JPH01259719A - Protective method for transformer - Google Patents

Protective method for transformer

Info

Publication number
JPH01259719A
JPH01259719A JP8439388A JP8439388A JPH01259719A JP H01259719 A JPH01259719 A JP H01259719A JP 8439388 A JP8439388 A JP 8439388A JP 8439388 A JP8439388 A JP 8439388A JP H01259719 A JPH01259719 A JP H01259719A
Authority
JP
Japan
Prior art keywords
transformer
phase
current
currents
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8439388A
Other languages
Japanese (ja)
Other versions
JP2646105B2 (en
Inventor
Keizo Inagaki
恵造 稲垣
Kazuhiro Sano
佐野 和汪
Yoshiaki Matsui
義明 松井
Masakatsu Takahashi
正勝 高橋
Mamoru Suzuki
守 鈴木
Takafumi Maeda
隆文 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP8439388A priority Critical patent/JP2646105B2/en
Publication of JPH01259719A publication Critical patent/JPH01259719A/en
Application granted granted Critical
Publication of JP2646105B2 publication Critical patent/JP2646105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Protection Of Transformers (AREA)

Abstract

PURPOSE:To perform protection of a transformer with high accuracy and high speed, by determining the phase currents of a transformer having delta- connection windings based on the differential currents obtained on the basis of line currents fed from respective terminals of the transformer and the differential currents obtained on the basis of the phase currents, and employing the phase currents for judgement of inner fault of the transformer based on the parallel admittance of the transformer. CONSTITUTION:Differential currents are obtained with respect to line currents i1a, i1b, i1c, i2ac, i2ba, i2cb. Absolute values of these differential currents are compared with a first detection level in order to obtain the phase currents i2a, i2b, i2c of delta-connection windings. Then it is judged whether the absolute values of the differential currents concerning to these phase currents i2a. i2b, i2c are larger than a second detection level or not. Initial setting is made for the first judgement while parallel admittance is operated for second and following judgements, then the operated parallel admittance is compared with a judgement value thus judging an inner fault. If the condition continues, it is judged that an inner fault exist in the transformer and a signal for allowing trip of circuitbreaker is produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は変圧器保護方法に係り、特に三角接続巻線を有
する3相変圧器及び単相変圧器の3相接続バンクにおい
て、内部事故を高速高感度で検出できる変圧器保護方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transformer protection method, particularly in three-phase transformers with triangular connected windings and in three-phase connecting banks of single-phase transformers, to prevent internal accidents. This article relates to a transformer protection method that can be detected with high speed and high sensitivity.

〔従来の技術〕[Conventional technology]

従来、変圧器の巻線短絡事故等の異常時における変圧器
保護は、変圧器各端子電流の差動電流を検出して行われ
ている。差動電流は巻線事故の他、変圧器の励磁突入に
よっても生ずるため、励磁突入電流中の第2高調波成分
含有率が多い性質を利用し、従来はいわゆる第2高調波
抑制方式として励磁突入電流による変圧器保護リレーの
誤動作を防止している。
Conventionally, protection of a transformer in the event of an abnormality such as a winding short-circuit accident of the transformer has been performed by detecting the differential current of each terminal current of the transformer. Differential currents are generated not only by winding faults but also by excitation inrush of transformers. Conventionally, the so-called second harmonic suppression method was used to utilize the property that the excitation inrush current has a high content of second harmonic components. Prevents transformer protection relays from malfunctioning due to inrush current.

ところが、送電系統の対地静電容量、リアクタンス及び
変圧器インピーダンス等によっては、事故電流中に第2
高調波付近の低次高調渡分を含むことがあり、従来の第
2高調波抑制方法では変圧器保護リレーの動作遅延、ひ
いては誤不動作により重大災害を招く恐れがある。
However, depending on the ground capacitance, reactance, and transformer impedance of the power transmission system, secondary
Low-order harmonics near the harmonics may be included, and the conventional second harmonic suppression method may cause a delay in the operation of the transformer protection relay, or even a malfunction of the transformer protection relay, resulting in a serious disaster.

その対策として特開昭62−89424号公報に示すデ
ィジタル方式が提案されている。これは、変圧器を多端
子回路網と考えてアドミッタンス方程式で表現したとき
、励時突入時及び内部事故時の伝達アドミッタンスは健
全時とほとんど変らないのに対し、駆動点アドミッタン
スまたはこれにより導出される並列アドミッタンスは励
磁突入時と内部事故時とで大きく異なるという事実に基
づいている。なおインダクタンスの逆数を表現する適当
な言葉がないので、ここではこれをアドミッタンスと弥
している。具体的な方法を次に示す。
As a countermeasure to this problem, a digital method has been proposed in Japanese Patent Laid-Open No. 62-89424. This is because when considering a transformer as a multi-terminal network and expressing it using an admittance equation, the transfer admittance at the time of excitation rush and internal fault is almost the same as when it is healthy, whereas the drive point admittance or the transfer admittance derived from this is almost the same. This is based on the fact that the parallel admittance differs significantly between inrush and internal fault conditions. Since there is no appropriate word to express the reciprocal of inductance, this is referred to as admittance here. The specific method is shown below.

(1)保護対象変圧器の伝達アドミッタンスと漏れイン
ダクタンスから求め、定数として予めリレー内部に記憶
しておく。
(1) Determine from the transfer admittance and leakage inductance of the transformer to be protected, and store it in advance as a constant inside the relay.

(2)保護対象変圧器の各端子電圧及び電流を適当な時
間間隔でサンプリングする。
(2) Sample the voltage and current at each terminal of the transformer to be protected at appropriate time intervals.

(3)サンプリングした各端子電流より差動電流を求め
る。
(3) Find the differential current from each sampled terminal current.

(4)差動電流が所定の検出レベルを起えたとき、内部
事故状態か励磁突入状態である。そこで、各電圧、電流
及び予め記憶しておいた伝達アドミッタンスより駆動点
アドミッタンスまたは並列アドミッタンスを求め、その
値の大きさに応じて内部事故状態が励磁突入状態かを判
定する。
(4) When the differential current reaches a predetermined detection level, there is an internal fault state or an excitation inrush state. Therefore, the drive point admittance or parallel admittance is determined from each voltage, current, and previously stored transfer admittance, and it is determined whether the internal fault state is an excitation inrush state according to the magnitude of the value.

(5)内部事故状態の判定が所定のサンプル数m続した
とき、変圧器から切り離すため、遮断器の開放指令を与
える。
(5) When the determination of the internal fault state continues for a predetermined number of samples m, a command is given to open the circuit breaker in order to disconnect it from the transformer.

この方法による変圧器保護方式は、演算式の係数となる
伝達アドミッタンスが既知定数なので高精度に演算でき
種々の構造の変圧器に適用できること、電流波形にかか
わらず内部事故か励磁突入かを判別できるので、対地静
電容量の大きさなどにかかわらずあらゆる系統の変圧器
に適用できろこと、電流の第1波で内部事故か励磁突入
かを判別できるので、内部事故時のリレー動作を高速度
にできることなど、従来の第2高調波抑制方式に比べて
、非常に優れた特徴をもっている。
This transformer protection method can be calculated with high accuracy because the transfer admittance, which is a coefficient in the calculation formula, is a known constant, and can be applied to transformers of various structures.It is also possible to determine whether an internal fault or inrush is occurring regardless of the current waveform. Therefore, it can be applied to transformers of all systems regardless of the size of ground capacitance, etc., and since it is possible to determine whether an internal fault or an excitation inrush occurs from the first wave of current, relay operation in the event of an internal fault can be performed at high speed. It has very superior features compared to conventional second harmonic suppression methods, such as the ability to

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

駆動点アドミッタンス及び並列アドミッタンス等は3相
変圧器の各相ごとに存在し、内部事故状態または励磁突
入状態においては相によってこれらの値が異なるので、
その値を求めるには相電流を知ることが必要である。す
なわち上記変圧器の端子電流は相電流でなければならな
い。
Driving point admittance, parallel admittance, etc. exist for each phase of a three-phase transformer, and these values differ depending on the phase in an internal fault state or excitation inrush state.
To determine its value, it is necessary to know the phase current. That is, the terminal current of the transformer must be a phase current.

一方、3相回路で使用される電力用変圧器は一般に三角
接続される巻線で持っているが、3相変圧器の場合は変
圧器タンク内で三角接続され、その接続端子のみがブッ
シングを介して変圧器タンク外へ引き出されるので、三
角接続巻線の相電流は検出できない場合が多い。したが
って、上記変圧器アドミッタンスを用いる変圧器保護方
式は、三角接続巻線を有する3相変圧器に適用できない
という問題点がある。
On the other hand, power transformers used in three-phase circuits generally have windings that are connected in a triangular manner, but in the case of a three-phase transformer, the wires are connected in a triangular manner inside the transformer tank, and only the connection terminals have bushings. Phase currents in the triangularly connected windings are often not detectable because they are drawn out of the transformer tank through the triangularly connected windings. Therefore, the transformer protection method using the transformer admittance cannot be applied to a three-phase transformer having triangularly connected windings.

本発明の目的は、上記した従来技術の欠点をなくし、三
角接続巻線を有する3相変圧器に適用できるよう工夫し
た、変圧器アドミッタンスを用いた変圧器保護方式を提
供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a transformer protection system using transformer admittance, which eliminates the drawbacks of the prior art described above and is devised to be applicable to a three-phase transformer having triangularly connected windings.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点は、星形接続巻線と三角接続巻線を有し3相
接続した変圧器の保護方法において、該変圧器の各端子
線電流を検出して該線電流を加減して前記三角接続巻線
の各端子電流に対応した差動電流を演算し、該差動電流
の大きさに応じて前記変圧器の異常を生じた異常相を推
定し、該推定に基づきhJ記三角接続巻線の各相の推定
相電流を演算し、該推定相電流と前記三角接続巻線の端
子電圧とから該推定相電流と前記三角接続巻線の端子電
圧を関係ずけるアドミッタンスパラメータを求め、該ア
ドミッタンスパラメータの値により前記異常相が内部事
故状態にあることを判定して前記変圧器の遮断器の開放
指令を行う変圧器の保護方法によって解決される。
The above-mentioned problem arises in a method for protecting a transformer that has star-shaped connected windings and triangular connected windings and is connected in three phases. The differential current corresponding to each terminal current of the connection winding is calculated, the abnormal phase that caused the abnormality in the transformer is estimated according to the magnitude of the differential current, and based on the estimation, the hJ triangular connection winding is Calculate the estimated phase current of each phase of the line, calculate an admittance parameter that relates the estimated phase current and the terminal voltage of the triangularly connected winding from the estimated phase current and the terminal voltage of the triangularly connected winding, The problem is solved by a transformer protection method that determines that the abnormal phase is in an internal fault state based on the value of an admittance parameter and issues a command to open the circuit breaker of the transformer.

〔作用〕 本発明では、変圧器の内部事故状態または励磁突入状態
においては変圧器各端子の線電流より求められる差動電
流と、相電流より求められる差動電流との間に特定の相
関関係があることを見い出し、これに着目して三角接続
巻線の相電流を推定して求めるようにしている。その概
略手順を次に示す。
[Operation] The present invention establishes a specific correlation between the differential current obtained from the line current of each terminal of the transformer and the differential current obtained from the phase current in the internal fault state or excitation inrush state of the transformer. By focusing on this, we are trying to estimate and find the phase current of the triangularly connected windings. The outline of the procedure is shown below.

(1)保護対象変圧器の3相各端子の線電流より3個の
差動電流を求め、その大きさより保護対像変圧器が内部
事故状態または励磁突入状態にあることを判定する。
(1) Three differential currents are obtained from the line currents of the three phase terminals of the transformer to be protected, and it is determined from the magnitude that the protected image transformer is in an internal fault state or an excitation inrush state.

(2)上記3個の線電流に関する差動電流の大小関係よ
り、内部事故状態または励磁突入状態にある相を特定し
、且つ3個の線電流に関する差動電流間の特定の関係か
ら相電流に関する差動電流を求める。
(2) Identify the phase that is in an internal fault state or excitation inrush state from the magnitude relationship of the differential currents regarding the three line currents, and determine the phase current from the specific relationship between the differential currents regarding the three line currents. Find the differential current for

(3)上記相電流に関する差動電流、及び星形接続巻線
の相電流より、三角接続巻線の相電流を求める。
(3) Find the phase current of the triangularly connected winding from the differential current regarding the phase current and the phase current of the star-shaped connected winding.

(4)各巻線の相電流、端子電圧、予め記憶しておいた
伝達アドミッタンスからriJAIjJ点アドミッタジ
アドミツタンスドミッタンスを求め、その値の大きさに
応じて内部事故か励磁突入状態かを判定する。
(4) Find the riJAIjJ point admittance admittance from the phase current of each winding, terminal voltage, and transfer admittance stored in advance, and depending on the magnitude of the value, determine whether it is an internal fault or an excitation inrush state. Determine.

(5)内部事故状態の判定が所定のサンプル数継続した
とき、変圧器を系統から切り離すために、遮断器の開放
指令を与える。
(5) When the determination of the internal fault state continues for a predetermined number of samples, a circuit breaker opening command is given to disconnect the transformer from the system.

〔発明の実施例〕[Embodiments of the invention]

本発明による変圧器保護方式に用いる計算機の基本構成
を保護対象変圧器主回路も含めて第1図に、演算フロー
例を第2図に示し、以下説明を加える。
The basic configuration of the computer used in the transformer protection system according to the present invention, including the main circuit of the transformer to be protected, is shown in FIG. 1, and an example of the calculation flow is shown in FIG. 2, and the following explanation will be added.

第1図において、11.12は保護対象変圧器の1次及
び2次巻線、21.22は1次側及び2次側電流変成器
、31.32は1次側及び2次側電圧変成器、41.4
2は1次側及び2次側遮断器、43.44は各遮断器の
トリップコイル、5乃至9より構成されるのは計算機で
、5は入力部、6は演算処理部、7は記憶部、8は出力
部、9は係数設定器である。入力部5は主回路の電圧、
電流をレベル変換する補助電圧、電流変成器Aux。
In Figure 1, 11.12 is the primary and secondary winding of the transformer to be protected, 21.22 is the primary and secondary current transformer, and 31.32 is the primary and secondary voltage transformer. vessel, 41.4
2 is a primary side and secondary side circuit breaker, 43.44 is a trip coil of each circuit breaker, 5 to 9 are a computer, 5 is an input section, 6 is an arithmetic processing section, and 7 is a storage section. , 8 is an output section, and 9 is a coefficient setter. The input section 5 receives the voltage of the main circuit,
Auxiliary voltage and current transformer Aux that converts the current level.

PCT、保護には必要でない高調渡分を除去するフィル
タFIL、入力の瞬時値をサンプリングし、ホールドす
るサンプルホールダSH,SHの出力を順次切り換えて
A/Dに入力するマルチプレクサMPX、アナログ/デ
ィジタル変換器A/Dで構成される。演算処理部6は制
御及び演算を実行する主処理ユニットCPU、データバ
ス及びアドレスバスで構成される。記憶部7は、プログ
ラムを記憶するR OM (Read 0nly Me
mory) 、データを記憶するRAM、(Rando
m Access Me+++ory)で構成される。
PCT, filter FIL that removes harmonic components that are not necessary for protection, sample holder SH that samples and holds the instantaneous value of the input, multiplexer MPX that sequentially switches the output of SH and inputs it to A/D, analog/digital conversion It consists of a device A/D. The arithmetic processing section 6 includes a main processing unit CPU that executes control and arithmetic operations, a data bus, and an address bus. The storage unit 7 is a ROM (Read Only Me) that stores programs.
RAM for storing data, (Rando
m Access Me+++ory).

また、係数の記憶、変更などのために書き換え可能な不
揮発性の、例えば半導体不揮発性メモリEAROMがあ
ってもよい。出力部8は演算及び判定結果のディジタル
出力部で、遮断器トリップ許容信号はこの部分より出力
される。
Furthermore, there may be a nonvolatile memory, such as a semiconductor nonvolatile memory EAROM, which is rewritable for storing and changing coefficients. The output section 8 is a digital output section for calculation and determination results, and the circuit breaker trip permission signal is output from this section.

係数設定器9は演算式の係数、リレー整定値等を設定1
表示するためのものであるが、演算2判定結果を表示、
出力するようにしてもよい。
The coefficient setter 9 sets the coefficients of the calculation formula, relay setting values, etc. 1
Although it is for displaying, it displays the calculation 2 judgment result,
It may also be output.

次に第2図の演算フロー図を説明する前に、変圧器の励
磁突入現象の概要、三角接続巻線の相電流を推定する方
法、変圧器の並列アドミッタンスによって内部事故か励
磁突入かを判別する方法などについて説明する。
Next, before explaining the calculation flow diagram in Figure 2, we will give an overview of the transformer inrush phenomenon, how to estimate the phase current of the triangularly connected windings, and how to determine whether it is an internal fault or a magnet inrush based on the parallel admittance of the transformer. This section explains how to do this.

まず第3図、第4図を用いて変圧器の励磁突入現像の概
要を説明する。第3図は単相2巻線変圧器の路線図で、
11は1次巻線、12は2次巻線。
First, an outline of the excitation inrush development of a transformer will be explained using FIGS. 3 and 4. Figure 3 is a route map of a single-phase two-winding transformer.
11 is the primary winding, and 12 is the secondary winding.

41は遮断器を示す。簡単のため1次及び2次巻線の巻
数は等しいと仮定する。if、i2はそれぞれ1次及び
2次電流、Vnは1次または2次巻線電圧である。時間
1=0で遮断器41を投入したとき、変圧器鉄心内の磁
束密度B (1)式に従って変化する。
41 indicates a circuit breaker. For simplicity, it is assumed that the number of turns of the primary and secondary windings is equal. if and i2 are the primary and secondary currents, respectively, and Vn is the primary or secondary winding voltage. When the circuit breaker 41 is closed at time 1=0, the magnetic flux density B in the transformer core changes according to equation (1).

B = BR+−f ovnd t       −(
1)nS ただし、BRは遮断器投入前の変圧器鉄心内の残留磁束
密度、Noは1次または2次巻線の巻数、Sは鉄心の断
面積である。定常運転状態での変圧器鉄心内の磁束密度
は飽和磁束密度BSより低いが、上記のように遮断器を
投入した場合などではBRの大きさ、遮断器投入時の電
圧位相などによっては磁束密度BがBsを超え、鉄心が
磁気飽和状態となることがある。鉄心が磁気飽和した状
態は空心と等価なめで、励磁電流が急増し、いわゆる励
磁突入電流が発生する。このような励磁突入電流は(2
)式で示す差動電流Σiとして検出される。なお1次、
2次電流it、izは同じ次数の側への換算値である9
以下の1次電流と2次電流の加減等もいずれか一方への
換算値である。
B = BR+−f ovnd t−(
1) nS However, BR is the residual magnetic flux density in the transformer core before the circuit breaker is closed, No is the number of turns of the primary or secondary winding, and S is the cross-sectional area of the core. The magnetic flux density in the transformer core during steady operation is lower than the saturation magnetic flux density BS, but when the circuit breaker is closed as described above, the magnetic flux density may vary depending on the size of BR, the voltage phase when the circuit breaker is closed, etc. B may exceed Bs and the core may become magnetically saturated. The magnetically saturated state of the iron core is equivalent to that of an air core, and the excitation current increases rapidly, causing what is called an excitation inrush current. Such a magnetizing inrush current is (2
) is detected as a differential current Σi shown by the equation. Furthermore, the first order,
The secondary currents it and iz are converted values to the same order side9
The addition and subtraction of the primary current and secondary current below are also conversion values for either one.

Σ1=it+iz           ・・・(2)
電圧V16!i束密度B、差動電流Σ1の関係を第4図
に示す。
Σ1=it+iz...(2)
Voltage V16! The relationship between i flux density B and differential current Σ1 is shown in FIG.

次に3相変圧器の場合を第5図及び第6図で説明する。Next, the case of a three-phase transformer will be explained with reference to FIGS. 5 and 6.

第5図において1は1次及び2次巻線がそれぞれ星形接
続及び三角接続された2巻vA3相変圧器、lla、l
lb及びllcは星形接続された1次巻線、12a、1
2b、12cは三角接続された2次巻線を示す。i t
a、 i ib及びilcは1次側の線電流で、星形接
続巻線の相電流でもある。i2a、iZb及びizcは
三角接続巻線の相電流。
In Fig. 5, 1 is a two-turn vA three-phase transformer, lla, l, whose primary and secondary windings are star-shaped and triangularly connected, respectively.
lb and llc are star-connected primary windings, 12a, 1
2b and 12c indicate triangularly connected secondary windings. it
a, i ib and ilc are the line currents on the primary side and are also the phase currents of the star connected windings. i2a, iZb and izc are the phase currents of the triangularly connected windings.

i 2aC+ i zba及び12cbは線電流である
。、□8゜vtb及びVICは1次端子電圧、V 2a
 、 V 2b及びVZCは2次端子電圧で、それぞれ
各巻線の相電圧である。簡単のため1次巻線及び2次巻
線の巻数は等しいと仮定する。励磁突入状態においてa
i 2aC+ i zba and 12cb are line currents. , □8゜vtb and VIC are primary terminal voltages, V 2a
, V 2b and VZC are the secondary terminal voltages, and are the phase voltages of each winding, respectively. For simplicity, it is assumed that the number of turns of the primary winding and the secondary winding are equal. In the excitation inrush state a
.

b、c各相の電圧、鉄心磁束密度及び差動電流の関係は
上記した単相変圧器の場合と同じである。
The relationship between the voltage of each phase b and c, core magnetic flux density, and differential current is the same as in the case of the single-phase transformer described above.

ただし遮断器投入時の各相の電圧位相が異なること、残
留磁束密度も一般には各相で異なることから、励磁突入
電流の発生状況も各相で異なる。励磁突入状態における
電圧、鉄心磁束密度、差動電流の関係の一例を第6図に
示す。Ba、Bb及びBcはa、b、a各相鉄心の磁束
密度を示す。鉄心の磁束密度が飽和磁束密度BSを超え
たとき、該島相に差動電流を生ずる。Σ14.Σ藍う、
Σ1cは(3)式に示すように、相電流に関する差動電
流である。
However, since the voltage phase of each phase is different when the circuit breaker is closed, and the residual magnetic flux density is also generally different for each phase, the situation in which the magnetizing inrush current is generated also differs for each phase. FIG. 6 shows an example of the relationship among voltage, core magnetic flux density, and differential current in the excitation inrush state. Ba, Bb, and Bc indicate the magnetic flux densities of the a, b, and a phase cores. When the magnetic flux density of the iron core exceeds the saturation magnetic flux density BS, a differential current is generated in the island phase. Σ14. ΣBlue,
Σ1c is a differential current regarding the phase currents, as shown in equation (3).

Σ+a: i 1a+ i 2a Σlb= l 1b+ i zb          
  ・・・(3)ΣLC: i tc+ i zc Σl&c、Σlha+ Σlcbは線電流に関する差動
電流で、(4)式の関係がある。
Σ+a: i 1a+ i 2a Σlb= l 1b+ i zb
...(3) ΣLC: i tc+ i zc Σl&c, Σlha+ Σlcb are differential currents regarding the line currents, and have the relationship of equation (4).

Σ+ac= (ila  1lc) + 12ac= 
(i+a−izc) −(isc−izc)=Σ18−
ΣIc Σ+ba= (ixb  1ta) +12ha” (
itb  iZb)   (ila  12a)=Σl
b−ΣI& ΣIcb=  (iic   1tb)+1zcb= 
 (ixc   12c)    (itb  1zb
)=Σ1C−Σlb ・・・(4) 第6図に示すように、差動電流が発生している期間を5
個の区間(1)〜(5)に分け、各区間での差動電流の
発生状況と鉄心の磁気飽和の状況とを調べると次のよう
になる。
Σ+ac= (ila 1lc) + 12ac=
(i+a-izc) -(isc-izc)=Σ18-
ΣIc Σ+ba= (ixb 1ta) +12ha” (
itb iZb) (ila 12a)=Σl
b−ΣI&ΣIcb= (iic 1tb)+1zcb=
(ixc 12c) (itb 1zb
) = Σ1C - Σlb ... (4) As shown in Figure 6, the period during which the differential current is generated is 5
Divide into sections (1) to (5) and examine the differential current generation situation and the magnetic saturation situation of the iron core in each section, and the results will be as follows.

ケース1:1相のみ磁気飽和 区間(1)と(5)がこのケースである。磁気飽和して
いる相に関係する2個の線電流に関する差動電流が逆極
性で発生する。例えば区間(1)ではb相が磁気飽和し
、 Σ1cb=−Σi ba≠O=−(5)となっている。
Case 1: This is the case for magnetic saturation sections (1) and (5) for only one phase. Differential currents are generated with opposite polarity for the two line currents associated with the magnetically saturated phase. For example, in section (1), the b phase is magnetically saturated, and Σ1cb=-Σiba≠O=-(5).

ケース2:2相が同時に磁気飽和 区間(2)と(4)がこのケースである。このケースで
はg電流に関する差動電流は3個とも零でなくなる。3
相におけるfla圧位相の関係と残留磁束密度の状態か
ら、このケースではほとんどの場合2個の相は逆極性で
磁気飽和する。例えば区間(2)ではa相が正側に磁気
飽和し、b相が負側に磁気飽和している。このような状
態では、磁気飽和している2つの相に関係する線電流に
関する差動電流Σibaが他の2個の差動電流とは逆極
性で、絶対値は最大となる。
Case 2: This is the case where two phases are simultaneously magnetically saturated in sections (2) and (4). In this case, all three differential currents regarding the g current are no longer zero. 3
In this case, the two phases are magnetically saturated with opposite polarities in most cases due to the relationship between the fla pressure phases in the phases and the state of the residual magnetic flux density. For example, in section (2), the a phase is magnetically saturated on the positive side, and the b phase is magnetically saturated on the negative side. In such a state, the differential current Σiba related to the line currents related to the two magnetically saturated phases has a polarity opposite to that of the other two differential currents, and has a maximum absolute value.

ケース3:3相が同時に磁気飽和 区間(3)がこのケースである。3相における電圧の位
相関係と残留磁束密度の状態から、3相が同時に磁気飽
和状態になるのはまれで、仮にこのような状態になった
としても、その状態が継続するのはごく短時間である。
Case 3: This is the case where three phases are simultaneously in the magnetic saturation section (3). Due to the voltage phase relationship and residual magnetic flux density in the three phases, it is rare for all three phases to reach a magnetic saturation state at the same time, and even if such a state does occur, it will only last for a very short time. It is.

ところで第5図の3相2巻線変圧器において、一般に変
圧器タンク7内には電流変成器は設置されないので、検
出できる電流は1次側線電流i1a。
By the way, in the three-phase two-winding transformer shown in FIG. 5, a current transformer is generally not installed in the transformer tank 7, so the current that can be detected is the primary side line current i1a.

i sb、 i lc と2次側線電流i 2ac、 
i zha、 i 2cbである。励磁突入時の上記し
た差iI!IJ電流の関係を基に、これらの線電流から
三角接続巻線の相電流を推定する方法を次に示す。
i sb, i lc and secondary line current i 2ac,
i zha, i 2cb. The above-mentioned difference iI at the time of excitation inrush! A method for estimating the phase current of the triangularly connected winding from these line currents based on the IJ current relationship will be described below.

(a)各線電流を検出して(6)式より線電流に関する
差電流を求める。
(a) Detect each line current and find the difference current regarding the line current from equation (6).

Σ+ac= (ita  1tc) +1zacΣ+b
a= (i 1b  i ta) + i xbc  
   ・・・(6)ΣIcb= (itc  1tb)
 + 1zcb(b)すべての線電流に関する電流が所
定の検出レベルεlより小であれば定常運転状態なので
、三角接続巻線の相電流を求める必要がない。もしそう
でなければ励磁突入状態を考え、以下のようにして三角
接続巻線の相電流を推定する。
Σ+ac= (ita 1tc) +1zacΣ+b
a= (i 1b i ta) + i xbc
...(6)ΣIcb= (itc 1tb)
+1zcb (b) If the currents related to all line currents are smaller than the predetermined detection level εl, it is a steady operating state, so there is no need to find the phase current of the triangularly connected windings. If not, consider the excitation inrush state and estimate the phase current of the triangularly connected windings as follows.

(c)線電流に関する3個の差動電流のうち、2個の差
動電流が検出レベルEl を超えているとき、その2個
の差動電流に共通している1個の相が磁気飽和している
と判定する。例えば第6図で示した区間(1)の場合、
ΣlbaとΣicbが検出レベルElを超えるので1両
方に共通しているb相が磁気飽和していると判定するゆ (d)線電流に関する3個の差1lll電流がすべて検
出レベルεlを超えているとき、絶対値と最も大きい差
動電流に関係する2個の相が逆極性が飽和していると判
定する。例えば第6図の区間(2)の場合、Σ、5&の
絶対値が最も大きいので、b相とa相が磁気飽和してい
ると判定する。
(c) When two differential currents among the three differential currents related to the line current exceed the detection level El, one phase common to the two differential currents is magnetically saturated. It is determined that the For example, in the case of section (1) shown in Figure 6,
Since Σlba and Σicb exceed the detection level El, it is determined that the b phase, which is common to both, is magnetically saturated. (d) Three differences regarding the line currents 1llll currents all exceed the detection level εl , it is determined that the opposite polarities of the two phases related to the absolute value and the largest differential current are saturated. For example, in the case of section (2) in FIG. 6, the absolute values of Σ, 5& are the largest, so it is determined that the b-phase and a-phase are magnetically saturated.

(c)磁気飽和していない相の相電流に関する差動電流
を零とおいて、(4)式の関係から磁気飽和している相
の相電流に関する差動電流を求める。例えば第6図の区
間(1)の場合 Σia=Σic”O・・・(7) とおくと、 Σja”ΣLbaまたはΣi、、=−Σjcb    
・・・(8)である。なおΣibaとΣlcbは絶対値
は等しく。
(c) Set the differential current related to the phase current of the phase not magnetically saturated to zero, and find the differential current related to the phase current of the magnetically saturated phase from the relationship of equation (4). For example, in the case of section (1) in Figure 6, Σia = Σic"O... (7) If we set Σja"ΣLba or Σi,, = -Σjcb
...(8). Note that Σiba and Σlcb have the same absolute value.

逆極性である。It is of opposite polarity.

第6図の区間(2)の場合、 Σ1c=O・・・(9) とおくと。In the case of section (2) in Figure 6, Σ1c=O...(9) And then.

である。It is.

(f)三角接続巻線の相電流を、(3)式を変形した(
11)式より求める。
(f) The phase current of the triangularly connected winding is expressed as (
11) Obtained from formula.

12a=Σ1a−ita ixb=Σ几−1tb               
 ・・・(11)izc=Σjc   Llc なお、2相が同極性で磁気飽和している場合、3相が同
時に磁気飽和している場合などは、上記の方法では三角
接続巻線の相電流を正しく推定できないため、後述の並
列アドミッタンス等の演算結果に誤差を生じ、誤った内
部事故判定としてしまう場合もあり得る。ただし、前記
したようにこのような状況があるとしてもごく短時間で
あり。
12a=Σ1a-ita ixb=Σ几-1tb
...(11) izc=Σjc Llc In addition, when two phases have the same polarity and are magnetically saturated, or when three phases are magnetically saturated at the same time, the above method will change the phase current of the triangularly connected winding. Since it cannot be estimated correctly, errors may occur in calculation results such as parallel admittance, which will be described later, and an erroneous internal accident determination may occur. However, as mentioned above, even if such a situation exists, it will only last for a very short time.

遮断器の開放指令は内部事故判定が複数サンプル継続し
たときに出力されるので、実運用上の問題はない。
Since the circuit breaker opening command is output when internal fault determination continues for multiple samples, there is no problem in actual operation.

次に変圧器の内部事故について説明する。第5図の3相
変圧器において、a相の巻線に短絡等の内部事故が発生
した場合の、相電流に関する差動電流と、線電流に関す
る差動電流の例を第7図に示す。事故相であるa相に差
動電流Σiaが発生し、a相に関係する2個の線電流に
関する差動電流ΣiacとΣLbaが逆極性で検出レベ
ルEl を超える。
Next, we will explain internal accidents in transformers. FIG. 7 shows an example of the differential current related to the phase current and the differential current related to the line current when an internal fault such as a short circuit occurs in the a-phase winding in the three-phase transformer shown in FIG. 5. A differential current Σia is generated in the a-phase, which is the fault phase, and the differential currents Σiac and ΣLba related to the two line currents related to the a-phase have opposite polarities and exceed the detection level El.

このような差動電流の関係は、励磁突入時において1相
のみ磁気飽和した状態と同じである。したがって前記し
た励磁突入の場合と同じ手順によって、各線電流から三
角接続巻線の相電流を推定することができる。
Such a relationship between differential currents is the same as a state in which only one phase is magnetically saturated at the time of excitation inrush. Therefore, the phase current of the triangularly connected windings can be estimated from each line current by the same procedure as in the case of excitation inrush described above.

2相の巻線で同時に内部事故が起きた場合、内部事故の
様相によっては、事故相と各差動電流の大小関係が励磁
突入時において2相が逆極性で磁気飽和した状態とは異
なる場合がある。したがって前記した励磁突入の場合と
同じ手順では、事故が起っていない健全相に差動電流が
発生していると誤判定する場合がある。ただし、後述の
ように健全状態で鉄心が磁気飽和していない場合の並列
アドミッタンス等の値は鉄心が磁気飽和した励磁突入時
の値とは異なるので、並列アドミッタンス等の演算結果
によって励磁突入ではない、すなわち内部事故と判定゛
されるので、結果的に正しく遮断器開放指令を出力する
ことができる。
If an internal fault occurs in two phase windings at the same time, depending on the nature of the internal fault, the magnitude relationship between the fault phase and each differential current may be different from the state in which the two phases are magnetically saturated with opposite polarity at the time of excitation inrush. There is. Therefore, in the same procedure as in the case of excitation inrush described above, it may be erroneously determined that a differential current is generated in a healthy phase in which no fault has occurred. However, as described below, the values of parallel admittance, etc. when the core is not magnetically saturated in a healthy state are different from the values at the time of magnetic inrush when the core is magnetically saturated, so depending on the calculation result of parallel admittance, etc., it is not magnetic inrush. In other words, it is determined that it is an internal accident, and as a result, the circuit breaker opening command can be correctly output.

次に各巻線の相電流及び端子電圧から保護対象変圧器の
並列アドミッタンス等を求め、事故判別する方法を示す
。詳細は特開昭62−8942号公報に記載されている
ので、ここではその概略を示すにとどめる。
Next, we will show how to determine the parallel admittance of the transformer to be protected from the phase current and terminal voltage of each winding to determine the fault. The details are described in Japanese Patent Application Laid-Open No. 62-8942, so only an outline thereof will be shown here.

第8図は2巻線変圧器の概略図で、10は鉄心。Figure 8 is a schematic diagram of a two-winding transformer, where 10 is an iron core.

11.12は1次及び2次巻線を示す。図中11゜12
は1次及び2次電流、vl、v2は1次及び2タンス)
の関係から導いた一般的なアドミッタンス方程式を(1
2)式に、−射的な等価回路を第9図に示す。
11.12 indicates the primary and secondary windings. 11°12 in the figure
are primary and secondary currents, vl and v2 are primary and secondary currents)
The general admittance equation derived from the relationship is (1
2), the morphic equivalent circuit is shown in FIG.

y12は変圧器の1次−2次間漏れインダクタンスL1
2から(13)式で求められる定数で、これを伝達アド
ミッタンスと称する。
y12 is the primary-secondary leakage inductance L1 of the transformer
2 to (13), and is called a transfer admittance.

y+z=−1/L12            °−(
13)y11+y22は定常状態、励磁突入状態、内部
事故状態などの状態によって値が異なる未知数で、駆動
点アドミッタンスと称する。駆動点アドミッタンスは、
サンプリングした電圧、電流及び定数である伝達アドミ
ッタンスより、(13)式から導出した(14)式で演
算できる。
y+z=-1/L12 °-(
13) y11+y22 is an unknown quantity whose value differs depending on the state such as steady state, excitation inrush state, internal fault state, etc., and is called driving point admittance. The driving point admittance is
It can be calculated using equation (14) derived from equation (13) using the sampled voltage, current, and constant transfer admittance.

第9図中のyto、 y2oは次の(15)式で得られ
yto and y2o in FIG. 9 are obtained by the following equation (15).

変圧器の内部状態によって変化する。これを並列アドミ
ッタンスと称する。
Varies depending on the internal state of the transformer. This is called parallel admittance.

3/20” yzi+ y22 健全時の並列アドミッタンスは励磁インダクタンスに対
応している。定常運転時の励磁電流は一般に負荷電流に
比べて無視できるため yto≠y2o’=o             ・・
・(16)である。励時突入時は各巻線の空心自己、相
互インダクタンスで定まる零でない一定値となる。内部
事故の場合、例えば1次巻線11の全短絡事故の場合は
3/20" yzi+ y22 The parallel admittance during normal operation corresponds to the excitation inductance. Since the excitation current during steady operation is generally negligible compared to the load current, yto≠y2o'=o...
・(16). At the time of excitation entry, it becomes a constant non-zero value determined by the air-core self and mutual inductance of each winding. In the case of an internal accident, for example, in the case of a total short-circuit accident in the primary winding 11.

y20弁O となり、2次巻線12の全短絡事故の場合は、y2o斗
■ となる。すなわち、並列アドミッタンスの値は励磁突入
時と内部事故時とで異なるので、これによって両者を判
別することができる。
y20 valve O, and in the case of a total short-circuit accident of the secondary winding 12, y2o doo■. That is, since the value of the parallel admittance is different between the time of excitation inrush and the time of an internal fault, it is possible to distinguish between the two based on this.

以上で変圧器の励磁突入現象の概要、三角接続巻線の相
電流を推定する方法、変圧器の並列アドミッタンスによ
って内部事故と励磁突入とを判別する方法などについて
の説明を終り、次に第2図の演算フロー例を図中に示し
たステップごとに詳細に説明する。
This concludes the explanation of the overview of the inrush phenomenon of transformers, the method of estimating the phase current of the triangularly connected windings, and the method of distinguishing between internal faults and inrush by the parallel admittance of the transformer. The example calculation flow shown in the figure will be explained in detail for each step shown in the figure.

第2図は第5図の3相2巻線変圧器を保護対象としたと
きの演算フロー図である。まずステップS1で゛時刻t
における電圧Vlay Vlb、 VIC*V Za 
+ V 2t+ 、 V 2c及び電流iLa、 il
b、 ilc。
FIG. 2 is a calculation flow diagram when the three-phase two-winding transformer shown in FIG. 5 is targeted for protection. First, in step S1, ``time t''
Voltage at Vlay Vlb, VIC*V Za
+ V 2t+ , V 2c and currents iLa, il
b, ilc.

12aC+ l 2ha、l ZCbをサンプリングす
る。
Sample 12aC+ l 2ha, l ZCb.

ステップS2で線電流に関する差動電流Σiac 。Differential current Σiac regarding line current in step S2.

Σiba、Σ1cb(6)式より求める。Σiba, Σ1cb are obtained from equation (6).

ステップS3で上記3個の差動電流の大きさを調べる。In step S3, the magnitudes of the three differential currents are checked.

ステップS4で上記差動電流の絶対値が3個とも所定の
検出レベルε1より大と判定したとき、ステップS6に
進む。これは2相が逆極性で磁気飽和した励磁突入状態
、または2相の内部事故状態なので、その2相を特定す
るため、まずステップS5で上記3個の差動電流のうち
絶対値が最大のものを見つける。絶対値が最大の線電流
に関する差動電流に対応した2個の相で差動電流が発生
していると判定する。ステップS6で、相電流に関する
差動電流Σia、Σlb1 Σicのうち、差動電流が
発生していると判定されなかった1個の相の差動電流を
零とおき、残りの2個の相の差動電流を(4)式の関係
を用いて線電流に関する差動電流から求める。例えば励
磁突入の場合の第6図の区間(2)では、前記したよう
に相電流に関する各差動電流は(9) 、 (10)式
で得られる。
When it is determined in step S4 that all three of the absolute values of the differential currents are greater than the predetermined detection level ε1, the process proceeds to step S6. This is an excitation inrush state in which the two phases are magnetically saturated with opposite polarity, or an internal fault state in the two phases, so in order to identify the two phases, first in step S5, the find something It is determined that a differential current is generated in two phases corresponding to the differential current related to the line current with the maximum absolute value. In step S6, among the differential currents Σia and Σlb1 Σic regarding the phase currents, the differential current of one phase for which it is determined that no differential current is generated is set to zero, and the differential current of the remaining two phases is set to zero. The differential current is determined from the differential current regarding the line current using the relationship of equation (4). For example, in section (2) of FIG. 6 in the case of excitation inrush, each differential current regarding the phase current is obtained by equations (9) and (10) as described above.

ステップS7で3個の線電流に関する差動電流のうち2
個の絶対値が検出レベルε1より大と判断したときステ
ップS6へ、そうでないときステツブS9へ進む。
In step S7, two of the differential currents related to the three line currents are
If it is determined that the absolute value of ε is greater than the detection level ε1, the process proceeds to step S6, otherwise the process proceeds to step S9.

ステップS8へ進むのは、1相が磁気飽和した励磁突入
状態、または1相の内部事故状態のときである。そこで
ステップS8で、まず絶対値が検出レベルε1を超えて
いる2個の線電流に関する差動電流の両方に関係してい
る相で差動電流が発生していると判定する。相電流に関
する差動電流Σia、Σi、、、Σicのうち、差動電
流が発生していると判定されなかった2個の相の差動電
流を零とおき、残りの1個の相の差圧電流を(4)式の
関係を用いて線電流に関する差動電流から求める。
The process proceeds to step S8 when one phase is in an excitation inrush state where it is magnetically saturated or when one phase is in an internal fault state. Therefore, in step S8, it is first determined that a differential current is generated in a phase related to both of the differential currents related to the two line currents whose absolute values exceed the detection level ε1. Among the differential currents Σia, Σi, . . . The piezoelectric current is determined from the differential current regarding the line current using the relationship of equation (4).

例えば励磁突入の場合の第6図の区間(1)では。For example, in section (1) of FIG. 6 in the case of excitation inrush.

前記したように相電流に関する差動電流は(7)。As mentioned above, the differential current regarding the phase current is (7).

(8)式で得られる。It is obtained by equation (8).

ステップS9へ進むのは変圧器が定常運転している場合
であるから、相電流に関する差動電流は3相とも零とお
く。
Since the process proceeds to step S9 when the transformer is in steady operation, the differential current regarding the phase currents is set to zero for all three phases.

ステップSzoにおいて、三角接続巻線の相電流i2a
、 i2b、 12cを(11)式より求める。
In step Szo, the phase current i2a of the triangular connected winding
, i2b, and 12c are obtained from equation (11).

ステップSll以降において、Kは3相における各相を
示す変数で、K=1.2.3はそれぞれ相a、相す、相
Cを表わしている。ステップSll。
After step Sll, K is a variable indicating each of the three phases, and K=1.2.3 represents phase a, phase A, and phase C, respectively. Step Sll.

S12で相を特定した後のフローは、特開昭62−89
42号公報と同じなので、以下に簡単にその内容を示す
。なお簡単のため相別の記号は省略した。
The flow after identifying the phase in S12 is described in Japanese Patent Application Laid-Open No. 62-89.
Since it is the same as Publication No. 42, its contents will be briefly described below. For simplicity, the symbols for each phase have been omitted.

ステップS1gで相電流に関する差電流の絶対値が所定
の検出レベルε2より大かどうかを判定し、ステップS
14でそれが1回目かどうかを判定する。
In step S1g, it is determined whether the absolute value of the difference current regarding the phase current is larger than a predetermined detection level ε2, and in step S
14, it is determined whether this is the first time.

1回目のときステップS15で初期設定を行い、2回目
以降のときステップsi8に進んで駆動点アドミッタン
ス3’lly 3’2Zを求める。差動電流の絶対値が
検出レベルε2を超えた1回目のステップにおける時刻
をtoとすると、時刻tにおける駆動点アドミッタンス
はステップ51Bにおいて、 (14)式を変形した(
19)式で得られる。
At the first time, initial setting is performed in step S15, and at the second time or later, the process proceeds to step si8 to obtain the driving point admittance 3'lly 3'2Z. Letting to be the time at the first step when the absolute value of the differential current exceeds the detection level ε2, the driving point admittance at time t is determined by modifying equation (14) in step 51B.
19) can be obtained using the formula.

・・・(19) 時刻toにおける電流i z(t o) p i z(
t o)はステップ315の初期設定時に記憶されてい
る。電圧の積分は、例えば台形側により離散化して行わ
れる。  。
...(19) Current i z(t o) p i z( at time to
to) is stored during initialization in step 315. The voltage integration is performed by discretizing the trapezoidal side, for example. .

ステップSITにおいて、並列アドミッタンスylO,
3’20を(15)式を用いて演算し、ステップsia
においてその値を判定する。
In step SIT, parallel admittance ylO,
3'20 is calculated using equation (15), and step sia
Determine its value at .

次に、ステップSlδ乃至S21における、並列アドミ
ッタンスの判定法について説明する。前記のように、励
磁突入時の3’IO+ y2.Oの値はほぼ一定値であ
るから、予めその概略値を予測しておき、これより大き
い判定値と小さい判定値を記憶しておく、例えばylo
に関して励磁突入時の値より大きい判定値としてαl、
小さい値としてβlを記憶しておく。判定式を(20)
乃至(23)式に示す。
Next, a method for determining parallel admittance in steps Slδ to S21 will be explained. As mentioned above, 3'IO+ y2. at the time of excitation inrush. Since the value of O is almost a constant value, its approximate value is predicted in advance and the judgment values larger and smaller than this are memorized. For example, ylo
As a judgment value larger than the value at the time of excitation entry, αl,
βl is stored as a small value. Judgment formula (20)
to (23).

yio≦βl             ・・・(20
)y10≧α工             ・・・(2
1)y20≦β2             ・・・(
22)y20≧α2             ・・・
(23)(20)乃至(23)式の判定式の実行により
ステップS工δにてylo、 y20を判定して、この
うち少なくとも1個の判定式を満足したとき、ステップ
S19において健全範囲外と判定し、ステップSx1に
おいて判定フラグをセットする。(20)乃至(23)
式のいずれの判定式も満足しないとき、ステップ819
において健全範囲内と判定し、ステップs20において
判定フラグをリセットする。なお、健全範囲外を判定す
るに、(20)乃至(23)式の判定が必がしもすべて
必要という訳ではない。一部の判定式のみでも、すべて
の内部事故を健全範囲外と判定することができる。
yio≦βl...(20
)y10≧αtechnique...(2
1) y20≦β2...(
22) y20≧α2...
(23) By executing the determination formulas (20) to (23), ylo and y20 are determined in step S δ, and when at least one of these determination formulas is satisfied, it is determined that it is outside the healthy range in step S19. It is determined that this is the case, and a determination flag is set in step Sx1. (20) to (23)
If none of the judgment expressions in the expressions are satisfied, step 819
In step s20, it is determined that the condition is within the healthy range, and the determination flag is reset in step s20. It should be noted that all of the determinations of equations (20) to (23) are not necessarily required to determine if the condition is outside the healthy range. All internal accidents can be determined to be outside the healthy range even if only some of the determination formulas are used.

内部事故を誤りなく判定し、連続したトリップ許容信号
を出力するため、ステップ322及びS23において上
記判定フラグの継続性を調べる。
In order to determine an internal accident without error and output continuous trip permission signals, the continuity of the determination flag is checked in steps 322 and S23.

継続性ありと判定したとき、ステップS26で事故判定
し、遮断器トリップ許容信号を出力する。
When it is determined that there is continuity, an accident is determined in step S26, and a circuit breaker trip permission signal is output.

そうでないとき、ステップS24で健全判定する。If not, a health determination is made in step S24.

トリップ許容信号は単独で、または他の事故検出要素と
の条件によって遮断器をトリップする信号となる。
The trip permission signal is a signal that trips the circuit breaker either alone or in combination with other fault detection elements.

最後にステップS2[1において、3相すべでの演算2
判定が終ったかどうかを調べ、終っていなければステッ
プS12に戻って次の相に関する演算。
Finally, in step S2 [1, calculation 2 for all three phases
It is checked whether the determination has been completed, and if it has not been completed, the process returns to step S12 to calculate the next phase.

判定を行う。以上で第2図の演算フロー例の説明を終る
Make a judgment. This concludes the explanation of the example calculation flow shown in FIG.

内部事故の判定には並列アドミッタンスの代りに駆動点
アドミッタンスを用いてもよい。この場合、第2図の演
算フロー例における並列アドミッタンスは演算する必要
がない。また、これらの並列アドミッタンスの代りに、
第9図に示す2巻線変圧器の等両回路において、並列ア
ドミッタンス電流ixo、izoを演算して求め、これ
を事故判別に利用することができる。さらに(12)式
で示した積分形式のアドミッタンス方程式の代りに、微
分形式のアドミッタンス方程式を用いると、並列アドミ
ッタンス電流の微分値も事故判別に利用できる。
The driving point admittance may be used instead of the parallel admittance for determining an internal accident. In this case, there is no need to calculate the parallel admittance in the calculation flow example of FIG. Also, instead of these parallel admittances,
In the two-winding transformer circuit shown in FIG. 9, the parallel admittance currents ixo and izo can be calculated and used for fault determination. Furthermore, if a differential type admittance equation is used instead of the integral type admittance equation shown in equation (12), the differential value of the parallel admittance current can also be used for fault determination.

これらの種々の事故判別法は特開昭62−8942号公
報に詳述されている。
These various accident determination methods are detailed in Japanese Patent Laid-Open No. 62-8942.

次に本発明が3巻線変圧器にも適用できることを示す6
第10図において、1は3相3巻線変圧器11a、ll
b、lleは星形接続された1次巻線、12a、12b
、12cは星形接続された2次巻線、13a、13b、
13cは三角接続された2次巻線を示す。ixa、 i
lh、 ilcは1次線電流、12a+ iZb+ i
zcは2次線電流、i3a。
Next, it will be shown that the present invention can be applied to a three-winding transformer.
In Fig. 10, 1 is a three-phase three-winding transformer 11a, ll
b, lle are star-connected primary windings, 12a, 12b
, 12c is a star-connected secondary winding, 13a, 13b,
13c shows a triangularly connected secondary winding. ixa, i
lh, ilc are primary line currents, 12a+ iZb+ i
zc is the secondary line current, i3a.

i3b、 ia1:は3次相電流、l 3&Cr  l
 aba+ l achは3次線電流である。簡単のた
め各巻線の巻数はすべて等しいと仮定する。相電流に関
する差動電流は(24)式で表わされる。
i3b, ia1: are tertiary phase currents, l 3 & Cr l
aba+l ach is the tertiary line current. For simplicity, it is assumed that the number of turns in each winding is equal. The differential current regarding the phase current is expressed by equation (24).

Σ1a=ita+i2a+i3a Σ1b=itb+i2b+iab       ・・・
(24)Σ1c=itc+izc+iac 線電流に関する差動電流は(25)式で表わせる。
Σ1a=ita+i2a+i3a Σ1b=itb+i2b+iab...
(24) Σ1c=itc+izc+iac The differential current regarding the line current can be expressed by equation (25).

Σi ac  ”(i ia  i tc)+(i z
a−i 2C)+ i 5ac=(i ta −i x
c)+(i za −i 2c)+(i 3a −i 
3C)=Σi&−Σic Σiba”Σ11.−Σia          ・・
・(25)Σ1cb=Σic−Σ11゜ (25)式で示される線電流に関する差動電流と、相電
流に関する差動電流との関係は、(4)式で示される2
巻線変圧器の場合と同じである。したがって2巻線変圧
器の場合と同様に励時突入時または内部事故時において
、線電流に関する差動電流から相電流に関する差動電流
を求め ることかできる。三角接続巻線の相電流は(24)式を
変形した(26)式で得られる。
Σi ac ”(i ia i tc) + (i z
a-i 2C)+i 5ac=(ita-i x
c) + (i za -i 2c) + (i 3a -i
3C)=Σi&−Σic Σiba”Σ11.−Σia ・・
・(25) Σ1cb = Σic - Σ11° The relationship between the differential current related to the line current shown in equation (25) and the differential current related to the phase current is 2 shown in equation (4).
The same is true for wire-wound transformers. Therefore, as in the case of a two-winding transformer, the differential currents related to the phase currents can be determined from the differential currents related to the line currents at the time of excitation rush or in the event of an internal fault. The phase current of the triangularly connected winding is obtained by equation (26), which is a modification of equation (24).

1aa=Σia −(ita+1za)i3b=Σi 
b−(i ib+ 1211)        ・・・
(26)i3e=Σj、c  (ile+12c)並列
アドミッタンス等を演算して事故判定する方法は2巻線
変圧器の場合と同様である。
1aa=Σia −(ita+1za)i3b=Σi
b-(i ib+ 1211)...
(26) i3e=Σj,c (ile+12c) The method of calculating parallel admittance and determining an accident is the same as in the case of a two-winding transformer.

内蔵二角巻線どして、三角接続された巻線の端子が変圧
器のタンク外へ引き出されない場合があるが、このよう
な場合にも本発明を適用できる。
There are cases where the terminals of the triangularly connected windings cannot be drawn out of the tank of the transformer due to built-in diagonal windings, and the present invention can be applied to such cases as well.

例えば第10図の3巻線変圧器において、3次巻線の端
子が引き出されていない場合、単に、i aac” i
 aba= i 3cb= O・・(27)とおけばよ
い。
For example, in the three-winding transformer shown in Fig. 10, if the terminal of the tertiary winding is not drawn out, simply i aac"i
It is sufficient to set aba=i3cb=O...(27).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、三角接続巻線を有する変圧器の相電流
を変圧器各端子の線電流より求められる差動電流と相電
流より求められる差動電流との間の特定の相関関係を利
用して求め、これを用いて変圧器の内部事故を変圧器の
並列アドミッタンス等によって判定できるので、変圧器
保護を高精度かつ高速度で行うことができる。
According to the present invention, the phase current of a transformer having triangularly connected windings is determined by using a specific correlation between the differential current determined from the line current at each terminal of the transformer and the differential current determined from the phase current. This can be used to determine internal faults in the transformer based on the parallel admittance of the transformer, etc. Therefore, transformer protection can be performed with high precision and high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の基本構成図、第2図は本発
明の一実施例の演算フロー図、第3図は単相2巻線変圧
器の路線図、第4図は第3回に示す変圧器の励磁突入時
における電圧、磁束密度。 差動電流等の波形を示す図、第5図は3相2巻線変圧器
の路線図、第6図は第5図に示す変圧器の励磁突入時に
おける電圧、磁束密度、電流等の波形を示す図、第7図
は第5図に示す変圧器の内部事故時における電流の波形
を示す図、第8図は2巻線変圧器の路線図、第9図は第
8図に示す変圧器の等両回路、第10図は3相3巻線変
圧器の路線図である。 1・・・保護対象変圧器、5・・・入力部、6・・・演
算処理部、7・・・記憶部、8・・・出力部、9・・・
係数設定器、41.42・・・遮断器、43.44・・
・遮断器のトリップコイル。
Figure 1 is a basic configuration diagram of an embodiment of the present invention, Figure 2 is a calculation flow diagram of an embodiment of the present invention, Figure 3 is a route diagram of a single-phase two-winding transformer, and Figure 4 is a diagram of a single-phase two-winding transformer. Voltage and magnetic flux density at the time of excitation inrush of the transformer shown in 3 times. Figure 5 shows waveforms of differential current, etc. Figure 5 is a route map of a three-phase two-winding transformer Figure 6 shows waveforms of voltage, magnetic flux density, current, etc. at the time of excitation inrush of the transformer shown in Figure 5 Figure 7 is a diagram showing the current waveform at the time of an internal fault in the transformer shown in Figure 5, Figure 8 is a route diagram of a two-winding transformer, and Figure 9 is a diagram showing the transformer shown in Figure 8. Figure 10 is a route diagram of a three-phase, three-winding transformer. DESCRIPTION OF SYMBOLS 1... Transformer to be protected, 5... Input section, 6... Arithmetic processing section, 7... Storage section, 8... Output section, 9...
Coefficient setter, 41.42... Circuit breaker, 43.44...
・Trip coil of circuit breaker.

Claims (1)

【特許請求の範囲】[Claims] 1、星形接続巻線と三角接続巻線を有し3相接続した変
圧器の保護方法において、該変圧器の各端子線電流を検
出して該線電流を加減して前記三角接続巻線の各端子電
流に対応した差動電流を演算し、該差動電流の大きさに
応じて前記変圧器の異常を生じた異常相を推定し、該推
定にもとずき前記三角接続巻線の各相の推定相電流を演
算し、該推定相電流と前記三角接続巻線の端子電圧とか
ら該推定相電流と前記三角接続巻線の端子電圧を関係ず
けるアドミッタンスパラメータを求め、該アドミッタン
スパラメータの値により前記異常相が内部事故状態にあ
ることを判定して前記変圧器の遮断器の開放指令を行う
ことを特徴とする変圧器の保護方法。
1. In a method for protecting a three-phase connected transformer having a star-shaped connected winding and a triangular connected winding, each terminal wire current of the transformer is detected and the wire current is adjusted to protect the triangular connected winding. calculate the differential current corresponding to each terminal current, estimate the abnormal phase that caused the abnormality in the transformer according to the magnitude of the differential current, and based on the estimation, calculate the estimated phase current of each phase, calculate the admittance parameter that relates the estimated phase current and the terminal voltage of the triangularly connected winding, A method for protecting a transformer, characterized in that the abnormal phase is determined to be in an internal fault state based on the value of a parameter, and a command is issued to open a circuit breaker of the transformer.
JP8439388A 1988-04-06 1988-04-06 Transformer protection methods Expired - Lifetime JP2646105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8439388A JP2646105B2 (en) 1988-04-06 1988-04-06 Transformer protection methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8439388A JP2646105B2 (en) 1988-04-06 1988-04-06 Transformer protection methods

Publications (2)

Publication Number Publication Date
JPH01259719A true JPH01259719A (en) 1989-10-17
JP2646105B2 JP2646105B2 (en) 1997-08-25

Family

ID=13829324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8439388A Expired - Lifetime JP2646105B2 (en) 1988-04-06 1988-04-06 Transformer protection methods

Country Status (1)

Country Link
JP (1) JP2646105B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114217144A (en) * 2021-12-06 2022-03-22 广州天加环境控制设备有限公司 Method for detecting phase loss in operation of three-phase permanent magnet synchronous motor
CN114447883A (en) * 2021-12-23 2022-05-06 北京四方继保工程技术有限公司 Differential protection method for transformer of pumped storage unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114217144A (en) * 2021-12-06 2022-03-22 广州天加环境控制设备有限公司 Method for detecting phase loss in operation of three-phase permanent magnet synchronous motor
CN114217144B (en) * 2021-12-06 2023-09-08 广州天加环境控制设备有限公司 Method for detecting open phase in operation of three-phase permanent magnet synchronous motor
CN114447883A (en) * 2021-12-23 2022-05-06 北京四方继保工程技术有限公司 Differential protection method for transformer of pumped storage unit
CN114447883B (en) * 2021-12-23 2024-01-09 北京四方继保工程技术有限公司 Differential protection method for transformer of pumped storage unit

Also Published As

Publication number Publication date
JP2646105B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
JP2510498B2 (en) Transformer failure detection method and device
JP6976258B2 (en) Systems and methods for detecting inter-turn failures in transformer windings
AU2011291801B2 (en) Magnetizing inrush current suppression apparatus
KR101759598B1 (en) Digital relay with sensibility of secondary circuit opening
JPH02193524A (en) Protection of transformer and detection of fault winding thereof method thereof
Khan et al. New algorithm for the protection of delta‐hexagonal phase shifting transformer
JPH01259719A (en) Protective method for transformer
Soliman et al. A robust differential protection technique for single core delta-hexagonal phase-shifting transformers
Wagh et al. Extraction of DC component and harmonic analysis for protection of power transformer
Khan et al. Protection of standard-delta phase shifting transformer using terminal currents and voltages
González et al. Diagnosis of a turn-to-turn short circuit in power transformers by means of zero sequence current analysis
JPH10513567A (en) Ground fault current detection method
JP3199940B2 (en) Transformer protection relay device
Sidhu et al. Detecting transformer winding faults using non-linear models of transformers
Solak et al. Negative-sequence current integral method for detection of turn-to-turn faults between two parallel conductors in power transformers
JP2002335625A (en) Relay method for protecting transformer
JPS63277420A (en) Transformer protecting system
US11430624B2 (en) Current sensor output converter for circuit breakers that are configured for Rogowski coils
KR100460310B1 (en) Method for operating relay for protecting transformer
JPS5852838Y2 (en) transformer protection device
JPS633536B2 (en)
JPS6169329A (en) Transformer protecting system
JPS6146116A (en) Transformer protective relaying device
KR20040103249A (en) Method for detecting open-circuit of current transformers
JPH0124017B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term