラスト軸受と略称)、26は制動ファン、30は軸
受ガス加温器、31は逆止弁、諺は軸受ガスバブファー
タンク(以下、バブファータンクと略称)、33は軸受
ガス供給弁、具は軸受ガス抜出弁、あは軸受ガス供給ラ
イン、箕は軸受ガス戻1Jラインである。
4 is a brake valve, n is a cooler, container is a journal gas bearing, 2
4 is a rotor, 25 is a static pressure gas bearing type thrust bearing (hereinafter referred to as a thrust bearing), 26 is a braking fan, 30 is a bearing gas warmer, 31 is a check valve, and the proverb is a bearing gas bubble tank (hereinafter referred to as a thrust bearing). (abbreviated as Babfur tank), 33 is a bearing gas supply valve, tool is a bearing gas extraction valve, A is a bearing gas supply line, and winnow is a bearing gas return 1J line.

次に1以上のように構成されたヘリウム冷凍装置の動作
について説明する。
Next, the operation of the helium refrigeration system configured as described above will be explained.

圧縮機2で圧縮された高圧ヘリウムは油分離装[3で油
を0.1 ppm(Vol、 )以下に除去されたi。
The high-pressure helium compressed by the compressor 2 is removed from the oil to below 0.1 ppm (Vol, ) by the oil separator [3].

圧縮機ユニットlを出て、ヘリウム冷凍機人口弁4を通
りヘリウム冷凍81!5に導入される。ヘリウム冷凍機
5に導入された常温高圧ヘリウムは第10熱交換器6a
で、液体窒素供給管10から供給される液体窒素、およ
び低圧戻りヘリウムと熱又換し約80Kまで冷却され、
油分離装WL3で除去できなかった微量の油分は全て第
1の熱交換器6a内で同化付属しヘリウムガス中から除
去される。
It exits the compressor unit 1, passes through the helium refrigerator artificial valve 4, and is introduced into the helium refrigerator 81!5. The room temperature high pressure helium introduced into the helium refrigerator 5 is transferred to the 10th heat exchanger 6a.
Then, the liquid nitrogen supplied from the liquid nitrogen supply pipe 10 and the low-pressure return helium exchange heat and are cooled to about 80K.
All trace amounts of oil that could not be removed by the oil separator WL3 are assimilated in the first heat exchanger 6a and removed from the helium gas.

151の熱又換器6aを出た高圧ヘリウムは80に以下
の同化点を有する窒素、酸素等の不純ガスを吸着除去す
る内部吸着器7を通り、第2の熱交換器6bでさらに冷
却された後、膨張タービンラインと液化ラインに分岐し
、液化ラインに分岐した高圧ヘリウムは第3および第4
の熱交換器6c。
The high-pressure helium that exits the heat exchanger 6a of 151 passes through an internal adsorber 7 that adsorbs and removes impurity gases such as nitrogen and oxygen having assimilation points below 80, and is further cooled in the second heat exchanger 6b. After that, it branches into an expansion turbine line and a liquefaction line, and the high-pressure helium branched into the liquefaction line flows into the third and fourth lines.
heat exchanger 6c.

6dで冷却されJT弁9で断熱自由膨張をして一部が液
体ヘリウムとなり、低温移送配管11 aを通り被冷却
設備丘に送られ、ここで熱負荷を吸収した後、低温移送
配管11 bを通り再びヘリウム冷凍機5に戻り第4〜
第1の熱交換器6d〜6aで温度回復して圧縮機ユニッ
ト1に戻る。
6d, adiabatic free expansion occurs in the JT valve 9, a portion of which becomes liquid helium, which is sent to the cooled facility through the low temperature transfer pipe 11a, where it absorbs the heat load, and then transferred to the low temperature transfer pipe 11b. and returns to helium refrigerator 5 again.
The temperature is recovered by the first heat exchangers 6d to 6a and then returned to the compressor unit 1.

一方、膨張タービンラインに分岐した高圧ヘリウムは膨
張タービン人口弁8を通り膨張タービンIに導入されて
、断熱膨張してロータ」に回転動力を与えることによっ
て温度4丁して低圧戻りラインに合流する。ロータ加に
与えられた回転動力は制動ファンかに伝えられここで制
動ヘリウムガスを圧縮循環することによって消費される
。制動ヘリウムガスは冷却器22.制動弁4を通り循環
する。膨張タービン美の回転部は毎分致方から数十万の
高速回転をするために、ガス軸受を用いたジャーナル気
体軸受nおよびスラスト軸受5によって浮上支持されて
いる。
On the other hand, the high-pressure helium branched into the expansion turbine line is introduced into the expansion turbine I through the expansion turbine artificial valve 8, where it expands adiabatically and gives rotational power to the rotor. . The rotational power applied to the rotor is transmitted to the braking fan, where it is consumed by compressing and circulating braking helium gas. Braking helium gas is supplied to cooler 22. It circulates through the brake valve 4. The rotating part of the expansion turbine is suspended and supported by a journal gas bearing n using a gas bearing and a thrust bearing 5 in order to rotate at a high speed of several hundred thousand rotations per minute.

この場合、静圧ガス軸受であるスラスト軸受6に供給さ
れる軸受ガスは、圧縮機ユニブトlの出口ガス中に混入
している油分はもとより、窒素。
In this case, the bearing gas supplied to the thrust bearing 6, which is a static pressure gas bearing, is not only oil mixed in the outlet gas of the compressor unit 1, but also nitrogen.

酸素等の不純ガスも除去された内部吸着器7の出口側の
低温ガスを分岐、導出し、軸受ガス供給ラインあ、この
場合軸受ガス加温器(9)で常温近辺まで加温した後、
逆止弁31.バッファータンクβ。
The low-temperature gas on the outlet side of the internal adsorber 7, from which impurity gases such as oxygen have also been removed, is branched and led out to the bearing gas supply line.
Check valve 31. Buffer tank β.

軸受ガス供給弁おを介してスラスト軸受5に供給する。The gas is supplied to the thrust bearing 5 via the bearing gas supply valve.

逆上弁31.およびパブファータンク諺は非常停止時等
でヘリウム冷凍機人口弁4が急閉した場合でも、膨張タ
ービン美が安全に停止するまでの期間に必要な軸受ガス
を供給できるように設けられている。バブファータンク
nの代りに太い配管を使用しても同様の機能が得られる
。なお、軸受ガスは膨張タービンIを出た後、軸受ガス
抜出弁あを有する軸受ガス戻りラインあを通り圧l@機
ユニット1に戻る。
Reverse valve 31. The Paffer tank is provided so that even if the helium refrigerator artificial valve 4 suddenly closes during an emergency stop, the necessary bearing gas can be supplied until the expansion turbine safely stops. A similar function can be obtained by using a thick pipe instead of the Babfur tank n. Note that after the bearing gas leaves the expansion turbine I, it returns to the pressure l@machine unit 1 through a bearing gas return line A having a bearing gas extraction valve A.

本実施例によれば、正常運転中の微量の油分および不純
物はもとより、誤操作等の異常によって大量の油分が混
入した場合でも、膨張タービンには油分や不純物が入ら
ないため、長期連続運転が可能となると共に、圧縮機ユ
ニットから大量の油分が同伴した場合でも、圧縮機〜第
1の熱交換器の範囲のみを洗浄すれば良く、復旧の期間
、費用が大巾に減少するという効果がある。
According to this embodiment, even if a large amount of oil gets mixed in due to an abnormality such as incorrect operation, as well as a small amount of oil and impurities during normal operation, long-term continuous operation is possible because oil and impurities do not enter the expansion turbine. In addition, even if a large amount of oil is entrained from the compressor unit, only the area from the compressor to the first heat exchanger needs to be cleaned, which has the effect of greatly reducing the recovery period and cost. .

なお、本実施例では膨張タービンについて説明したが、
低湿圧縮8!、低温排気ポンプ等、静圧ガス軸受式回転
機器にも適用できることは言うまでもない。
Note that in this example, an expansion turbine was explained, but
Low humidity compression 8! Needless to say, the present invention can also be applied to static pressure gas bearing rotating equipment such as low-temperature exhaust pumps.

例えば、第2図に本発明の第2の実施例を示す。For example, FIG. 2 shows a second embodiment of the invention.

第2図は、この場合、超臨界圧のヘリウムガスを循環さ
せて被冷却体を冷却する冷却装置を示す。
In this case, FIG. 2 shows a cooling device that circulates supercritical pressure helium gas to cool the object to be cooled.

本図において第1図と同符号は同一部材を示し、説明を
省略する。本図が第1図と異なる点は、ヘリウム冷凍機
5からの低温移送配管11a、llbを液体ヘリウムを
貯蔵するデユワ−13につなげ、デユワ−13からは別
な低温移送配管16a、16bを出して被冷却設4a1
4につなげ、デユワ−15内および被冷却設備14内に
熱交換器、この場合、伝熱管15および17を設けて、
伝熱管15.17および低温移送配管16a、16bを
つなげて循環回路を形成し、この場合、低温移送量@ 
16 aの途中に低温ポンプ旬を設けている点と、低温
ポンプ40のファン41を取り付けた回転部を支持する
。この場合、静圧ガス軸受式のジャーナル軸受42およ
びスラスト軸受4に、ヘリウム冷凍機5の内部吸着器7
後流側から分岐させたガスを導入するようにしている点
である。なお、18はバブファータンクで、19は圧力
制御弁で、祠はファン41を回転させるモータである。
In this figure, the same reference numerals as in FIG. 1 indicate the same members, and their explanation will be omitted. This diagram differs from Figure 1 in that low-temperature transfer pipes 11a and llb from the helium refrigerator 5 are connected to a dewar 13 that stores liquid helium, and separate low-temperature transport pipes 16a and 16b are connected from the dewar 13. Cooled equipment 4a1
4, and a heat exchanger, in this case, heat exchanger tubes 15 and 17, is provided in the dewar 15 and the cooled equipment 14,
The heat transfer tubes 15 and 17 and the low temperature transfer pipes 16a and 16b are connected to form a circulation circuit, and in this case, the low temperature transfer amount @
16a, and supports the rotating part to which the fan 41 of the cryogenic pump 40 is attached. In this case, the internal adsorber 7 of the helium refrigerator 5 is attached to the journal bearing 42 and the thrust bearing 4 of the hydrostatic gas bearing type.
The point is that the branched gas is introduced from the downstream side. In addition, 18 is a bubble tank, 19 is a pressure control valve, and the shrine is a motor that rotates the fan 41.

このように構成した冷却装置の動作について説明する。The operation of the cooling device configured in this way will be explained.

低温移送配管16a、16bの循環回路内のヘリウムガ
ス圧力は、この場合、5〜g atm内で一定に保持し
、伝熱管15によって液体ヘリウム温度近傍まで冷却す
る。このような圧力、am状態にある超臨界圧ヘリウム
ガスを、モータ舖によってファン41を回転させること
によって備壌させる。
In this case, the helium gas pressure in the circulation circuit of the low-temperature transfer pipes 16a, 16b is kept constant within 5 to 10 g atm, and the heat exchanger tube 15 cools the helium to near the liquid helium temperature. Supercritical pressure helium gas under such pressure and am state is prepared by rotating the fan 41 using a motor or the like.

これによって伝熱管17で被冷却体を冷却し、昇温した
ヘリウムガスは伝熱管15に戻って再冷却される。
As a result, the object to be cooled is cooled by the heat exchanger tube 17, and the heated helium gas returns to the heat exchanger tube 15 and is recooled.

また、内部吸着器7の後流側から分岐した低温ガスは軸
受ガス供給ラインあの軸受ガス加温器7で、例えば、常
温近傍まで昇温され、逆止弁31゜パブファータンク!
および軸受ガス供給弁おを介して低温ポンプ伯のジャー
ナル軸受42およびスラスト軸受0に供給される。使用
後の軸受ガスは軸受ガス戻りラインあの軸受抜出弁あを
介して圧縮機ユニット1に戻される。
In addition, the low temperature gas branched from the downstream side of the internal adsorber 7 is heated to near room temperature in the bearing gas supply line, ie, the bearing gas warmer 7, and is heated to near room temperature with a check valve 31° in the Paffer tank!
The gas is supplied to the journal bearing 42 and thrust bearing 0 of the low temperature pump via the bearing gas supply valve 0. The used bearing gas is returned to the compressor unit 1 via the bearing gas return line and the bearing extraction valve.

以上1本実施例によれは、llff記−実施例と同様に
、油分や不純物を完全暑こ除去された低湿ガスを軸受ガ
スとして使用するので、軸受部に油分や不純物が混入す
ることがないので長期連続運転な可能にすることができ
るという効果かある。
According to the above-mentioned embodiment 1, as in the embodiment described in llff, since low humidity gas from which oil and impurities have been completely removed is used as the bearing gas, there is no possibility of oil or impurities getting mixed into the bearing part. This has the effect of enabling long-term continuous operation.

また、閉ループを形成した循環回路内にも低湿ポンプ部
から油分や不純物が侵入するのを防止することかできる
という効果がある。
Further, there is an effect that oil and impurities can be prevented from entering the circulation circuit forming a closed loop from the low-humidity pump section.

また、循環回路はヘリウムガスの単相流なので循環回路
を間単に構成することができる。
Furthermore, since the circulation circuit is a single-phase flow of helium gas, the circulation circuit can be constructed easily.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、静圧ガス軸受式回転機器に完全なリタ
ーンガスな使用できるので、長期連続運転ができるとい
う効果がある。
According to the present invention, since a complete return gas can be used in a hydrostatic gas bearing type rotary device, there is an effect that long-term continuous operation is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である極低温冷凍装h″7を
示す構成図、第2図は本発明の他の実施例である極低温
冷凍装置を示す構成図である。 1・・・・・・圧縮機ユニット、5・・・・・・ヘリウ
ム冷凍機、13・・・・・・デユワ−114・・・・・
・被冷却体、15,17・・・・・・伝熱管、16a、
16b・・・・・・低温移送配管、加・・・・・・膨張
タービン、25・・・・・・スラスト軸受、I・・・・
・・軸受ガス加4器、31・・・・・・逆止弁、諺・・
・・・・軸受ガスバブファータンク、お・・・・・・軸
受ガス供給弁、あ・・−・・軸受ガス供給ライン、40
・・・・・・低湿ポンプ、42・・・・・・ジャーナル
軸受、祁・・・・・・スラスト軸受41図 イ2図
Fig. 1 is a block diagram showing a cryogenic refrigeration system h''7 which is one embodiment of the present invention, and Fig. 2 is a block diagram showing a cryogenic refrigeration system which is another embodiment of the present invention.1. ... Compressor unit, 5 ... Helium refrigerator, 13 ... Dewar-114 ...
・Object to be cooled, 15, 17... Heat exchanger tube, 16a,
16b...Low temperature transfer piping, expansion turbine, 25...Thrust bearing, I...
... Bearing gas adder, 31... Check valve, proverb...
...Bearing gas bubble tank, A...Bearing gas supply valve, A...Bearing gas supply line, 40
...Low humidity pump, 42...Journal bearing, Q...Thrust bearing Fig. 41 Fig. A2

Claims (1)

【特許請求の範囲】 1、静圧ガス軸受を用いた回転機器を有する極低温冷凍
装置において、前記軸受の軸受ガスに前記極低温冷凍装
置内で冷却された冷媒ガスを用いることを特徴とする極
低温冷凍装置。 2、前記冷却された冷媒ガスを湿度回復させて前記軸受
ガスに使用する特許請求の範囲第1項記載の極低温冷凍
装置。 3、前記回転機器の非常停止に要する時間分の軸受ガス
を貯蔵可能にした特許請求の範囲第1項記載の極低温冷
凍装置。 4、静圧ガス軸受を用いた回転機器の軸受ガスに極低温
冷凍装置で冷却した冷媒ガスを用いたことを特徴とする
静圧ガス軸受式回転装置。 5、極低温冷凍装置によって液化した液化ガスを貯蔵す
る貯蔵容器と、被冷却体を収納した容器との間に、 前記貯蔵容器内の液化ガスと熱交する熱交換器と、前記
容器内の被冷却体と熱交換する熱交換器とを介して形成
した循環回路を設け、 該循環回路に設けた循環ポンプの静圧ガス軸受の軸受ガ
スに、前記極低温冷凍装置で冷却した冷媒ガスを用いた ことを特徴とする冷却装置。
[Claims] 1. A cryogenic refrigeration system having a rotating device using a hydrostatic gas bearing, characterized in that a refrigerant gas cooled within the cryogenic refrigeration system is used as a bearing gas for the bearing. Cryogenic freezing equipment. 2. The cryogenic refrigeration apparatus according to claim 1, wherein the cooled refrigerant gas is used for the bearing gas after recovering its humidity. 3. The cryogenic refrigeration system according to claim 1, wherein bearing gas can be stored for the time required for an emergency stop of the rotating equipment. 4. A hydrostatic gas bearing type rotating device characterized in that a refrigerant gas cooled in a cryogenic refrigerator is used as the bearing gas of a rotating device using a hydrostatic gas bearing. 5. A heat exchanger that exchanges heat with the liquefied gas in the storage container, and a heat exchanger that exchanges heat with the liquefied gas in the storage container, and a A circulation circuit formed through a heat exchanger that exchanges heat with the object to be cooled is provided, and refrigerant gas cooled by the cryogenic refrigeration device is supplied to the bearing gas of the static pressure gas bearing of the circulation pump provided in the circulation circuit. A cooling device characterized in that it is used.
JP8715388A 1988-04-11 1988-04-11 Very-low-temperature refrigeration device Pending JPH01260264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8715388A JPH01260264A (en) 1988-04-11 1988-04-11 Very-low-temperature refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8715388A JPH01260264A (en) 1988-04-11 1988-04-11 Very-low-temperature refrigeration device

Publications (1)

Publication Number Publication Date
JPH01260264A true JPH01260264A (en) 1989-10-17

Family

ID=13907038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8715388A Pending JPH01260264A (en) 1988-04-11 1988-04-11 Very-low-temperature refrigeration device

Country Status (1)

Country Link
JP (1) JPH01260264A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053885U (en) * 1991-06-24 1993-01-22 株式会社神戸製鋼所 Refrigeration equipment
JPH05172413A (en) * 1991-12-20 1993-07-09 Kobe Steel Ltd Cooling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053885U (en) * 1991-06-24 1993-01-22 株式会社神戸製鋼所 Refrigeration equipment
JPH05172413A (en) * 1991-12-20 1993-07-09 Kobe Steel Ltd Cooling system

Similar Documents

Publication Publication Date Title
KR101161339B1 (en) Cryogenic refrigerator and control method therefor
JP5579259B2 (en) Cooling system and cooling method
US4732595A (en) Oxygen gas production apparatus
US6523366B1 (en) Cryogenic neon refrigeration system
JP2022543296A (en) Method and system for cooling and/or liquefying
JPH01260264A (en) Very-low-temperature refrigeration device
KR20230079372A (en) Plants and methods for freezing and/or liquefying fluids
JPS63131960A (en) Loss operation method of cryogenic liquefying refrigerator
JPH02176386A (en) Helium liquefier
JP2574815B2 (en) Cryogenic refrigeration equipment
JP2910499B2 (en) Refrigeration equipment
JPS63187067A (en) Cryogenic liquefying refrigerator
JP3191161B2 (en) Cooling water cooling method and apparatus for air liquefaction / separation apparatus utilizing refrigeration of liquefied natural gas
JPH053885U (en) Refrigeration equipment
JPS6130181B2 (en)
Lashmet et al. A closed-cycle cascade helium refrigerator
JP2585704B2 (en) Cryogenic refrigeration equipment
JPH0436552A (en) Refrigerator with cryogenic adsorption cylinder
JPS59134465A (en) Device for refrigerating and liquefying helium
JPS6116203A (en) Expansion turbine
Brown et al. Operational tests of the BNL 24.8 kW, 3.8 K helium refrigerator
JPH068704B2 (en) Helium refrigerator
JPS6246180A (en) Production unit for oxygen gas
JPS6317360A (en) Cryogenic refrigerating method
JPS59134478A (en) Device for liquefying and refrigerating helium