JPH01259475A - Character recognizing device - Google Patents

Character recognizing device

Info

Publication number
JPH01259475A
JPH01259475A JP63087125A JP8712588A JPH01259475A JP H01259475 A JPH01259475 A JP H01259475A JP 63087125 A JP63087125 A JP 63087125A JP 8712588 A JP8712588 A JP 8712588A JP H01259475 A JPH01259475 A JP H01259475A
Authority
JP
Japan
Prior art keywords
character
candidate
characters
section
identification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63087125A
Other languages
Japanese (ja)
Other versions
JP2755595B2 (en
Inventor
Toshiaki Yagasaki
矢ケ崎 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63087125A priority Critical patent/JP2755595B2/en
Publication of JPH01259475A publication Critical patent/JPH01259475A/en
Application granted granted Critical
Publication of JP2755595B2 publication Critical patent/JP2755595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Character Discrimination (AREA)

Abstract

PURPOSE:To improve a recognizing rate without lowering whole processing speed by detecting the character code of a highest appearing rate as the first candidate character of a final result and further executing other selection processing when the appearing rate of the first candidate character is equal. CONSTITUTION:A candidate character selecting means 9 selects the character code, whose appearing rate is the highest out of the character codes to be selected as the respective first candidate characters of plural identifying means 7a-7c, as the first candidate character of the final result. Then, when the appearing rates of the first candidate characters are equal, the other selection processing is further executed. Thus, to the characters of different character shapes or a deformed character, the improvement of the recognizing rate can be achieved without lowering the whole processing speed. Then, by providing the plural identifying means, a character recognizing device can be obtained to allow the deformed characters as much as possible to correspond to the characters as much as possible.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は文字認識装置、特に光学的読み取り手段から文
字画像データを読み取り、文字コードへの変換を行なう
文字認識装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a character recognition device, and particularly to a character recognition device that reads character image data from an optical reading means and converts it into a character code.

[従来の技術] 従来、この種の装置は、認識対象の文字ごとに少なくと
も1つの文字辞書を作成しておき、与えられた入力文字
に対して識別処理を行い、文字辞書を参照にしながら識
別処理を行い、最終候補文字を出力する構成をとってい
る。この場合、多くが統計的なアプローチにたよってい
るため、極端に異なる文字であっても、たとえば”あ′
°を”雪”という文字に誤認識することがある。そこで
、候補文字を更に単語レベルで判定を行う後処理を設け
ることで、認識率の向上と極端な誤まりの除去をしてい
る。しかしこの場合には、文字辞書のほかに単語辞書が
必要となってくる。
[Prior Art] Conventionally, this type of device creates at least one character dictionary for each character to be recognized, performs identification processing on a given input character, and performs identification while referring to the character dictionary. The system is configured to perform processing and output the final candidate characters. In this case, many rely on statistical approaches, so even if the characters are extremely different, e.g.
° may be mistakenly recognized as the character ``snow''. Therefore, by providing post-processing that further evaluates candidate characters at the word level, the recognition rate is improved and extreme errors are eliminated. However, in this case, a word dictionary is required in addition to a character dictionary.

[発明が解決しようとしている課題] しかしながら、上記従来例では、入力文字に対する文字
辞書との識別処理において、字形の制限をすこしでもゆ
るくすると、第1位候補文字−の認識率が極端に落ちて
しまうこと、又、単語レベルの後処理においても、単語
辞書が膨大になることや、誤って正続文字が誤読文字に
変えられてしまうなどの欠点があった。
[Problems to be Solved by the Invention] However, in the above conventional example, if the restrictions on character shapes are loosened even slightly in the process of identifying input characters with a character dictionary, the recognition rate of the first candidate character drops dramatically. In addition, in post-processing at the word level, there are drawbacks such as the word dictionary becoming enormous and consecutive characters being erroneously changed to misread characters.

そのため、 (1)手書きのときは制限をもうける。活字の場合はフ
ォントを制限する。
Therefore, (1) Set limits when writing by hand. For print, limit fonts.

(2)文字数をおさえる。(2) Limit the number of characters.

(3)後処理は文章により制限をつける(例えば住所に
は、住所に対応する辞書を設ける)。
(3) Post-processing is limited depending on the text (for example, a dictionary corresponding to the address is provided for an address).

などで対応しているのが現状である。The current situation is that we are dealing with this.

本発明は、前記従来例の欠点を除去し、字形の異なる文
字やその変形文字に対して、全体の処理スピードを落と
すことなく認識率の向上が達成できる文字認識装置を提
供する。
The present invention eliminates the drawbacks of the conventional example and provides a character recognition device that can improve the recognition rate for characters with different shapes and modified characters without reducing the overall processing speed.

詳細には、識別処理を複数設けることにより、できるだ
け多くの変形文字をできるだけ多くの1文字に対して対
応できる文字認識装置を提供する。
Specifically, by providing a plurality of identification processes, a character recognition device is provided that can handle as many modified characters as possible for as many single characters as possible.

[課題を解決するための手段〕 この課題を解決するために、本発明の文字認識装置は、
予め格納されているパターンと比較して、文字パターン
を認識する文字認識装置において、 前記文字パターンに対してそれぞれ異なる識別処理を実
行する複数の識別手段と、該複数の識別手段のそれぞれ
の第1位候補文字として選出された文字コードの中で、
最も出現率の高い文字コードを最終結果の第1位候補文
字として選出し、第1位候補文字の出現率が等しいとき
、更に他の選出処理を行う候補文字選出手段とを備える
[Means for solving the problem] In order to solve this problem, the character recognition device of the present invention has the following features:
A character recognition device that recognizes a character pattern by comparing it with a pre-stored pattern includes a plurality of identification means each performing different identification processing on the character pattern, and a first identification means of each of the plurality of identification means. Among the character codes selected as candidate characters,
The character code having the highest appearance rate is selected as the first candidate character in the final result, and when the appearance rates of the first candidate characters are equal, the candidate character selection means further performs another selection process.

ここで、候補文字選出手段は、第1位候補文字の出現率
が等しいとき、第2位以降の候補文字の出現率を第1位
候補文字の出現率に加えた和から、最終結果の第1位候
補文字を選出する。
Here, when the appearance rates of the first candidate character are equal, the candidate character selection means selects the final result from the sum of the appearance rates of the second and subsequent candidate characters to the appearance rate of the first candidate character. Select the first candidate character.

又、候補文字選出手段は、第1位候補文字の出現率が等
しいとき、前記複数の識別手段からの複数の候補文字列
に候補順位に応じて重み係数をかけ、各文字コードの総
和から最終候補文字列を生成する。
Further, when the appearance rate of the first candidate character is equal, the candidate character selection means multiplies the plurality of candidate character strings from the plurality of identification means by a weighting coefficient according to the candidate ranking, and calculates the final number from the sum of each character code. Generate candidate strings.

[作用] かかる構成において、複数の識別手段はそれぞれ異なる
識別処理を実行し、候補文字選出手段は該複数の識別手
段のそれぞれの第1位候補文字として選出された文字コ
ードの中で、最も出現率の高い文字コードを最終結果の
第1位候補文字として選出し、第1位候補文字の出現率
が等しいとき、更に他の選出処理を行う。
[Operation] In such a configuration, each of the plurality of identification means executes different identification processing, and the candidate character selection means selects the most appearing character code among the character codes selected as the first candidate character of each of the plurality of identification means. A character code with a high rate is selected as the first candidate character in the final result, and when the appearance rates of the first candidate characters are equal, another selection process is performed.

この候補文字選出手段は、第1位候補文字の出現率が等
しいとき、第2位以降の候補文字の出現率を第1位候補
文字の出現率に加えた和から、最終結果の第1位候補文
字を選出する。
This candidate character selection means selects the final result of the first candidate character from the sum of the appearance rates of the second and subsequent candidate characters to the appearance rate of the first candidate character when the appearance rates of the first candidate characters are equal. Select candidate characters.

又、候補文字選出手段は、第1位候補文字の出現率が等
しいとき、前記複数の識別手段からの複数の候補文字列
に候補順位に応じて重み係数をかけ、各文字コードの総
和から最終候補文字列を生成する。
Further, when the appearance rate of the first candidate character is equal, the candidate character selection means multiplies the plurality of candidate character strings from the plurality of identification means by a weighting coefficient according to the candidate ranking, and calculates the final number from the sum of each character code. Generate candidate strings.

つまり、本発明では、1つの識別処理から得られる認識
結果の候補文字群と他の識別処理から得られる認識結果
の候補文字群とで、識別しやすい文字に関してはほとん
ど同一の結果となるが、誤認識しやすい字形の文字に関
しては、識別処理によって異なった出力結果を算出し、
1つの識別処理でエラーした文字も他の識別処理を行な
うとほとんど誤認識しないという利点を適用する。
In other words, in the present invention, although the candidate character group of recognition results obtained from one identification process and the candidate character group of recognition results obtained from another identification process are almost the same in terms of characters that are easy to identify, For characters with shapes that are easily misrecognized, different output results are calculated through identification processing.
This method takes advantage of the fact that even if a character is erroneously recognized in one identification process, it will hardly be misrecognized if another identification process is performed.

[実施例コ 第1図は本実施例の文字認識装置のブロック構成図であ
る。第1図の入力部1は光学的画像読み爪装置等の入力
部、正規化部2は1文字づつに切り出された文字の大き
さが同一文字でも字形によって大きさが異なってくるた
め一定の大きさに正規化する。フィルタリング部3で拡
大縮小にともなう字形の変形を整形し、特徴抽出部4で
特徴抽出を行なう。この特徴抽出は、文字画像データで
は非常に大きなベクトル空間になるため、データの特徴
を生かしたままで情報を収縮する。この情報収縮の良し
悪しも後続の処理結果に多大な影響を与えるが、本実施
例では詳説はしない。
Embodiment FIG. 1 is a block diagram of the character recognition device of this embodiment. The input section 1 in Fig. 1 is an input section of an optical image reading nail device, etc., and the normalization section 2 has a fixed size because the size of the characters cut out one by one varies depending on the shape of the character even if the size of the same character is the same. Normalize to size. A filtering section 3 shapes the deformation of the character shape due to scaling, and a feature extraction section 4 extracts features. This feature extraction requires a very large vector space for character image data, so the information is compressed while keeping the features of the data intact. The quality of this information contraction has a great influence on the subsequent processing results, but will not be explained in detail in this embodiment.

次に、特徴抽出結果をもとに大分類部5で大分類処理を
行なう。この大分類処理では、比較的簡単な演算処理の
後、ソーティング部6でソーティングを行い、第50位
〜100位くらいまでの候補文字を選出する。ソーティ
ングで求められた文字コードデータに関して、識別部7
a、識別部7b、識別部7cそれぞれ異なった3種類の
識別処理を行なう。
Next, the major classification section 5 performs major classification processing based on the feature extraction results. In this major classification process, after relatively simple arithmetic processing, the sorting section 6 performs sorting to select candidate characters from about 50th to 100th place. Regarding the character code data obtained by sorting, the identification unit 7
a, the identification section 7b, and the identification section 7c perform three different types of identification processing.

3種類の識別処理では、 次の2次識別関数 G(x) □ [II x−、tM II 2を定義す
る。
In the three types of discrimination processing, the following quadratic discrimination function G(x) □ [II x-, tM II 2 is defined.

ここで、Xは特徴抽出によって求まる特徴ベクトル、μ
2は文字Mの平均特徴ベクトルであり、11・・・11
はノルムを表わす。又、H,Aは文字ごとに示される定
数、λ1は固有値、φはその固有値に対する固有ベクト
ルを示す。それぞれ、X以外は辞書化されるものである
Here, X is the feature vector found by feature extraction, μ
2 is the average feature vector of the letter M, 11...11
represents the norm. Further, H and A are constants shown for each character, λ1 is an eigenvalue, and φ is an eigenvector for the eigenvalue. All characters other than X are converted into a dictionary.

上記式をもとに識別部7aではに=5、識別部7bでは
に=7、識別部7cではに=9とじて計算する。そして
、ソーティング部8a、8b。
Based on the above formula, calculation is performed by setting 5 in the identification section 7a, 7 in the identification section 7b, and 9 in the identification section 7c. And sorting sections 8a and 8b.

8cでソーティングする。ソーティング部8a。Sort by 8c. Sorting section 8a.

8b、8cの出力結果をもとに、最終の候補文字選出を
候補文字選出部9で行い、出力部10より出力する。
Based on the output results of 8b and 8c, a final candidate character selection section 9 performs the final selection of candidate characters, and outputs them from an output section 10.

尚、本発明による異なる識別処理を用いた場合、上記式
のに=5.に=7は、k=9までの演算の途中結果と考
えられる。そのため、k=5の演算後、第1のソーティ
ングを実行、さらに、k=5までの公式の[]内の値を
使いに=7(6,7)を演算して第2のソーティングを
実行する。以下、k=9についても同様である。又、k
=5.に:=7までのソーティングの結果が同一(第1
位候補文字が同一)に成った時には演算を終了し、k=
9の演算は省略するということも本発明の異とすること
ではない。
It should be noted that when using a different identification process according to the present invention, the value of the above equation =5. ni=7 is considered to be an intermediate result of the calculation up to k=9. Therefore, after calculating k = 5, perform the first sorting, and then use the values in [ ] of the formula up to k = 5 to calculate = 7 (6, 7) and perform the second sorting. do. The same applies to k=9 below. Also, k
=5. : The sorting results up to =7 are the same (first
When the position candidate characters are the same), the calculation ends, and k=
It is not a difference in the present invention that the operation of 9 is omitted.

このように、演算を省略することにより、以下に述べる
マイクロ・プロセッサを別の目的に使用することが可能
となり効率的となる。
By omitting operations in this manner, the microprocessor described below can be used for other purposes, making it more efficient.

第2図(a)は本実施例の文字認識装置のハードウェア
構成例を示す。入力部20より入力された文字データは
、ROM22に格納されたプログラムに従って、CPU
21によりRAM23を補助用記憶として使用しながら
演算・処理を行う。文字辞書24は大分類や識別時に使
用される文字パターンを予め記憶している。認識結果は
出力部25より出力される。上記各部はバス26により
接続されて、これを介してデータのやり取りを行う。し
かし、第2図(a)の構成では、入力から出力までをシ
ーケンシャルに実行すると、認識までの経過時間が長く
なってしまう。
FIG. 2(a) shows an example of the hardware configuration of the character recognition device of this embodiment. The character data input from the input unit 20 is sent to the CPU according to the program stored in the ROM 22.
21 performs calculations and processing while using the RAM 23 as an auxiliary memory. The character dictionary 24 stores in advance character patterns used for major classification and identification. The recognition result is output from the output section 25. The above units are connected by a bus 26 and exchange data via this. However, in the configuration shown in FIG. 2(a), if the process from input to output is performed sequentially, the elapsed time until recognition becomes long.

そこで、第2図(b)のように第1図の入力部lから特
徴抽出部4までを前処理部27、大分類部5とソーティ
ング部6とを大分類処理部28、各識別部78〜7Cか
ら出力部10までを識別処理部29としてまとめ、各部
27,28.29をそれぞれのマイクロ・プロセッサで
実現すれば、その処理においては識別部を3つにしたこ
とによる処理時間の遅延を吸収できる。更に識別部78
〜7C及びソーティング部88〜8cの処理を並列に行
ってもよい。
Therefore, as shown in FIG. 2(b), the preprocessing section 27 operates from the input section 1 to the feature extraction section 4 in FIG. If the components from ~7C to the output section 10 are combined into the identification processing section 29, and each section 27, 28, and 29 is realized by a respective microprocessor, the processing time delay due to the use of three identification sections can be avoided. It can be absorbed. Furthermore, the identification section 78
7C and the sorting units 88 to 8c may be performed in parallel.

第3図で示されるものが、入力文字データの例“皇”に
対するソーティング部8a、8b、8cの第1位〜第3
位までの出力結果例である。出力結果をもとに、最終の
候補文字選出を候補文字選出部9で行い、出力部10よ
り出力する。
What is shown in FIG. 3 is the first to third rankings of the sorting units 8a, 8b, 8c for the input character data example "Ku".
This is an example of output results up to Based on the output results, the candidate character selection section 9 performs final candidate character selection, and outputs the result from the output section 10.

以下候補文字選出部9での選出例を数例示す。Several examples of selection by the candidate character selection section 9 will be shown below.

〈例1〉 ソーティング部88〜8cの出力の第1位候補文字に着
目し、ソーティング部88〜8cの第1位候補文字であ
る“皇”が最終の第1位候補文字と選出される。
<Example 1> Focusing on the first candidate character output from the sorting sections 88 to 8c, "Ku", which is the first candidate character of the sorting sections 88 to 8c, is selected as the final first candidate character.

く例2〉 例1のような出現率の高低により選出ができない場合に
は、順に第2位、第3位候補をアクセスして、より出現
率の高いものを選出する。
Example 2 If selection cannot be made due to the high or low appearance rate as in Example 1, the second and third place candidates are accessed in order and the one with the higher appearance rate is selected.

例えば、ソーティング部7bの出力である第1位と第2
位を交換して説明する。第1位として°゛呈”、“真”
、“皇”が選出され、各出現率は等しい。次に、第2位
候補文字をアクセスすると、°゛呈”と“皇”とが生き
残る。次に、第3位候補文字をアクセスし、“皇”が最
終出力の第1位候補として選出されることになる。
For example, the first and second ranks output from the sorting unit 7b
Exchange positions and explain. The first place is °゛present”, “true”
, the "Emperor" is selected, and each appearance rate is equal. Next, when the second candidate character is accessed, "゛present" and "Ku" survive.Next, the third candidate character is accessed, and "Ku" is selected as the first candidate for the final output. That will happen.

〈例3〉 候補文字に優先順に重みを付けて、各文字毎の総和の大
きい順に優先順位を付ける。
<Example 3> Candidate characters are weighted in order of priority and prioritized in descending order of the total sum of each character.

例2と同様にソーティング部8bの出力を交換した状態
で説明する。ここで、第1位に3、第2位に2、第3位
に1の重み係数を考えると、ソーティング部8aの出力
から3×”呈”。
As in Example 2, a description will be given with the output of the sorting section 8b being exchanged. Here, considering the weighting coefficients of 3 for the first place, 2 for the second place, and 1 for the third place, 3 x "presentation" is obtained from the output of the sorting section 8a.

2ד星”11ד皇”、ソーティング部8bの出力か
ら3ד真”、2ד皇”、1ד昌”、ソーティング
部8cの出力から3ד皇“。
2 x "Hoshi" 11 x "Kou", 3 x "Shin" from the output of the sorting unit 8b, 2 x "Kou", 1 x "Chang", and 3 x "Kou" from the output of the sorting unit 8c.

2ד呈”、IX”亘”となり、結果として6ד皇”
、5X“呈”・・・を得る。従って“皇”が第1位候補
として選出されることになる。
2 x “Sei”, IX “Wataru”, resulting in 6 x “Kou”
, 5X "presentation"... is obtained. Therefore, "Kou" will be selected as the first candidate.

上記例1〜例3の処理は独立して行われてもよいし、又
複数の処理を組み合わせ、各処理に優先順位を与えても
よい。尚、処理は上記例に限定されない。
The processes in Examples 1 to 3 above may be performed independently, or a plurality of processes may be combined and priorities may be given to each process. Note that the processing is not limited to the above example.

第4図は、本実施例の処理のタイミングチャートを示す
。図に示すように、3つの識別処理を行ってもトータル
のスルーブツトに影響のないことがわかる。ここで、詳
細分類と示すのが、識別部78〜7C及び各々のソーテ
ィング部88〜8cによるソーティングを示す部分であ
る。
FIG. 4 shows a timing chart of the processing of this embodiment. As shown in the figure, it can be seen that performing the three identification processes has no effect on the total throughput. Here, the detailed classification is a portion indicating sorting by the identification sections 78 to 7C and the respective sorting sections 88 to 8c.

つまり、■−1で示すのが、最初の文字の識別部7aで
の識別とソーティング部8aでのソーティングである。
In other words, what is indicated by ■-1 is the identification of the first character by the identification section 7a and the sorting by the sorting section 8a.

[発明の効果コ 本発明により、字形の異なる文字やその変形文字に対し
て、全体の処理スピードを落とすことなく認識率の向上
が達成できる文字認識装置を提供できる。
[Effects of the Invention] According to the present invention, it is possible to provide a character recognition device that can improve the recognition rate for characters with different shapes and modified characters without reducing the overall processing speed.

詳細には、識別処理を複数設けることにより、できるだ
け多くの変形文字をできるだけ多くの文字に対して対応
できる文字認識装置を提供できる。
Specifically, by providing a plurality of identification processes, it is possible to provide a character recognition device that can handle as many modified characters as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例の文字認識装置のブロック構成図、 第2図(a)、(b)は本実施例の文字認識装置のハー
ドウェア構成図、 第3図はソーティング部よりの出力例を示す図、 第4図は本実施例の処理タイミングチャートを示す図で
ある。 図中、■・・・入力部、2・・・正規化部、3・・・フ
ィルタリング部、4・・・特徴抽出部、5・・・大分類
部、6・・・ソーティング部、7a、7b、7c・・・
識別部、8a、8b、8c・・・ソーティング部、9・
・・候補文字選出部、1o・・・出力部、20・・・入
力部、21 ・・・CPU、  22 ・・・ROM、
  23 ・・・RAM。 24・・・文字辞書、25・・・出力部、26・・・バ
ス、27・・・前処理部、28・・・大分類処理部、2
9・・・識別処理部である。
Figure 1 is a block configuration diagram of the character recognition device of this embodiment. Figures 2 (a) and (b) are hardware configuration diagrams of the character recognition device of this embodiment. Figure 3 is an example of output from the sorting section. FIG. 4 is a diagram showing a processing timing chart of this embodiment. In the figure, ■... Input section, 2... Normalization section, 3... Filtering section, 4... Feature extraction section, 5... Major classification section, 6... Sorting section, 7a, 7b, 7c...
Identification section, 8a, 8b, 8c... Sorting section, 9.
...Candidate character selection section, 1o...Output section, 20...Input section, 21...CPU, 22...ROM,
23...RAM. 24... Character dictionary, 25... Output section, 26... Bus, 27... Preprocessing section, 28... Main classification processing section, 2
9...Identification processing section.

Claims (3)

【特許請求の範囲】[Claims] (1)予め格納されているパターンと比較して、文字パ
ターンを認識する文字認識装置において、前記文字パタ
ーンに対してそれぞれ異なる識別処理を実行する複数の
識別手段と、 該複数の識別手段のそれぞれの第1位候補文字として選
出された文字コードの中で、最も出現率の高い文字コー
ドを最終結果の第1位候補文字として選出し、第1位候
補文字の出現率が等しいとき、更に他の選出処理を行う
候補文字選出手段とを備えることを特徴とする文字認識
装置。
(1) In a character recognition device that recognizes a character pattern by comparing it with a pre-stored pattern, a plurality of identification means each perform a different identification process on the character pattern, and each of the plurality of identification means Among the character codes selected as the first candidate character, the character code with the highest appearance rate is selected as the first candidate character in the final result, and when the appearance rates of the first candidate characters are equal, the other character codes are selected. 1. A character recognition device comprising candidate character selection means for performing a selection process.
(2)候補文字選出手段は、第1位候補文字の出現率が
等しいとき、第2位以降の候補文字の出現率を第1位候
補文字の出現率に加えた和から、最終結果の第1位候補
文字を選出することを特徴とする請求項第1項記載の文
字認識装置。
(2) When the appearance rates of the first candidate character are equal, the candidate character selection means selects the final result from the sum of the appearance rates of the second and subsequent candidate characters to the appearance rate of the first candidate character. 2. The character recognition device according to claim 1, wherein the first candidate character is selected.
(3)候補文字選出手段は、第1位候補文字の出現率が
等しいとき、前記複数の識別手段からの複数の候補文字
列に候補順位に応じて重み係数をかけ、各文字コードの
総和から最終候補文字列を生成することを特徴とする請
求項第1項記載の文字認識装置。
(3) When the appearance rate of the first candidate character is equal, the candidate character selection means multiplies the plurality of candidate character strings from the plurality of identification means by a weighting coefficient according to the candidate ranking, and from the sum of each character code. 2. The character recognition device according to claim 1, wherein the character recognition device generates a final candidate character string.
JP63087125A 1988-04-11 1988-04-11 Character recognition method Expired - Fee Related JP2755595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63087125A JP2755595B2 (en) 1988-04-11 1988-04-11 Character recognition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63087125A JP2755595B2 (en) 1988-04-11 1988-04-11 Character recognition method

Publications (2)

Publication Number Publication Date
JPH01259475A true JPH01259475A (en) 1989-10-17
JP2755595B2 JP2755595B2 (en) 1998-05-20

Family

ID=13906237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63087125A Expired - Fee Related JP2755595B2 (en) 1988-04-11 1988-04-11 Character recognition method

Country Status (1)

Country Link
JP (1) JP2755595B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158482A (en) * 1983-02-28 1984-09-07 Toshiba Corp Character recognizing device
JPS60108981A (en) * 1983-11-18 1985-06-14 Hitachi Ltd Optical character reader
JPS62219091A (en) * 1986-03-19 1987-09-26 Fujitsu Ltd Character recognizing and deciding system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158482A (en) * 1983-02-28 1984-09-07 Toshiba Corp Character recognizing device
JPS60108981A (en) * 1983-11-18 1985-06-14 Hitachi Ltd Optical character reader
JPS62219091A (en) * 1986-03-19 1987-09-26 Fujitsu Ltd Character recognizing and deciding system

Also Published As

Publication number Publication date
JP2755595B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
US5982929A (en) Pattern recognition method and system
JP3155577B2 (en) Character recognition method and device
EP0608708A2 (en) Automatic handwriting recognition using both static and dynamic parameters
JPS60142793A (en) Character recognition
JP2003524258A (en) Method and apparatus for processing electronic documents
JP3634574B2 (en) Information processing method and apparatus
JP4935905B2 (en) Character recognition processing method and apparatus
JP3537949B2 (en) Pattern recognition apparatus and dictionary correction method in the apparatus
JPH01259475A (en) Character recognizing device
JPH06103402A (en) Business card recognizing device
JPH09179935A (en) Character recognition device and control method therefor
JPH0540852A (en) Pattern recognizing device
JP2639314B2 (en) Character recognition method
JP2875678B2 (en) Post-processing method of character recognition result
JPS62130482A (en) Character recognition system
JP2851865B2 (en) Character recognition device
JPH02293990A (en) Character recognizing device
JPS62281082A (en) Character recognizing device
JP3238776B2 (en) Large classification dictionary creation method and character recognition device
KR930012140B1 (en) Recogntion method of on-line writing down character using stroke automata
JPH08212300A (en) Method and device for recognizing character
JPH09231314A (en) On-line handwritten character recognizing device
JP3245415B2 (en) Character recognition method
JPH0765128A (en) Method for generating dictionary for type character recognition
JPH05298489A (en) System for recognizing character

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees