JPH0126003B2 - - Google Patents

Info

Publication number
JPH0126003B2
JPH0126003B2 JP13814782A JP13814782A JPH0126003B2 JP H0126003 B2 JPH0126003 B2 JP H0126003B2 JP 13814782 A JP13814782 A JP 13814782A JP 13814782 A JP13814782 A JP 13814782A JP H0126003 B2 JPH0126003 B2 JP H0126003B2
Authority
JP
Japan
Prior art keywords
signal
scale
coarse
pitch
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13814782A
Other languages
Japanese (ja)
Other versions
JPS5927221A (en
Inventor
Akitoshi Kamei
Shozo Takai
Hideo Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP13814782A priority Critical patent/JPS5927221A/en
Publication of JPS5927221A publication Critical patent/JPS5927221A/en
Publication of JPH0126003B2 publication Critical patent/JPH0126003B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 本発明は測長器、特にデジタル測長器における
多分割、高速度読取りのデジタル計数装置に係る
ものである。リニアスケール、或はロータリーエ
ンコーダ等を用いて長さを電気的に検出し、デジ
タル的に表示する測長器は周知であるが、分解能
を高める為にスケールピツチ間の分割数を多くす
る事と、読取速度を速くする事とは互に相反する
関係にあり、従来方法において実用可能な回路を
構成する事は著しく困難であつた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-division, high-speed reading digital counting device for length measuring instruments, particularly digital length measuring instruments. Length measuring devices that electrically detect length using a linear scale or rotary encoder and display it digitally are well known, but in order to increase resolution, the number of divisions between scale pitches may be increased. This has a mutually contradictory relationship with increasing the reading speed, and it has been extremely difficult to construct a practical circuit using conventional methods.

本発明は上記問題点を解決し、簡単な回路構成
で高分解能、高速度読取、誤動作の無いデジタル
計数装置を提供するものである。
The present invention solves the above problems and provides a digital counting device with a simple circuit configuration, high resolution, high speed reading, and no malfunction.

デジタル・スケールは一定ピツチ毎の出力信号
を発生させ、これを計数して測長を行なうもので
あるが、このピツチは機械的な構造により制約さ
れる。そこで必要とする最小読取値を得る為に
は、このピツチ間を電気的な手段を用いて分割す
ることが一般に行なわれている。この分割の手法
としては、2相信号より4分割するゼロクロス
法、2相信号を抵抗器を用いて演算し電気的に
多相信号に変換し、それぞれのゼロクロス点でパ
ルスを発生させる抵抗分割法、搬送波をスケー
ル信号で位相変調し、この位相差をクロツク・パ
ルスを用いて計数する位相変調分割法などが知ら
れている。分割数が比較的少ない場合、例えば10
〜20程度の場合には、通常行なわれている様な分
割方式を用いて得られる全パルスをカウンターで
計数し表示する事が可能であるが、分割数が大き
い場合は分割の為の処理時間、カウンターの応答
速度、に限界があり計数ミスの無い高速測定がで
きない。
Digital scales generate output signals at fixed pitches and measure the length by counting the output signals, but the pitches are limited by the mechanical structure. In order to obtain the required minimum reading value, it is common practice to divide these pitches using electrical means. Methods for this division include the zero-crossing method, which divides a two-phase signal into four, and the resistance division method, which calculates the two-phase signal using a resistor, electrically converts it into a multiphase signal, and generates a pulse at each zero-crossing point. , a phase modulation division method is known in which a carrier wave is phase modulated with a scale signal and the phase difference is counted using a clock pulse. If the number of divisions is relatively small, for example 10
~20, it is possible to count and display all the pulses obtained using a conventional division method using a counter, but if the number of divisions is large, the processing time for division will increase. There is a limit to the response speed of the counter, making it impossible to perform high-speed measurements without counting errors.

本発明は分割数が大きく、しかも高速測定を可
能にする事が目的であり、具体的にはスケールピ
ツチP=10μm、1ピツチ間の分割数N=100、
最小読取値P/N=0.1μm、として本発明の実施
例を説明するが、これに限定されるものではな
い。
The purpose of the present invention is to enable high-speed measurement with a large number of divisions. Specifically, the scale pitch P = 10 μm, the number of divisions between 1 pitch N = 100,
The embodiment of the present invention will be described assuming that the minimum reading value P/N=0.1 μm, but the invention is not limited to this.

第1図は本発明の前提となる測定の基本概念を
示すものである。長さXをデジタルスケールを用
いて測定する場合、測定の起点Psはスケール上
の任意の位置にあり、図1においてはスケール信
号ゼロクロス点よりM1の所にある。このM1の値
は起点時は停止又は低速状態であるから位相変調
分割法により読み取る事ができる。測定の開始時
にこのM1を記憶する。次いでスケールに沿つて
変位する事により、スケール信号が検出され、ス
ケールの1ピツチ毎にゼロクロス点を通過し、パ
ルスを発生させる。高速時にあつてはこのパルス
数nを計数し記憶する。測定の終点Peにおいて
は起点時と同様に停止または低速の状態になるの
で、最後に通過したゼロクロス点からの値M2
位相変調分割方式により読み取り測定を終了す
る。この測定で得られた値からX=np+M2−M1
を計算して変位量Xを知る事ができる。
FIG. 1 shows the basic concept of measurement, which is the premise of the present invention. When measuring the length X using a digital scale, the measurement starting point Ps is located at an arbitrary position on the scale, and in FIG. 1 is located at M1 from the scale signal zero crossing point. This value of M 1 can be read by the phase modulation division method since the motor is in a stopped or slow state at the starting point. Store this M 1 at the beginning of the measurement. The scale signal is then detected by displacement along the scale, passing through a zero crossing point every pitch of the scale and generating a pulse. At high speeds, this number of pulses n is counted and stored. At the end point Pe of the measurement, it is stopped or at a low speed like at the starting point, so the value M 2 from the last passed zero crossing point is read by the phase modulation division method and the measurement is completed. From the value obtained in this measurement, X=np+M 2 −M 1
The amount of displacement X can be found by calculating .

この様な測定方法を用いれば、測定の起点及び
終点部の停止又は低速移動時のみ分割回路は正常
に動作すればよく、この中間の移動時には分割動
作は不要であり、スケールピツチのみの計数を行
なうので充分な高速移動が可能である。
If such a measurement method is used, the dividing circuit only needs to operate normally when the starting point and ending point of the measurement are stopped or moving at low speed; no dividing operation is required when moving in between, and only the scale pitch can be counted. Because of this, it is possible to move at a sufficiently high speed.

しかし実際にこの表示装置を製作し動作させる
と次の様な問題が発生する。
However, when this display device is actually manufactured and operated, the following problems occur.

同一スケールを読みとつて得られる同一なスケ
ール信号を用いても、2つのパルス発生回路を用
いた場合、パルス発生位置を厳密に一致させる事
はできない。本実施例においてはスケール信号の
1ピツチ毎のゼロクロス点で発生させる10μm毎
のパルス信号と、1ピツチ間を位相変調分割法に
よつて100分割し発生させる0.1μm毎のパルスの
100番目とは寸法的にも、また時間的にも一致す
るとは限らない。一般に10μm毎に発生するパル
ス列の精度に0.1μm以上を期待することは出来な
い。
Even if the same scale signal obtained by reading the same scale is used, when two pulse generation circuits are used, the pulse generation positions cannot be exactly matched. In this example, a pulse signal every 10 μm is generated at the zero cross point of each pitch of the scale signal, and a pulse signal every 0.1 μm is generated by dividing the pitch between each pitch by 100 using the phase modulation division method.
The 100th number does not necessarily match both dimensionally and temporally. Generally, it is not possible to expect the accuracy of a pulse train generated every 10 μm to be greater than 0.1 μm.

この具体例を第2図、第3図に示す。第2図に
おいてイはスケール信号であつて、ロはそのゼロ
クロス点においてパルスを発する正しい波形を示
す。そして左側のゼロクロス点Aから終点Peま
での長さを求める。ここでAB、BC間はP=10μ
mである。BC間を100分割したところを略示した
ものがハであつて、B・Pe間で99パルス計数し
たとすれば、1パルスは0.1μmであるから、B・
Pe間は0.1μm×99=9.9μmであり、A・Pe間にお
いてB点におけるゼロクロス信号を1回計数する
ことにより10μm×1となり、これに9.9μmを加
算して19.9μmが正しい距離である。ところがい
まCにおいて発生すべきパルスがニに示すように
Peの前に発生したとする。すなわちゼロクロス
信号が正しい発生位置より0.2μm以上(−)方向
誤差を有した場合を考えると、AからPeの間に
おいてゼロクロス信号の読取りは2回計数し、
10μm×2=20μmとなり、一方ハは99計数して
いるため10μm×2+0.1μm×99=29.9μmとな
る。すなわち正しい値に対して10μmの誤差を生
ずる。
A concrete example of this is shown in FIGS. 2 and 3. In FIG. 2, A is a scale signal, and B is a correct waveform that emits a pulse at its zero-crossing point. Then, find the length from the zero cross point A on the left side to the end point Pe. Here, between AB and BC, P = 10μ
It is m. C is an abbreviation of 100 divisions between BC, and if 99 pulses are counted between B and Pe, one pulse is 0.1 μm, so B,
The distance between Pe is 0.1μm x 99 = 9.9μm, and by counting the zero cross signal at point B once between A and Pe, it becomes 10μm x 1, and by adding 9.9μm to this, the correct distance is 19.9μm. . However, the pulse that should be generated at C now is as shown in D.
Suppose that it occurs before Pe. In other words, considering the case where the zero-cross signal has a (-) direction error of 0.2 μm or more from the correct generation position, the zero-cross signal reading is counted twice between A and Pe.
10 μm x 2 = 20 μm, while C has 99 counts, so 10 μm x 2 + 0.1 μm x 99 = 29.9 μm. That is, an error of 10 μm occurs with respect to the correct value.

逆にゼロクロス信号が0.2μm以上発生遅れを生
ずると、第3図ホに示す波形となる。なお終点
PeはC点より0.1μm(+)した点とする。この場
合、正しい値としてはAC間が2Pであるので10μ
m×2=20μm、C・Pe間は0.1μmであるから計
20.1μmである。しかし、C点のゼロクロス信号
が遅れているため、A・Pe間では1回しか計数
せず10μm×1=10μmとなる。そして分割計数
においてはCで99から0に入り、Peでは0.1μm×
1=0.1μmを示す。(ただし分割計数は累積方式
ではなく、99の次に0と計数する方式をとる)そ
こでA・Peを10μm+0.1μm=10.1μmを示してし
まう。
Conversely, if the zero-cross signal is delayed by 0.2 μm or more, the waveform shown in FIG. 3E will be obtained. Furthermore, the end point
Pe is a point 0.1 μm (+) from point C. In this case, the correct value is 10μ since there is 2P between ACs.
m x 2 = 20μm, and the distance between C and Pe is 0.1μm, so the total
It is 20.1 μm. However, since the zero cross signal at point C is delayed, only one count is made between A and Pe, resulting in 10 μm×1=10 μm. And in division counting, it goes from 99 to 0 for C, and for Pe it goes from 0.1μm×
1 indicates 0.1 μm. (However, divisional counting is not an accumulation method, but a method in which 0 is counted after 99.) Therefore, A·Pe shows 10 μm + 0.1 μm = 10.1 μm.

なお、図2及び図3は終点時のみを示したが起
点時にも同じ現象の発生する可能性は同じであ
り、最悪の場合はスケール2ピツチに相当する誤
差の発生する可能性を持ち実用にならない。
Although Figures 2 and 3 only show the end point, the same phenomenon is likely to occur at the starting point, and in the worst case, there is a possibility that an error equivalent to two scale pitches will occur, making it difficult to put into practical use. It won't happen.

この発明はこのような誤差の発生が起らないよ
うに、前記X=np+M2−M1におけるnの計数パ
ルスを正確にとらえるようにしたものである。
The present invention is designed to accurately capture n counting pulses at X=np+M 2 -M 1 to prevent such errors from occurring.

第4図において、2相のスケール信号sin2π/p x、cos2π/px、(xは変位量)を用いて、これを 公知の方法による位相変調100分割回路1に加え
て、10μmの1ピツチ間隔を0.1μm毎の100パルス
に変換し、分割値カウンタ2にて計数する。この
系を精系とする。ただしカウントの方法は累積方
式ではなく99パルス毎にリフレツシユする方式に
より、これにより10μm間の端数(0.0μm〜9.9μ
mの数)のみを表示している。そして測定の起点
Ps及び終点Peにおいてはこれによつて示される
値M1、M2を記憶回路3に入れ、これを計算表示
回路4に送る。このカウンターの値はデジタル比
較回路5(コンパレータ)により、三つの(精)
領域に区分される。すなわち 第(精)領域 0.0〜a.a 第(精)領域 a.a+1〜b.b−1 第(精)領域 b.b〜9.9 以上の区分の条件として第(精)領域には
0.0を含み、第(精)領域には最大カウント値
の9.9を含むことでa.a、b.b値はその間の任意の
数でよい。例えば第5図に示すように、a.a=
3.3、b.b=6.6と三等分する。デジタル比較回路5
は常にカウンターの内容が上記のどの領域にある
かをカウンターの領域信号として出力する。
In Fig. 4, two-phase scale signals sin2π/p x, cos2π/px (x is the amount of displacement) are used, and these are applied to a phase modulation circuit 1 divided by 100 using a known method, and the signals are input at pitch intervals of 10 μm. is converted into 100 pulses every 0.1 μm and counted by division value counter 2. This system is called the sperm system. However, the counting method is not an accumulation method but a refresh method every 99 pulses.
Only the number of m) is displayed. and the starting point of measurement
At Ps and the end point Pe, the values M 1 and M 2 indicated thereby are entered into the memory circuit 3 and sent to the calculation display circuit 4. The value of this counter is determined by three (precise) digital comparison circuits 5 (comparators).
It is divided into areas. In other words, the first (fine) area 0.0~aa the first (fine) area a.a+1~bb-1 the first (fine) area bb~9.9 As a condition for the above classification, the first (fine) area is
0.0, and the maximum count value of 9.9 is included in the first (fine) area, so that the aa and bb values can be any number between them. For example, as shown in Figure 5, aa=
Divide into thirds as 3.3 and bb=6.6. Digital comparison circuit 5
always outputs in which area above the counter contents are located as a counter area signal.

また前記の2相のスケール信号はスケール信号
のゼロクロス信号回路6に入つて領域区分回路7
に接続され、これを粗系とする。ついで10μm毎
の計数パルス点を一つの境界として、一例として
第6図に示す三つの(粗)領域に区分する。
Further, the two-phase scale signal is input to the scale signal zero-cross signal circuit 6 and is then input to the area segmentation circuit 7.
This is connected to the coarse system. Then, using the counted pulse points every 10 μm as one boundary, the area is divided into three (coarse) regions as shown in FIG. 6, as an example.

第(粗)領域 計数パルス発生点を越えた直後
の部分を含む領域 第(粗)領域 第、第の領域の中間領域 第(粗)領域 計数パルス発生点の直前の部分
を含む領域 第6図においてA1、A2の点が計数パルス発生
点であつて、A1、A2を含む領域が第(粗)領
域、その直前の領域が第(粗)領域である。そ
して第領域の幅は任意に定めることができる
が、第6図に示すようにcos信号のゼロクロス点
によつて定めると簡単であるが、区分の方法はこ
れに限定されるものではない。そして以上精、粗
2つの系は常にスケールのどの領域にあるかを信
号として出力し、領域信号切替回路8に入れる。
6th (coarse) region An area that includes the part immediately after the counting pulse generation point 2nd (coarse) area An intermediate area between the 1st and 2nd areas 3rd (coarse) area An area that includes the part immediately before the counting pulse generation point FIG. The points A 1 and A 2 are the counting pulse generation points, the area including A 1 and A 2 is the first (coarse) area, and the area immediately before that is the second (coarse) area. The width of the second area can be determined arbitrarily, and it is easy to define it by the zero-crossing point of the cos signal as shown in FIG. 6, but the method of division is not limited to this. The above two systems, fine and coarse, always output a signal indicating which region of the scale it is in, and input it to the region signal switching circuit 8.

また前記2相のスケール信号は、第4図の速度
検出回路9に送られ、ここでスケール信号の繰返
し周波数からスケールに対する移動速度を検知
し、予め設定された位相変調100分割回路が正確
に動作しうる低速度になつたか否かを判定し、現
在低速域と高速域とのいずれで移動しているかの
信号を速度状態信号として領域信号切換回路に送
る。領域信号切換回路においては、高低速の速度
状態信号を受けて、低速状態では(精)
(精)(精)の信号を、高速状態では(粗)
(粗)(粗)の信号を次の10μmパルス発生
回路(スケールピツチパルス発生回路)10に送
る。
The two-phase scale signal is also sent to the speed detection circuit 9 shown in FIG. 4, where the moving speed with respect to the scale is detected from the repetition frequency of the scale signal, and a preset phase modulation 100 division circuit operates accurately. A signal indicating whether the vehicle is currently moving in a low speed range or a high speed range is sent to the area signal switching circuit as a speed state signal. The area signal switching circuit receives the high and low speed state signals and selects (precision) in the low speed state.
(fine) (fine) signal, (coarse) signal at high speed
The (coarse) (coarse) signal is sent to the next 10 μm pulse generation circuit (scale pitch pulse generation circuit) 10.

ここで10μmパルス発生回路は低速時には次の
動作を行なう。すなわち領域((精)である
が以下(精)を省略する)から領域に変化した
とき1UPパルスを発生する。そしてからに変
化したとき1DOWNパルスを発生し、他の領域の
変化(←→、←→)に対してはパルスを発生
しない。すなわち1UPパルスによつて分割値カウ
ンタの内容が9.9から0.0に変つた時点で上位桁
(10μmの桁)に1UPの信号が送られて計数され、
1DOWNパルスによつて0.0から9.9に変つた時点
で上位桁が1DOWNされる。
Here, the 10 μm pulse generation circuit performs the following operation at low speed. That is, a 1UP pulse is generated when changing from a region ((Sei), but (Sei) is omitted hereafter) to a region. A 1DOWN pulse is generated when there is a change from 0 to 1, and no pulse is generated for changes in other areas (←→, ←→). In other words, when the content of the division value counter changes from 9.9 to 0.0 by the 1UP pulse, a 1UP signal is sent to the upper digit (10μm digit) and counted.
When the value changes from 0.0 to 9.9 by the 1DOWN pulse, the upper digit is decreased by 1.

一方高速時にはスケール領域信号(粗)、
(粗)(粗)(以下(粗)を省略する)が10μm
パルス発生回路に入り、からになつたとき、
(精)の場合と同様に1UPパルスを発生し+10μ
mとする。逆にからの変化に対して1DOWN
パルスを発生し、表示値を10μm減少させる。
On the other hand, at high speed, the scale domain signal (coarse),
(Rough) (Rough) (hereinafter, (Rough) will be omitted) is 10μm
When it enters the pulse generation circuit and becomes empty,
Generate a 1UP pulse as in the case of (precision) and +10μ
Let it be m. Conversely, 1DOWN for changes from
Generates a pulse and reduces the displayed value by 10 μm.

なお、この10μmパルス発生回路の動作は領域
の、の変化に対応して1UP、1DOWNのパル
ス発生を行なうもので(精)、(粗)に拘わりなく
行なわれるのが特長である。すなわち(精)→
(粗)でも、(粗)→(精)の変化でも同
じ1DOWNパルスを発生し、(精)→(粗)、
(粗)→(精)のいずれでも同じ1UPのパル
スを出す。ここでこのような動作を行なう10μm
パルス発生回路10は公知のフリツプフロツプ回
路及びゲートの組合せによつて容易に構成するこ
とができる。そして10μmパルス発生回路10か
らの信号はカウンタ11に入り、計算表示回路4
に送られる。
The operation of this 10 μm pulse generation circuit is to generate pulses of 1 UP and 1 DOWN in response to changes in the area, and is characterized in that it is performed regardless of whether it is fine or coarse. In other words (sei) →
Even when changing from (coarse) to (coarse), the same 1DOWN pulse is generated, and (fine) → (coarse),
Emit the same 1UP pulse from (coarse) to (fine). Here, 10μm performs this kind of operation.
The pulse generating circuit 10 can be easily constructed by a combination of a known flip-flop circuit and gate. Then, the signal from the 10μm pulse generation circuit 10 enters the counter 11, and the calculation display circuit 4
sent to.

以上に示す本発明において、先に第2図、第3
図に示した計数ミスの発生が如何にして防止でき
るかを説明する。第2図において粗から精を単に
切換えるだけではC点の前で10μmパルスが発生
した場合に、真正値19.9μmであるのに対して
29.9μmとカウントすることが起きることは前に
説明した。そこで第7図において、いま19.9μm
の位置で高速から急停止したとすると、終点Pe
において高速から低速に切り替えられる。しかし
粗系において誤差のため10μmパルスの発生点を
過ぎているので粗の領域区分は(粗)→
(粗)の変化により1UPとなる。しかしPeで停止
して低速に切替えられるので領域信号は精系の信
号が入力される。精系では計数値は9.9でありこ
れは領域(精)である。低速切替により領域信
号は(粗)→(精)に変り、前記10μmパル
ス発生回路は1DOWNのパルスを発生するので高
速時における誤つた表示29.9μmは低速に切替つ
た時(又は停止した時)正しい値19.9μmを表示
する事になる。
In the present invention described above, FIGS.
A description will be given of how the occurrence of the counting error shown in the figure can be prevented. In Figure 2, if you simply switch from coarse to fine, when a 10 μm pulse is generated before point C, the true value is 19.9 μm.
It was previously explained that counting as 29.9 μm occurs. Therefore, in Figure 7, it is now 19.9μm.
If you suddenly stop from high speed at the position, the end point Pe
can be switched from high speed to low speed. However, due to the error in the coarse system, the generation point of the 10 μm pulse is passed, so the coarse area classification is (coarse) →
(coarse) changes result in 1UP. However, since it stops at Pe and switches to low speed, a precision signal is input as the area signal. In the seminal system, the count value is 9.9, which is the domain (sei). By switching to low speed, the area signal changes from (coarse) to (fine), and the 10μm pulse generation circuit generates a 1DOWN pulse, so the incorrect display of 29.9μm at high speed is correct when switching to low speed (or when stopped). The value will be 19.9μm.

なお第3図に示す場合も、(粗)が(精)
に変化して1UPのパルスが出て10μm加えられ
20.1μmの正しい数値となる。すなわち精・粗に
拘りなく、→は1UP、→は1DOWNする
ことによつて精、粗系のいずれのときにもnpの
ピツチパルスnは10μmパルス発生回路の作る信
号によつてピツチパルスカウンターが動作して、
これを計算表示回路に送る。
In addition, in the case shown in Figure 3, (coarse) is (fine)
changes to 1UP pulse is output and 10μm is added.
The correct value is 20.1μm. In other words, regardless of whether it is fine or coarse, by increasing → by 1 and → by decreasing by 1, the pitch pulse counter of np will be operated by the signal generated by the 10 μm pulse generation circuit. do,
This is sent to the calculation display circuit.

以上の説明でも明白な様に、本発明によれば測
定の起点及び終点において分割カウンターの動作
の可能な低速度、又は停止状態における精度が得
られれば、その中間のゼロクロスパルスの発生に
は誤差が含まれても最終表示は常に正確な値とな
るように常時補正されるだけでなく、途中ではピ
ツチ間の多分割計数が不要であるから高速度での
測定が可能である。そして、これによつてスケー
ルピツチパルスの発生誤差の許容範囲も広くする
ことが可能で、これは上述の10μmピツチにおい
て領域(粗)及び(粗)の設定範囲によつて
決まる。すなわち領域を3等分したとすると許容
誤差は1ピツチの1/3=3.3μm、第6図の示す方
式で決めると1/4=2.5μmとなり、ゼロクロス計
数パルスの発生回路の製作が安価で容易となり、
かつ高精度が十分期待できる特徴を有する。
As is clear from the above explanation, according to the present invention, if accuracy is obtained at the low speed or stopped state where the division counter can operate at the starting point and end point of measurement, there will be an error in the generation of zero-crossing pulses in between. Not only is the final display always corrected so that it is always an accurate value even if it is included, but also high-speed measurement is possible because there is no need for multi-division counting between pitches. This also makes it possible to widen the tolerance range for the scale pitch pulse generation error, which is determined by the setting ranges of the area (coarse) and (coarse) at the 10 μm pitch described above. In other words, if the area is divided into three equal parts, the tolerance is 1/3 of 1 pitch = 3.3 μm, and if determined using the method shown in Figure 6, 1/4 = 2.5 μm, making it possible to manufacture the zero-cross counting pulse generation circuit at low cost. becomes easier,
It also has the characteristics that high accuracy can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定の概要を示す説明図、第
2図、第3図は読取ミス発生に関する説明図、第
4図は本発明の構成を示すブロツク図、第5図は
精系における領域設定の一例の説明図、第6図は
粗系における領域設定の一例の説明図、第7図は
本発明による読取順序説明図。 1……位相変調分割回路、5……デジタル比較
回路、7……スケール信号領域区分回路、8……
領域信号切替回路、10……n桁パルス発生回
路。
FIG. 1 is an explanatory diagram showing an overview of the measurement of the present invention, FIGS. 2 and 3 are explanatory diagrams regarding the occurrence of reading errors, FIG. 4 is a block diagram showing the configuration of the present invention, and FIG. FIG. 6 is an explanatory diagram of an example of area setting, FIG. 6 is an explanatory diagram of an example of area setting in coarse system, and FIG. 7 is an explanatory diagram of reading order according to the present invention. 1... Phase modulation division circuit, 5... Digital comparison circuit, 7... Scale signal area division circuit, 8...
Area signal switching circuit, 10...n-digit pulse generation circuit.

Claims (1)

【特許請求の範囲】 1 変位に対して周期的信号を出力するデジタル
スケールに対して、スケールのピツチ数を計数す
る系(粗系とする)と、スケールの1ピツチ内を
分割して内挿値を計数する系(精系とする)の2
系列に分け、変位速度の検出信号により高速時に
は粗系を、低速時には精系を用いるように切り替
えて使用するデジタル表示器を有するカウンタに
おいて、 粗系スケール信号の1ピツチ間を、ピツチパル
スの発生点を含む領域、ピツチパルスの発生点
直前部分を含む領域、その中間の領域とに分
割して粗系の、、の領域信号を出力するス
ケール信号領域区分回路と、 精系において1ピツチ間を、計数値0を含む
領域、最大計数値を含む領域、その中間の領
域とに分割して精系の、、の領域信号を出
力するデイジタル比較回路と、 精、粗系にかかわらず領域から領域に移つ
たときスケールピツチ数のカウンタを1アツプ
し、逆に領域から領域に移つたときスケール
ピツチ数のカウンタを1ダウンするアツプ、ダウ
ン信号を発信するパルス発生回路とから構成され
るデイジタル計数装置。
[Claims] 1. For digital scales that output periodic signals in response to displacement, there is a system that counts the number of scale pitches (referred to as a coarse system), and a system that divides and interpolates within one pitch of the scale. 2 of the system that counts the value (selected as the seminal system)
In a counter with a digital display that uses a displacement speed detection signal to switch between using the coarse system at high speeds and the precision system at low speeds, the interval between one pitch of the coarse system scale signal is used as the generation point of the pitch pulse. A scale signal region dividing circuit divides the signal into a region including a pitch pulse, a region immediately before the pitch pulse generation point, and a region in between, and outputs a region signal of . A digital comparator circuit divides the circuit into an area containing the number 0, an area containing the maximum count value, and an area in between, and outputs accurate and coarse area signals. A digital counting device comprising a pulse generating circuit that transmits an up/down signal that increments a scale pitch counter by 1 when moving from one region to another, and decreases the scale pitch counter by 1 when moving from one region to another.
JP13814782A 1982-08-09 1982-08-09 Digital counting device Granted JPS5927221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13814782A JPS5927221A (en) 1982-08-09 1982-08-09 Digital counting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13814782A JPS5927221A (en) 1982-08-09 1982-08-09 Digital counting device

Publications (2)

Publication Number Publication Date
JPS5927221A JPS5927221A (en) 1984-02-13
JPH0126003B2 true JPH0126003B2 (en) 1989-05-22

Family

ID=15215101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13814782A Granted JPS5927221A (en) 1982-08-09 1982-08-09 Digital counting device

Country Status (1)

Country Link
JP (1) JPS5927221A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3412557A1 (en) * 1984-04-04 1985-10-24 Mauser-Werke Oberndorf Gmbh, 7238 Oberndorf LENGTH MEASURING DEVICE
JPS61135216U (en) * 1985-02-09 1986-08-23
JPS6318720A (en) * 1986-07-10 1988-01-26 Mitsubishi Electric Corp Pulse counter
JPH061203B2 (en) * 1986-09-10 1994-01-05 フアナツク株式会社 Circuit for securing pulse width of digital pulse and noise suppression
JPH0430484Y2 (en) * 1986-09-11 1992-07-23
JPH0690049B2 (en) * 1987-01-30 1994-11-14 オークマ株式会社 Absolute unit encoder
JP2574873B2 (en) * 1988-08-24 1997-01-22 株式会社日立製作所 Position or speed detector
JP2697919B2 (en) * 1989-09-29 1998-01-19 キヤノン株式会社 Signal interpolation circuit and displacement measuring device provided with the circuit
CN102879017B (en) * 2012-09-25 2015-04-29 天水七四九电子有限公司 Novel double-speed coarse and fine combination system for resolver-to-digital converter

Also Published As

Publication number Publication date
JPS5927221A (en) 1984-02-13

Similar Documents

Publication Publication Date Title
EP0282529B1 (en) Auto zero circuit for flow meter
EP0039082B1 (en) Method and apparatus for measuring the displacement between a code plate and a sensor array
US4346447A (en) Divisional reading device for sine signals
EP0853231B1 (en) Method for varying interpolation factors
JPH0126003B2 (en)
US5723989A (en) Phase-measurement device
US3582924A (en) Displacement measuring instrument
EP0311947B1 (en) Count error detecting device for count type measuring instruments
JPH04279817A (en) Absolute encoder
KR910004415B1 (en) Digital position detector
JPH0136565B2 (en)
US3278928A (en) Position encoding apparatus
JPH0477842B2 (en)
US3543150A (en) Arrangement for determining and digitally indicating the displacement of moving bodies
US4864230A (en) Processing quadrature signals
JPH01114717A (en) Analysis circuit for square wave signal
US4438393A (en) Phase-metering device
JPH0219405B2 (en)
SU1709234A1 (en) Digital phasemeter
RU1796882C (en) Digital transducer of linear displacements
JPS6057011B2 (en) Internal massage device in displacement measuring device
JP2002531834A (en) Mixed speed estimation
JPH03276015A (en) Displacement detecting device
SU911365A1 (en) Servo digital phase meter with constant measuring time
SU989487A1 (en) Digital phase meter