JPH0125959B2 - - Google Patents

Info

Publication number
JPH0125959B2
JPH0125959B2 JP55164030A JP16403080A JPH0125959B2 JP H0125959 B2 JPH0125959 B2 JP H0125959B2 JP 55164030 A JP55164030 A JP 55164030A JP 16403080 A JP16403080 A JP 16403080A JP H0125959 B2 JPH0125959 B2 JP H0125959B2
Authority
JP
Japan
Prior art keywords
lpg
temperature
pipe
vapor
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55164030A
Other languages
Japanese (ja)
Other versions
JPS5790500A (en
Inventor
Minoru Nikaido
Makoto Imoo
Seiji Ootsuka
Yoshitake Hizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP16403080A priority Critical patent/JPS5790500A/en
Publication of JPS5790500A publication Critical patent/JPS5790500A/en
Publication of JPH0125959B2 publication Critical patent/JPH0125959B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/007Underground or underwater storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0107Propulsion of the fluid by pressurising the ullage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0339Heat exchange with the fluid by cooling using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/039Localisation of heat exchange separate on the pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0144Type of cavity
    • F17C2270/0149Type of cavity by digging cavities

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地下岩盤空洞を利用したLPGの地
下貯蔵用設備に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to underground storage equipment for LPG that utilizes underground rock cavities.

〔発明の背景および従来技術〕 従来より、石油備蓄用として地下岩盤空洞を利
用した大型の地下備蓄施設の構築が提案され、実
現化しつつある。しかしLPG(液化石油ガス)の
ように揮発性の高い物質を対象として、これを地
下岩盤空洞に貯蔵することは、常温常圧で液相を
維持する石油の貯蔵とは異なつた各種の問題が伴
うことから、世界でも施工例がないし、提案も少
ない。しかし、石油備蓄の場合と同様にLPGの
地下貯蔵ができれば、大量貯蔵性、立地性、経済
性等において、地上施設ではなし得ない有利な面
がある。
[Background of the Invention and Prior Art] Conventionally, construction of large-scale underground storage facilities using underground rock cavities for oil storage has been proposed and is becoming a reality. However, storing highly volatile substances such as LPG (liquefied petroleum gas) in underground rock cavities poses various problems that are different from storing petroleum, which maintains a liquid phase at room temperature and pressure. As a result, there are no examples of its construction anywhere in the world, and there are few proposals. However, similar to the case of oil stockpiling, if LPG could be stored underground, there would be advantages in terms of mass storage, location, economy, etc. that cannot be achieved with above-ground facilities.

これまで、LPGの地下貯蔵を意図してなされ
た発明提案には、例えば特開昭52−132402号公
報、特開昭52−132856号公報および特開昭53−
89017号公報に記載のものがある。前2者の公報
では、気密が維持された地下空洞内のポンプ類や
計装機器類を故障や点検のために交換するさい
に、不活性ガス雰囲気を維持したケーシングパイ
プ内に機器類を収めて安全に交換する方法を開示
している。また後者の特開昭53−89017号公報は、
火災などの非常時においてパイプ類内に水プラグ
を内圧を利用して形成させてパイプ類を遮断する
方法を開示している。
Until now, invention proposals made with the intention of underground storage of LPG include, for example, JP-A-52-132402, JP-A-52-132856, and JP-A-53-
There is one described in Publication No. 89017. The first two publications state that when replacing pumps and instrumentation equipment in an airtight underground cavity due to failure or inspection, the equipment must be placed inside a casing pipe that maintains an inert gas atmosphere. It discloses how to safely replace the The latter Japanese Patent Application Laid-Open No. 53-89017 is
This disclosure discloses a method of blocking pipes by forming a water plug within the pipes using internal pressure in the event of an emergency such as a fire.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

地下の岩盤空洞内にLPGを常温で水封貯蔵す
る場合は、空洞内圧力の変動を許容範囲に抑えな
ければならない。所定の水封圧力以上よりかなり
高い圧力となると岩盤構造物から漏油および漏気
が発生するし、所定の水封圧力以下よりかなり低
圧となると流入地下水量が増加すると共に、排水
設備の負担が大きくなるからである。特にこの圧
力の変動は、搬送容器内の低温(零下数10℃)に
維持されたLPGを常温の地下空洞に受け入れる
さいに大きく現れることになる。前記の公報類に
はこの種のLPG特有の問題の解決については何
らの教示もない。空洞内圧力の変動を防ぐ処法と
しては、LPGのベーパーの排出と供給を制御す
るといつた直接的な処法も考えられるが、この場
合はそのための設備を別途に設ける必要があり、
そのコストアツプの問題と、排出ベーパーの燃焼
処理によるベーパーの浪費という省資源上の問題
がある。また、低温のLPGを直接的に常温の岩
盤地下空洞に供給すると、水の凍結によるトラブ
ルの発生も予想される。
When storing LPG in a water seal at room temperature in an underground rock cavity, fluctuations in the pressure inside the cavity must be kept within an acceptable range. If the pressure is significantly higher than the predetermined water seal pressure, oil and air leakage will occur from the rock structure, and if the pressure is significantly lower than the predetermined water seal pressure, the amount of inflowing groundwater will increase and the burden on drainage equipment will be increased. This is because it gets bigger. In particular, this pressure fluctuation becomes significant when LPG maintained at a low temperature (several 10 degrees Celsius below zero) in a transport container is received into an underground cavity at room temperature. The above-mentioned publications do not teach anything about solving problems specific to this type of LPG. Direct methods such as controlling the discharge and supply of LPG vapor can be considered as a method to prevent fluctuations in the pressure inside the cavity, but in this case, it is necessary to separately install equipment for this purpose.
There is a problem of increased costs and a resource saving problem of wasted vapor due to combustion treatment of the discharged vapor. Furthermore, if low-temperature LPG is directly supplied to room-temperature underground rock cavities, problems may occur due to water freezing.

本発明はこのようなLPG地下貯蔵の基本的な
問題の解決を目的としたものである。
The present invention aims to solve this basic problem of LPG underground storage.

〔問題点を解決する手段〕[Means to solve problems]

前記のような問題を解決せんとする本発明の要
旨とするところは、地下の岩盤内に岩盤を壁面と
して形成した実質上密閉状態の地下空洞と、零下
数10℃の低温LPGを収容した搬送容器から前記
の地下空洞内にLPGを送入する入荷管路と、こ
の入荷管路に挿入されかつ該低温LPGを常温付
近の温度にまで昇温するための熱交換器と、地下
空洞内のベーパーを搬送容器に導くベーパー管路
と、前記熱交換器よりも搬送容器側の入荷管路に
挿入された凝縮器であつて前記ベーパー管路内の
ベーパーの1部と該熱交換器通過前の入荷管路内
の少なくとも1部の低温LPGとを間接的に熱交
換させて該ベーパーを凝縮させるようにした凝縮
器と、搬送容器と凝縮器の間の入荷管路に介装さ
れた圧送ポンプと、地下空洞から出荷容器に通ず
る脱水装置介装の出荷管路と、地下空洞の底部か
ら系外に通ずる脱気装置介装の排水管路とからな
り、搬送容器内の零下数10℃の低温LPGを常温
に昇温してから地下空洞に供給するようにした
LPGの常温地下貯蔵設備に存する。
The gist of the present invention, which aims to solve the above-mentioned problems, is to create a substantially sealed underground cavity formed in an underground bedrock using rock as a wall surface, and a transport system containing low-temperature LPG of several tens of degrees below zero. an incoming pipe for delivering LPG from the container into the underground cavity; a heat exchanger inserted into the incoming pipe to heat the low-temperature LPG to around room temperature; A vapor conduit that leads vapor to a conveyance container, and a condenser inserted into an incoming conduit that is closer to the conveyance container than the heat exchanger, and a part of the vapor in the vapor conduit and before passing through the heat exchanger. a condenser that condenses the vapor by indirectly exchanging heat with at least part of the low-temperature LPG in the incoming pipe; and a pressure feeder installed in the incoming pipe between the conveying container and the condenser. It consists of a pump, a shipping pipe connected to a dehydrator that leads from the underground cavity to the shipping container, and a drainage pipe connected to a deaerator that leads from the bottom of the underground cavity to the outside of the system. The low-temperature LPG was heated to room temperature before being supplied to the underground cavity.
Located in a room-temperature underground storage facility for LPG.

〔発明の詳述〕[Detailed description of the invention]

以下に図面を参照しながら本発明の内容を具体
的に説明する。
The contents of the present invention will be specifically explained below with reference to the drawings.

本発明に従うLPGの常温地下貯蔵設備の主構
成は、第1図に示した如く、地下岩盤内に形成し
た実質上密閉状態の地下空洞1と、零下数10℃の
低温LPGを収容した搬送容器2(タンカー)か
ら前記の地下空洞1にLPGを送入する入荷管路
3と、この入荷管路3に挿入されかつ該低温
LPGを常温付近の温度にまで昇温するための熱
交換器4と、地下空洞1内のベーパーを搬送容器
2に導くベーパー管路5と、前記熱交換器4より
も搬送容器2の側の入荷管路3に挿入された凝縮
器6であつてベーパー管路5内のベーパーの1部
と該熱交換器4通過前の入荷管路3内の少なくと
も1部のLPGとを間接的に接触させて該ベーパ
ーを凝縮させるようにした凝縮器6と、搬送容器
2と凝縮器6の間の入荷管路3に介装された圧送
ポンプ17と、地下空洞1から出荷容器7に通ず
る脱水装置8介装の出荷管路9と、地下空洞1の
底部から系外に通ずる脱気装置10介装の排水管
路11と、からなる。そして、ベーパー管路5に
は脱湿装置12が介装されており、搬送容器2ま
たは凝縮器6に給送されるベーパー中の湿分(水
蒸気)を分離除去するようになつている。また、
出荷容器7から地下空洞1に通ずるベーパー管路
13が設けてあり、出荷に伴う出荷容器7及び地
下空洞1内の圧力変動を吸収するようになつてい
る。
As shown in Fig. 1, the main components of the room-temperature underground storage facility for LPG according to the present invention include a substantially sealed underground cavity 1 formed in underground rock, and a transport container containing low-temperature LPG of several tens of degrees below zero. 2 (tanker) to the above-mentioned underground cavity 1;
A heat exchanger 4 for raising the temperature of LPG to around room temperature, a vapor pipe line 5 for guiding vapor in the underground cavity 1 to the transport container 2, and a vapor pipe line 5 for guiding the vapor in the underground cavity 1 to the transport container 2, which is located closer to the transport container 2 than the heat exchanger 4. A condenser 6 inserted into the incoming pipe 3 indirectly contacts a part of the vapor in the vapor pipe 5 with at least a part of the LPG in the incoming pipe 3 before passing through the heat exchanger 4. a condenser 6 configured to condense the vapor, a pressure pump 17 interposed in the incoming pipeline 3 between the transport container 2 and the condenser 6, and a dewatering device leading from the underground cavity 1 to the shipping container 7. It consists of a shipping pipe line 9 with eight intervening lines, and a drainage pipe line 11 with ten degassing devices leading from the bottom of the underground cavity 1 to the outside of the system. A dehumidifying device 12 is interposed in the vapor conduit 5 to separate and remove moisture (water vapor) in the vapor fed to the conveying container 2 or the condenser 6. Also,
A vapor conduit 13 leading from the shipping container 7 to the underground cavity 1 is provided to absorb pressure fluctuations within the shipping container 7 and the underground cavity 1 due to shipping.

地下空洞1は地下の岩盤内に形成した空洞であ
り、大容積の閉塞空間を形成している。この地下
空洞1において、LPGは岩盤温度に近い温度で
貯蔵されるが、例えば岩盤温度が約15℃であれ
ば、それに近い温度でかつ約8Kg/cm2abs.の圧力
(プロパン主成分の場合)の内圧に保持される。
地下空洞はこの空洞内圧より高い地下水圧をもつ
深さに設置されるためLPGが漏洩しない。この
地下空洞1に貯えられる液相のLPGの底部には
不可避的に空洞内に流入した地下水が比重差によ
つて沈積するが、この地下水を集積するための水
溜14が空洞底部に設けられており、また入荷管
路3、ベーパー管路5、排水管路11、出荷管路
9、ベーパー管路13をそれぞれ空洞空洞に接続
するために立坑15,16が設けられている。こ
の立坑15,16も外気とは遮断しており、空洞
内全体が密閉状態を保つようになつている。
The underground cavity 1 is a cavity formed in underground bedrock, and forms a large-volume closed space. In this underground cavity 1, LPG is stored at a temperature close to the bedrock temperature. For example, if the bedrock temperature is about 15℃, the LPG is stored at a temperature close to that temperature and a pressure of about 8Kg/cm 2 abs. (in the case of propane as the main component). ) is maintained at an internal pressure of
The underground cavity is installed at a depth where the groundwater pressure is higher than the internal pressure of the cavity, so LPG will not leak. At the bottom of the liquid phase LPG stored in this underground cavity 1, groundwater that has inevitably flowed into the cavity is deposited due to the difference in specific gravity, but a water reservoir 14 is provided at the bottom of the cavity to collect this groundwater. In addition, vertical shafts 15 and 16 are provided to connect the incoming pipe 3, vapor pipe 5, drain pipe 11, shipping pipe 9, and vapor pipe 13 to the hollow cavity, respectively. These vertical shafts 15 and 16 are also cut off from the outside air, so that the entire inside of the cavity is kept in a sealed state.

入荷管路3は、零下数10℃の搬送容器(タンカ
ー)2と地下空洞1を直続するものであるが、こ
の入荷管路3には熱交換器4が介装されており、
この熱交換器4によつて低温LPGは常温まで昇
温されて地下空洞1に送入される。この熱交換器
4は例えば海水を加熱媒体とする多管式熱交換器
であり、この熱交換器4を通過することにより、
例えば−43℃のLPG(プロパン主成分の場合)は
約+5℃まで昇温して地下空洞1に入る。そのさ
い、−43℃で約1Kg/cm2abs.の圧力を有する低温
LPG(プロパン主成分)はその圧が上昇するの
で、ブースタポンプ17によつて強制的に地下空
洞内に圧送する。
The incoming pipeline 3 directly connects the transport container (tanker) 2 at a temperature of several tens of degrees Celsius below zero to the underground cavity 1, and a heat exchanger 4 is interposed in this incoming pipeline 3.
The heat exchanger 4 heats the low-temperature LPG to room temperature and sends it into the underground cavity 1. This heat exchanger 4 is, for example, a shell-and-tube heat exchanger that uses seawater as a heating medium, and by passing through this heat exchanger 4,
For example, LPG (in the case of propane as a main component) at -43°C enters underground cavity 1 after being heated to approximately +5°C. At that time, a low temperature with a pressure of about 1Kg/cm 2 abs. at -43℃
As the pressure of LPG (propane main component) increases, it is forcibly pumped into the underground cavity by the booster pump 17.

ベーパー管路5は、地下空洞1に圧送された
LPGによつて昇圧したLPGベーパーの1部をタ
ンカー返送する管路であり、これによつてタンカ
ー2内の圧力変動が吸収される。地下空洞1の岩
盤温度が約15℃では約8Kg/cm2abs.(プロパン主
成分の場合)の内圧を有し、他方、タンカー2に
おいては−43℃の温度で約1Kg/cm2abs.の圧力を
有するから、この地下空洞1とタンカー2とを連
通させれば、地下空洞1からタンカー2にベーパ
ーの移動が生ずることになるので、タンカー2内
圧力が一定になるように流量を調整する。
Vapor pipe 5 was pumped into underground cavity 1
This is a pipeline that returns a portion of the LPG vapor pressurized by LPG to the tanker, thereby absorbing pressure fluctuations within the tanker 2. When the rock temperature of underground cavity 1 is about 15°C, the internal pressure is about 8 Kg/cm 2 abs. (in the case of propane as the main component), while in tanker 2, it has an internal pressure of about 1 Kg/cm 2 abs. at a temperature of -43°C. Therefore, if underground cavity 1 and tanker 2 are communicated, vapor will move from underground cavity 1 to tanker 2, so the flow rate is adjusted so that the pressure inside tanker 2 is constant. do.

そして、この空洞内圧力調整用に排出したベー
パーの1部(実際には大部分)を凝縮器6に送つ
て液化し再び地下空洞1に送る。この凝縮器6は
入荷管路3内を通過する低温LPGの少なくとも
一部を冷源とするように構成されており、このた
めに熱交換器4に入る前のLPGの少なくとも1
部とこのベーパーとが熱交換できるように、タン
カー2から熱交換器4に至る管路3の分岐管路と
脱湿装置12から熱交換器4の入側管路に通ずる
管路とを施設し、この両管路内の流体を間接的に
接触させるようにしたものである。したがつて、
この凝縮器6に送られる低温LPGはベーパーの
凝縮熱を受熱して昇温するし、この凝縮器6に送
られるベーパーは低温LPGの冷熱を受けて凝縮
して液体となる。これにより、凝縮器6は入荷管
路3の側からみれば熱交換器4のプレヒーターと
して機能するので、熱交換器4の負荷の1部を負
担することができ、したがつて、熱交換器4の容
量低減に大きく役立つ。他方、空洞内圧力変動の
ために排出したベーパーはこの凝縮器6により他
の冷熱源を用いることなく液体として地下空洞1
に回収されることになるので、空洞内圧力調整と
設備の小型化および効率向上が同時に達成され
る。
A part (in fact, most part) of the vapor discharged for adjusting the pressure inside the cavity is sent to the condenser 6 where it is liquefied and sent to the underground cavity 1 again. The condenser 6 is configured to use at least a portion of the low-temperature LPG passing through the incoming pipeline 3 as a cooling source, and for this reason, at least one portion of the LPG before entering the heat exchanger 4 is
A branch pipe line of the pipe line 3 leading from the tanker 2 to the heat exchanger 4 and a pipe line leading from the dehumidifier 12 to the inlet pipe line of the heat exchanger 4 are installed so that heat can be exchanged between the tanker 2 and the vapor. However, the fluids in both pipes are brought into indirect contact. Therefore,
The low-temperature LPG sent to the condenser 6 receives the condensation heat of the vapor to raise its temperature, and the vapor sent to the condenser 6 receives the cold heat of the low-temperature LPG and condenses to become a liquid. As a result, the condenser 6 functions as a pre-heater for the heat exchanger 4 when viewed from the incoming pipeline 3 side, so it can bear part of the load on the heat exchanger 4, and therefore the heat exchange This greatly helps in reducing the capacity of the container 4. On the other hand, the vapor discharged due to the pressure fluctuation inside the cavity is converted into a liquid by this condenser 6 without using any other cold source and is transferred to the underground cavity 1.
Therefore, the pressure inside the cavity can be adjusted, the equipment can be made smaller, and efficiency can be improved at the same time.

なお、この熱交換器6およびタンカー2に空洞
内ベーパーを導く場合に、このベーパー中には地
下水の影響によつて水蒸気が同伴するので、これ
を脱湿装置12によつて脱湿処理する。この脱湿
装置12は合成ゼオライトを吸湿剤とするものを
使用することができる。
Note that when the vapor in the cavity is introduced into the heat exchanger 6 and the tanker 2, water vapor is entrained in the vapor due to the influence of groundwater, so this is dehumidified by the dehumidifier 12. This dehumidification device 12 can use one that uses synthetic zeolite as a moisture absorbent.

出荷管路9は出荷ポンプ18によつて地下空洞
1内の常温LPGを出荷容器(例えば内航船)7
に給送するためのものであるが、この出荷管路9
には脱水装置8が設けられ、地下空洞1での貯蔵
中に不可避的に溶存した地下水を脱水分離する。
この脱水装置8は例えば合成ゼオライトを吸着剤
とする切換式の脱水塔を使用することができる。
出荷容器7にLPGを装入することによつて生ず
る容器内圧の増加はベーパー管路13によつて地
下空洞1と連通させてこれを吸収する。
A shipping pipe 9 transports room-temperature LPG in the underground cavity 1 into a shipping container (for example, a coastal ship) 7 using a shipping pump 18.
This shipping pipe 9
A dewatering device 8 is provided in the underground cavity 1 to dehydrate and separate groundwater that inevitably dissolves during storage in the underground cavity 1.
As this dehydration device 8, for example, a switching type dehydration tower using synthetic zeolite as an adsorbent can be used.
An increase in the internal pressure of the container caused by charging LPG into the shipping container 7 is absorbed by communicating with the underground cavity 1 through the vapor conduit 13.

排水管路11は地下空洞1内の水溜14内に集
積した水を排水ポンプ19によつて系外に排出す
る管路であるが、この管路11には脱気装置10
が設けられ、この脱気装置10によつて排水中に
同伴するLPGを除去したあと系外に放出される。
この脱気装置10は例えば多段カスケード方式に
よるガスストリツパーである。
The drainage pipe 11 is a pipe for draining water accumulated in a water reservoir 14 in the underground cavity 1 to the outside of the system by a drainage pump 19.
is provided, and the LPG entrained in the waste water is removed by this deaerator 10 and then discharged outside the system.
This degassing device 10 is, for example, a gas stripper using a multi-stage cascade system.

このようにして本発明は、LPGの常温地下貯
蔵システムにおける空洞内圧力の変動と低温
LPG導入に基づく常温への温度調節を、特に熱
交換器と凝縮器の配置構成により同時に達成し、
安全かつ経済的に低温LPGの受入とその常温貯
蔵を可能としたものであり、LPGの地下備蓄設
備を構築するさいに大きく貢献することができ
る。
In this way, the present invention deals with fluctuations in cavity pressure and low temperature in a room-temperature underground storage system for LPG.
Temperature control to normal temperature based on the introduction of LPG is achieved simultaneously by the arrangement of the heat exchanger and condenser,
This enables the safe and economical acceptance of low-temperature LPG and its room-temperature storage, and can greatly contribute to the construction of underground LPG storage facilities.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に従うLPG地下貯蔵設備の機
器配置系統図である。 1……地下空洞、2……搬送容器(タンカー)、
3……入荷管路、4……熱交換器、5……ベーパ
ー管路、6……凝縮器、7……出荷容器、8……
脱水装置、9……出荷管路、10……脱気装置、
11……ベーパー管路、12……脱湿装置。
FIG. 1 is an equipment layout diagram of an LPG underground storage facility according to the present invention. 1... Underground cavity, 2... Transport container (tanker),
3... Incoming pipeline, 4... Heat exchanger, 5... Vapor pipeline, 6... Condenser, 7... Shipping container, 8...
Dehydration device, 9... Shipping pipe line, 10... Deaerator,
11...vapor pipe line, 12...dehumidification device.

Claims (1)

【特許請求の範囲】[Claims] 1 地下の岩盤内に岩盤を壁面として形成した実
質上密閉状態の地下空洞と、零下数10℃の低温
LPGを収容した搬送容器から前記の地下空洞内
にLPGを送入する入荷管路と、この入荷管路に
挿入されかつ該低温LPGを常温付近の温度にま
で昇温するための熱交換器と、地下空洞内のベー
パーを搬送容器に導くベーパー管路と、前記熱交
換器よりも搬送容器側の入荷管路に挿入された凝
縮器であつて前記ベーパー管路内のベーパーの1
部と該熱交換器通過前の入荷管路内の少なくとも
1部の低温LPGとを間接的に熱交換させて該ベ
ーパーを凝縮させるようにした凝縮器と、搬送容
器と凝縮器の間の入荷管路に介装された圧送ポン
プと、地下空洞から出荷容器に通ずる脱水装置介
装の出荷管路と、地下空洞の底部から系外に通ず
る脱気装置介装の排水管路とからなり、搬送容器
内の零下数10℃の低温LPGを常温に昇温してか
ら地下空洞に供給するようにしたLPGの常温地
下貯蔵設備。
1. A virtually sealed underground cavity formed in the underground bedrock with rock as walls, and a low temperature of several tens of degrees below zero.
an incoming pipe that delivers LPG from a transport container containing LPG into the underground cavity; a heat exchanger that is inserted into the incoming pipe and heats the low-temperature LPG to a temperature close to room temperature; , a vapor pipe line for guiding vapor in an underground cavity to a transport container, and a condenser inserted into an incoming pipe on the side of the transport container than the heat exchanger, and a condenser for transporting vapor in the vapor pipe pipe.
and at least a portion of the low-temperature LPG in the incoming pipeline before passing through the heat exchanger to condense the vapor, and an incoming cargo between the conveying container and the condenser. It consists of a pressure pump installed in the pipe, a shipping pipe connected to a dehydrator that leads from the underground cavity to the shipping container, and a drainage pipe connected to the deaerator that leads from the bottom of the underground cavity to the outside of the system. A room-temperature underground storage facility for LPG that heats low-temperature LPG (10 degrees Celsius below zero) in a transport container to room temperature before supplying it to an underground cavity.
JP16403080A 1980-11-22 1980-11-22 Underground installation storing lpg at normal temperature Granted JPS5790500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16403080A JPS5790500A (en) 1980-11-22 1980-11-22 Underground installation storing lpg at normal temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16403080A JPS5790500A (en) 1980-11-22 1980-11-22 Underground installation storing lpg at normal temperature

Publications (2)

Publication Number Publication Date
JPS5790500A JPS5790500A (en) 1982-06-05
JPH0125959B2 true JPH0125959B2 (en) 1989-05-19

Family

ID=15785466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16403080A Granted JPS5790500A (en) 1980-11-22 1980-11-22 Underground installation storing lpg at normal temperature

Country Status (1)

Country Link
JP (1) JPS5790500A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4076737B2 (en) * 2001-05-30 2008-04-16 新日本製鐵株式会社 Delivery method and delivery system of liquefied natural gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786698A (en) * 1980-11-20 1982-05-29 Kajima Corp Underground storage plant for lpg

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786698A (en) * 1980-11-20 1982-05-29 Kajima Corp Underground storage plant for lpg

Also Published As

Publication number Publication date
JPS5790500A (en) 1982-06-05

Similar Documents

Publication Publication Date Title
JP2019534442A (en) Sub-atmospheric heating and cooling system
CN106348368A (en) Heat pump evaporation system and heat pump evaporation method used for processing low-activity liquid waste in nuclear plant
US20110049015A1 (en) Water removal and management system
US3330740A (en) Apparatus for solar distillation of liquids
CN105413390A (en) System for adsorption and pressure-boosting recovery of volatile organic compound steam in oil gas
CN205618211U (en) It is sealed system for organic rankine cycle
JPH0125959B2 (en)
CN103061803B (en) Interior heat-humidity independent processing and passive air conditioning system for refuge chamber of coal mine
JPH0125958B2 (en)
CN208038056U (en) The carbon dioxide collecting device of vent gas treatment in a kind of manufacture of cement
CN105822374A (en) Sealing system applied to organic Rankine cycle
RU2240175C1 (en) Method of purification from hydrocarbons of a steam-gaseous medium formed at petroleum storage and filling in containers (variants) and installation for its realization
WO2019227328A1 (en) Household alcohol-based fuel supply system
JPH0125957B2 (en)
CN203512447U (en) Oil tank breathing gas recovery system
US2811221A (en) Apparatus for maintaining low oxygen atmospheres in closed vessels
RU2496559C1 (en) Plant for trapping vapors of oil and oil products
JP2002276897A (en) Method and apparatus for using digestive gas
CN205252830U (en) Absorption pressure boost recovery system of volatile organic compounds steam in oil gas
RU2267654C2 (en) Automobile-mounted gas-filling compressor station
HUE027635T2 (en) Removal of sulphur from flue gas with possibility of recovering water
JPS604794A (en) Transportation of heat
CN103210271A (en) Vapour phase drying apparatus
JPH0125960B2 (en)
CN213065042U (en) Petroleum transportation pipeline