JPH0125976B2 - - Google Patents

Info

Publication number
JPH0125976B2
JPH0125976B2 JP3132381A JP3132381A JPH0125976B2 JP H0125976 B2 JPH0125976 B2 JP H0125976B2 JP 3132381 A JP3132381 A JP 3132381A JP 3132381 A JP3132381 A JP 3132381A JP H0125976 B2 JPH0125976 B2 JP H0125976B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerator
fluid
pressure
cooling fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3132381A
Other languages
Japanese (ja)
Other versions
JPS57148157A (en
Inventor
Yoshiharu Iwasaki
Masao Terasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3132381A priority Critical patent/JPS57148157A/en
Publication of JPS57148157A publication Critical patent/JPS57148157A/en
Publication of JPH0125976B2 publication Critical patent/JPH0125976B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • F25B2400/141Power generation using energy from the expansion of the refrigerant the extracted power is not recycled back in the refrigerant circuit

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 本発明は、ヘリウム冷凍機等極低温の冷凍機の
運転方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a cryogenic refrigerator such as a helium refrigerator.

従来の極低温冷凍機の運転は、冷凍機の流体温
度を監視しながら冷凍機回転速度、流体供給圧
力、冷却流体の取出しをすべて手動により行なつ
ている。
Conventional cryogenic refrigerators are operated by manually controlling the rotational speed of the refrigerator, fluid supply pressure, and extraction of cooling fluid while monitoring the fluid temperature of the refrigerator.

一般に冷凍機のピストン、シリンダ、弁、熱交
換器、配管等は各種の材料が使用されており、線
膨張係数が異なるため、冷却流体温度を急激に下
げるような運転を行なうと、上記構成部材の熱変
形や運動部の固渋等を引き起すことが多く出て好
ましくない。これを避けるため冷凍機を熟知した
人が冷凍機を運転する必要があり、運転要員が限
られるとともに、冷凍機が設定温度に下降するま
で長時間を必要とするために、運転要員の確保が
困難である。
In general, the pistons, cylinders, valves, heat exchangers, piping, etc. of refrigerators are made of various materials and have different coefficients of linear expansion. This is undesirable as it often causes thermal deformation of the body and stiffness of the moving parts. To avoid this, it is necessary for the refrigerator to be operated by a person who is familiar with the refrigerator, which limits the number of operating personnel, and it takes a long time for the refrigerator to drop to the set temperature, making it difficult to secure operating personnel. Have difficulty.

本発明は冷凍機の運転を自動化して、熟練した
運転要員を不要とし、かつ、省力化することを目
的としたものである。
The present invention aims to automate the operation of a refrigerator, thereby eliminating the need for skilled operating personnel and saving labor.

本発明は、昇圧された流体を断熱膨張させて冷
却する冷凍機の運転方法において、前記冷凍機が
設定温度に降下する過程で該冷凍機構成部材間で
固渋を生じない温度に冷却流体温度を予め設定す
る工程と、前記冷凍機で断熱膨張し冷却された流
体の温度を検出する工程と、該検出された流体の
温度と該温度が検出される時点に対応する前記予
め設定された冷却流体温度とを比較演算する工程
と、前記固渋を生じない温度と昇圧されて前記冷
凍機へ供給される流体圧力および該冷凍機の回転
速度との関係を予め求める工程と、該予め求めら
れた関係並びに前記比較演算結果に基づいて前記
流体圧力及び回転速度を制御し前記予め設定され
た冷却流体温度に調節する工程とを有することを
特徴とするもので、冷凍機の設定温度降下までの
運転を自動化しようとするものである。
The present invention provides a method for operating a refrigerator in which pressurized fluid is adiabatically expanded and cooled, in which the temperature of the cooling fluid is set to a temperature that does not cause stiffness between constituent members of the refrigerator in the process of lowering the temperature of the refrigerator to a set temperature. a step of detecting the temperature of the fluid that has been adiabatically expanded and cooled by the refrigerator; and a step of detecting the temperature of the fluid that has been adiabatically expanded and cooled by the refrigerator, and the preset cooling that corresponds to the detected temperature of the fluid and the time point at which the temperature is detected. a step of comparing and calculating the temperature of the fluid, a step of determining in advance the relationship between the temperature that does not cause stiffness, the pressure of the fluid that is increased and supplied to the refrigerator, and the rotational speed of the refrigerator; and a step of controlling the fluid pressure and rotational speed to the preset cooling fluid temperature based on the relationship and the comparison calculation result, and the cooling fluid temperature is adjusted to the preset temperature of the refrigerator. This is an attempt to automate driving.

本発明の一実施例を図面によつて説明する。第
1図において、1は常温高圧の流体を蓄えたレザ
ーバ、2は電動機等の駆動装置で圧縮機3を駆動
する。4は圧力調整弁で低圧化した流体を流体供
給回路である低圧回路5へ供給する。6は圧縮機
3から吐出された高圧流体の供給回路、7は高圧
回路の安全弁、8は多段式熱交換器、9は往復動
式エンジンのシリンダでケーシングも兼用してい
る。10,11はピストン、12は吸入弁、13
は排気弁、14は冷却された高圧流体を絞り弁を
経て低圧化しながら一定流量でもつてレザーバ1
8へ流すための流量調整弁で、制御電動機15に
よつて流量及び圧力制御を行なう。制御電動機1
5は電気パネル等によつて指示した量だけ回転す
るステツプ応答のできる電動機である。16,1
7は締切弁でレザーバ18からの冷却流体の出し
入れ用である。19は保冷槽で真空保冷用として
用いる。20,21はピストン10,11と連結
棒22,23とを結合するピン24はクランク軸
で、連結棒22,23の一端が嵌入されている。
25,26はクランク軸24を支持する軸受であ
る。高圧流体の供給によつて断熱膨張を行つた際
にピストン10,11に発生した力は、連結棒2
2,23を介してクランク軸24に伝達される。
27はクランク軸24の一端に取り付けられたプ
ーリで、ベルト28、プーリ29を経て電動発電
機30と結ばれている。電動発電機30は、冷凍
機始動のときは電動機として使用され、冷凍機始
動後は発電機として冷凍機発生動力の吸収用とし
て使用する。31,32は電気回路で、電動発電
機30を発電機として使用するときに、電動発電
機30に発生した電流を抵抗器33〜37に導く
ものである。抵抗器33〜37は電動発電機30
の負荷となるもので、抵抗器33〜37の電気抵
抗値を増減させることによつて電動発電機30の
負荷を変え、電動発電機30の回転速度、即ち冷
凍機の回転速度を制御することができる。38は
高圧回路6に設けた圧力調整弁で、制御電動機3
9によつて供給圧力の制御を行なうものである。
制御電動機39は電気パルス等によつて指示した
量だけ回転するステツプ応答のできる電動機であ
る。40は冷却流体の温度検出器、42は電動発
電機30の回転速度検出器であり、それぞれ電気
的アナログ量または電気的デジタル量でもつて制
御装置41へ入力する。制御装置41は、電源装
置41a、電子計算機等からなる演算処理装置4
1b、電気信号量の出入りを制御する入出力制御
器41c、制御電動機15,39へ電気パルスを
送るためのパルス制御器41d,41e、抵抗器
33〜37を選択するための継電器41f〜41
i等からなる。41f′〜41i′は継電器41f〜
41iの電気接点である。
An embodiment of the present invention will be described with reference to the drawings. In FIG. 1, 1 is a reservoir storing fluid at room temperature and high pressure, and 2 is a drive device such as an electric motor that drives a compressor 3. Reference numeral 4 supplies fluid whose pressure has been reduced by a pressure regulating valve to a low pressure circuit 5 which is a fluid supply circuit. 6 is a supply circuit for high pressure fluid discharged from the compressor 3, 7 is a safety valve for the high pressure circuit, 8 is a multistage heat exchanger, and 9 is a cylinder of a reciprocating engine, which also serves as a casing. 10, 11 are pistons, 12 is a suction valve, 13
14 is an exhaust valve, and 14 is a reservoir 1 which lowers the pressure of the cooled high-pressure fluid through a throttle valve and maintains a constant flow rate.
The flow rate and pressure are controlled by the control motor 15. Control motor 1
Reference numeral 5 denotes a step-responsive electric motor that rotates by an amount instructed by an electric panel or the like. 16,1
7 is a shutoff valve for taking in and out cooling fluid from the reservoir 18. 19 is a cold storage tank used for vacuum cold storage. A pin 24 connecting the pistons 10, 11 and the connecting rods 22, 23 is a crankshaft, into which one end of the connecting rods 22, 23 is fitted.
25 and 26 are bearings that support the crankshaft 24. The force generated in the pistons 10 and 11 during adiabatic expansion due to the supply of high-pressure fluid is applied to the connecting rod 2.
2 and 23 to the crankshaft 24.
A pulley 27 is attached to one end of the crankshaft 24 and is connected to a motor generator 30 via a belt 28 and a pulley 29. The motor generator 30 is used as an electric motor when starting the refrigerator, and after starting the refrigerator, it is used as a generator to absorb the power generated by the refrigerator. Reference numerals 31 and 32 denote electric circuits that guide current generated in the motor generator 30 to resistors 33 to 37 when the motor generator 30 is used as a generator. Resistors 33 to 37 are motor generator 30
By increasing or decreasing the electrical resistance values of the resistors 33 to 37, the load on the motor generator 30 is changed to control the rotation speed of the motor generator 30, that is, the rotation speed of the refrigerator. Can be done. 38 is a pressure regulating valve provided in the high pressure circuit 6, and the control motor 3
9 controls the supply pressure.
The control motor 39 is a step response motor that rotates by an amount instructed by electric pulses or the like. Reference numeral 40 designates a temperature sensor for the cooling fluid, and reference numeral 42 designates a rotation speed detector for the motor generator 30, each of which is input to the control device 41 as an electrical analog quantity or an electrical digital quantity. The control device 41 includes an arithmetic processing device 4 including a power supply device 41a, an electronic computer, etc.
1b, an input/output controller 41c that controls the input and output of electric signals, pulse controllers 41d and 41e that send electric pulses to the control motors 15 and 39, and relays 41f to 41 that select the resistors 33 to 37.
It consists of i, etc. 41f' to 41i' are relays 41f to 41i'
41i electrical contact.

第2図は冷凍機の流体温度と運転時間、回転速
度、高圧回路の圧力との関係を示す特性線図であ
る。冷凍機構成部品の熱変形等を考慮して最適と
なる特性を選択し、この特性をプログラム化して
演算処理装置41bへ格納する。
FIG. 2 is a characteristic diagram showing the relationship between the fluid temperature of the refrigerator, the operating time, the rotation speed, and the pressure of the high pressure circuit. Optimal characteristics are selected in consideration of thermal deformation of refrigerator components, etc., and these characteristics are programmed and stored in the arithmetic processing unit 41b.

次に運転方法について説明する。冷凍機を始動
するときは抵抗器33のみを活かした回路とし、
抵抗器34以降は各継電器接点41f′〜41iを
開となるように電気回路を構成し(演算処理装置
41bにプログラム化して格納)、冷凍機始動後
電動発電機30が発電機として動作し始めたとき
に大きな負荷とならないようにする。ただし、始
動直後のこの負荷が大き過ぎると始動困難とな
る。ため適値とする。なお、抵抗器33の負荷抵
抗は、冷凍機始動直後の急激な回転速度上昇を防
止するために必要である。このような始動制御の
できる点もこの構成の特徴である。なお、電動発
電機30の始動時には、圧力制御弁38の調整圧
力が始動に必要な流体圧力となるように、演算処
理装置41bからパルス制御器41eを経て制御
電動機39に所要パルス量を出力するように、演
算処理装置41bの制御プログラムに条件付けし
ておく(速度検出器42が冷凍機の回転速度ゼロ
から一定値に上昇し始めてこの速度値が演算処理
装置41bに入力されると同時に、前記の制御プ
ログラムが働いて所要パルス量を出力するように
する)。
Next, the driving method will be explained. When starting the refrigerator, use a circuit that utilizes only resistor 33,
After the resistor 34, an electric circuit is configured so that each relay contact 41f' to 41i is opened (programmed and stored in the arithmetic processing unit 41b), and after the refrigerator is started, the motor generator 30 starts operating as a generator. Make sure that it does not become a large load when However, if this load immediately after starting is too large, starting will become difficult. Therefore, it is set at an appropriate value. Note that the load resistance of the resistor 33 is necessary to prevent a sudden increase in rotational speed immediately after starting the refrigerator. Another feature of this configuration is that it can perform such startup control. Note that when starting the motor generator 30, a required amount of pulses is output from the arithmetic processing unit 41b to the control motor 39 via the pulse controller 41e so that the adjusted pressure of the pressure control valve 38 becomes the fluid pressure necessary for starting. Conditions are set in the control program of the arithmetic processing unit 41b so that the rotational speed of the refrigerator 42 starts to increase from zero to a constant value and this speed value is input to the arithmetic processing unit 41b, and at the same time, control program to output the required amount of pulses).

冷凍機が始動され冷凍機の回転速度、つまり、
電動発電機30の回転速度がある回転速度に到達
後は、次のような制御が実施される。即ち、圧縮
機3で昇圧され高圧回路6を通つて冷凍機に供給
され該冷凍機を構成する往復動式エンジンで断熱
膨張されて冷却された冷却流体の温度は、温度検
出器40で検出される。該検出温度は、温度検出
器40から入出力制御器41cを介して演算処理
装置41bに入力される。演算処理装置41bに
は、第2図に示すような予め設定した冷却流体温
度と経過時間との関係がプログラム化されて内蔵
されており、演算処理装置41bでは温度検出器
40から入力された検出温度と予め設定した冷却
流体温度との比較演算が実行される。この演算結
果に基づいて高圧回路6を通る流体の圧力、電動
発電機30の回転速度は、温度検出器40で検出
される流体の温度が予め設定された冷却流体温度
になるように制御される。つまり、冷却流体温度
と高圧回路6を通る流体の圧力、電動発電機30
の回転速度とは第2図に示すような関係にあり、
それより、もし、検出温度が予め設定した冷却流
体温度より低い場合、高圧回路6を通る流体の圧
力、電動発電機30の回転速度は、予め設定した
冷却流体温度に対応する圧力、回転速度に低下さ
せられ、もし、検出温度が予め設定した冷却流体
温度より高い場合は、逆に上昇させられる。この
場合、高圧回路6を通る流体の圧力は、比較演算
結果に基づき出力される電気信号量である所要パ
ルス量をパルス制御器41eを経て制御電動機3
9に送ることで制御され、また、電動発電機30
の回転速度は、継電器41f〜41iを動作させ
抵抗器34〜37の作動、不作動の組み合せを変
えて負荷抵抗値を制御することで制御される。
The refrigerator is started and the rotation speed of the refrigerator, that is,
After the rotational speed of the motor generator 30 reaches a certain rotational speed, the following control is performed. That is, the temperature of the cooling fluid that is pressurized by the compressor 3, supplied to the refrigerator through the high-pressure circuit 6, and adiabatically expanded and cooled by the reciprocating engine constituting the refrigerator is detected by the temperature detector 40. Ru. The detected temperature is input from the temperature detector 40 to the arithmetic processing unit 41b via the input/output controller 41c. The arithmetic processing unit 41b has a built-in program containing a preset relationship between cooling fluid temperature and elapsed time as shown in FIG. A comparison calculation is performed between the temperature and a preset cooling fluid temperature. Based on this calculation result, the pressure of the fluid passing through the high-pressure circuit 6 and the rotational speed of the motor generator 30 are controlled so that the temperature of the fluid detected by the temperature detector 40 reaches a preset cooling fluid temperature. . That is, the cooling fluid temperature and the pressure of the fluid passing through the high pressure circuit 6, the motor generator 30
There is a relationship as shown in Figure 2 with the rotational speed of
If the detected temperature is lower than the preset cooling fluid temperature, the pressure of the fluid passing through the high pressure circuit 6 and the rotational speed of the motor generator 30 will be the same as the pressure and rotational speed corresponding to the preset cooling fluid temperature. If the detected temperature is higher than the preset cooling fluid temperature, it is increased. In this case, the pressure of the fluid passing through the high-pressure circuit 6 is controlled by a required pulse amount, which is an electrical signal amount outputted based on the comparison calculation result, through the pulse controller 41e and the control motor 3.
9, and also the motor generator 30
The rotational speed is controlled by operating the relays 41f to 41i and changing the combination of operating and inactivating the resistors 34 to 37 to control the load resistance value.

次に、冷却後の流体温度がレザーバ18に流体
を導入する温度に達すると(演算処理装置41b
に入力された流体の温度値によつて判別)、演算
処理装置41bから出力された指示によつてパル
ス制御器41dから所要パルス量が制御電動機1
5に送られて流量制御弁14を設定値だけ開いて
レザーバ18に冷却流体を送る。
Next, when the fluid temperature after cooling reaches the temperature at which the fluid is introduced into the reservoir 18 (processing unit 41b
The required pulse amount is determined by the pulse controller 41d according to the instruction output from the arithmetic processing unit 41b).
5, the flow rate control valve 14 is opened by a set value and cooling fluid is sent to the reservoir 18.

上述した作動を継続することによつて冷凍機は
自動的に運転される。
By continuing the operations described above, the refrigerator is automatically operated.

以上、本発明によれば、冷凍機の運転を自動化
することができ、熟練した運転要員が不要になる
と共に冷凍機の運転を省力化することができる。
As described above, according to the present invention, it is possible to automate the operation of the refrigerator, eliminate the need for skilled operating personnel, and save labor in operating the refrigerator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による冷凍機の運転方法の一実
施例を示す系統図、第2図は冷凍機運転特性線図
である。 1,18……レザーバ、2……駆動装置、3…
…圧縮機、4……圧力調整弁、5……低圧回路、
6……高圧回路、7……安全弁、8……多段式熱
交換器、9……シリンダ、10,11……ピスト
ン、12……吸入弁、13……排気弁、14……
流量調整弁、15,39……制御電動機、16,
17……締切弁、19……保冷槽、20,21…
…ピン、22,23……連結棒、24……クラン
ク軸、25,26……軸受、27,29……プー
リ、28……ベルト、30……電動発電機、3
1,32……電気回路、33〜37……抵抗器、
38……圧力調整弁、40……温度検出器、41
……制御装置、41a……電源装置、41b……
演算処理装置、41c……入出力制御器、41
d,41e……パルス制御器、41f〜41i…
…継電器、41f′〜41i′……電気接点、42…
…回転速度検出器。
FIG. 1 is a system diagram showing an embodiment of the refrigerator operating method according to the present invention, and FIG. 2 is a diagram of refrigerator operating characteristics. 1, 18...Reservoir, 2...Drive device, 3...
...Compressor, 4...Pressure regulating valve, 5...Low pressure circuit,
6... High pressure circuit, 7... Safety valve, 8... Multi-stage heat exchanger, 9... Cylinder, 10, 11... Piston, 12... Suction valve, 13... Exhaust valve, 14...
Flow rate adjustment valve, 15, 39... Control motor, 16,
17... Shutoff valve, 19... Cold storage tank, 20, 21...
... Pin, 22, 23 ... Connecting rod, 24 ... Crankshaft, 25, 26 ... Bearing, 27, 29 ... Pulley, 28 ... Belt, 30 ... Motor generator, 3
1, 32...Electric circuit, 33-37...Resistor,
38...Pressure regulating valve, 40...Temperature detector, 41
...Control device, 41a...Power supply device, 41b...
Arithmetic processing unit, 41c...Input/output controller, 41
d, 41e...Pulse controller, 41f to 41i...
...Relay, 41f'-41i'...Electric contact, 42...
...Rotation speed detector.

Claims (1)

【特許請求の範囲】[Claims] 1 昇圧された流体を断熱膨張させて冷却する冷
凍機の運転方法において、前記冷凍機が設定温度
に降下する過程で該冷凍機構成部材間で固渋を生
じない温度に冷却流体温度を予め設定する工程
と、前記冷凍機で断熱膨張し冷却された流体の温
度を検出する工程と、該検出された流体の温度と
該温度が検出される時点に対応する前記予め設定
された冷却流体温度とを比較演算する工程と、前
記固渋を生じない温度と昇圧されて前記冷凍機へ
供給される流体圧力および該冷凍機の回転速度と
の関係を予め求める工程と、該予め求められた関
係並びに前記比較演算結果に基づいて前記流体圧
力及び回転速度を制御し前記予め設定された冷却
流体温度に調節する工程とを有することを特徴と
する冷凍機の運転方法。
1. In a method of operating a refrigerator that cools a pressurized fluid by adiabatically expanding it, the temperature of the cooling fluid is set in advance to a temperature that does not cause stiffness between the components of the refrigerator in the process of lowering the temperature of the refrigerator to a set temperature. a step of detecting the temperature of the fluid that has been adiabatically expanded and cooled by the refrigerator; and a step of detecting the temperature of the detected fluid and the preset cooling fluid temperature corresponding to the time point at which the temperature is detected. a step of calculating in advance the relationship between the temperature that does not cause stiffness, the pressure of the fluid that is increased and supplied to the refrigerator, and the rotational speed of the refrigerator, and the predetermined relationship and A method for operating a refrigerator, comprising the step of controlling the fluid pressure and rotational speed based on the comparison calculation result to adjust the cooling fluid temperature to the preset cooling fluid temperature.
JP3132381A 1981-03-06 1981-03-06 Operation of refrigerating machine Granted JPS57148157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3132381A JPS57148157A (en) 1981-03-06 1981-03-06 Operation of refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3132381A JPS57148157A (en) 1981-03-06 1981-03-06 Operation of refrigerating machine

Publications (2)

Publication Number Publication Date
JPS57148157A JPS57148157A (en) 1982-09-13
JPH0125976B2 true JPH0125976B2 (en) 1989-05-22

Family

ID=12328054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3132381A Granted JPS57148157A (en) 1981-03-06 1981-03-06 Operation of refrigerating machine

Country Status (1)

Country Link
JP (1) JPS57148157A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171359A (en) * 1984-02-16 1985-09-04 ダイキン工業株式会社 Cryogenic refrigerator
JPH01252868A (en) * 1988-03-31 1989-10-09 Aisin Seiki Co Ltd Cryogenic refrigerator

Also Published As

Publication number Publication date
JPS57148157A (en) 1982-09-13

Similar Documents

Publication Publication Date Title
KR900005983B1 (en) Method and control system for limiting the load palced on a refrigeration system a recycle start
JP2591898B2 (en) Control device and control method for main drive unit of compressor
US20020157408A1 (en) Air conditioning systems and methods for operating the same
JPS60245959A (en) Method of operating refrigeration system and control system of refrigeration system
KR950033087A (en) Cryopump
JPS60228838A (en) Method of operating refrigeration system
KR910006218B1 (en) Heat pump charging method
KR960012739B1 (en) Automatic chiller stopping sequence
US5027608A (en) Method and apparatus for determining full load condition in a screw compressor
US5295364A (en) Refrigeration pull-down technique
US5131235A (en) Cooling system having coolant mass flow control
JPH0125976B2 (en)
US6272872B1 (en) Motor reversal switching system
JPH024166A (en) Temperature control device for liquid cooler
JP2529905B2 (en) Machine tool temperature control method
JPS59191855A (en) Refrigerator
JPH05215450A (en) Quenching device and method
JP3040071B2 (en) Cooling device for compressor
JP2793276B2 (en) Opening / closing control method of cooling bypass valve
JPH0623879Y2 (en) Air conditioner
JP2785546B2 (en) Refrigeration equipment
JPH0317062B2 (en)
JPH07208140A (en) Engine driving power device
JPH0535335B2 (en)
JPH0825125B2 (en) Machine tool temperature control method and apparatus