JPH0125878Y2 - - Google Patents

Info

Publication number
JPH0125878Y2
JPH0125878Y2 JP1983036253U JP3625383U JPH0125878Y2 JP H0125878 Y2 JPH0125878 Y2 JP H0125878Y2 JP 1983036253 U JP1983036253 U JP 1983036253U JP 3625383 U JP3625383 U JP 3625383U JP H0125878 Y2 JPH0125878 Y2 JP H0125878Y2
Authority
JP
Japan
Prior art keywords
cwm
piping
combustion
storage tank
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983036253U
Other languages
Japanese (ja)
Other versions
JPS59144336U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3625383U priority Critical patent/JPS59144336U/en
Publication of JPS59144336U publication Critical patent/JPS59144336U/en
Application granted granted Critical
Publication of JPH0125878Y2 publication Critical patent/JPH0125878Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔考案の利用分野〕 本考案は燃焼装置に関し、特にCWM(微粉炭
と水その他の液体媒体とのスラリ状混合物を本明
細書において略称する)燃焼装置における配管内
の詰りを防止したCWM燃焼装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a combustion device, and particularly to a CWM (slurry-like mixture of pulverized coal and water or other liquid medium is abbreviated herein) combustion device. Regarding CWM combustion equipment that prevents clogging.

〔従来技術〕[Prior art]

石炭燃焼装置として、ミルによつて平均粒径が
50μ程度になるように粉砕した微粉炭を空気によ
つて搬送して火炉内に連続的に供給するようにし
たものが知られている。この形式の燃焼装置は石
炭を固体として取扱うために輸送費が増大し、広
大な貯炭場を必要とするという欠点を有してい
る。さらに、貯炭場における自然発火の問題や、
煤塵の飛散の問題など、安全性や環境規制などに
対処するための費用が必要であつた。さらに、こ
の形式のものは液体燃料と異つてハンドリングの
自動化が困難であり、多大の人手を必要としてい
た。さらに、従来技術では流量などの計測が困難
であり、高価な計測器が必要である。このように
従来技術による石炭の燃焼はガス、液体燃料に比
して経費が大であり、価格的に有利な石炭を使用
しても総合的には経済性が低いものであつた。こ
のような従来技術の欠点を除去するため、微粉炭
と水などの液体媒体とを混合してスラリ状とし、
液体燃料と同様に取扱うことを可能とする技術が
開発された。この微粉炭と液体媒体とのスラリ状
混合物はCWMと名付けられる。こゝでCWMは
その物理的性状としては単に微粉炭と液体媒体例
えば水との混合物であるから、CWMを輸送する
配管内に長期の静止状態がつゞくと微粉炭が沈澱
して一部が固体化するという問題がある。さら
に、CWMの流動性をつかさどる水(液体媒体)
は加熱すると蒸発する傾向を有し、これはCWM
の固体化を促進することになる。すなわち従来の
CWM燃焼装置においては、配管中の詰りによつ
て、燃焼装置の作動信頼性を低下させるという問
題点がある。
As a coal combustion device, the average particle size is
It is known that pulverized coal that has been crushed to a size of about 50 microns is conveyed by air and continuously supplied into a furnace. This type of combustion apparatus has the drawbacks of increasing transportation costs because the coal is handled as a solid, and requiring a vast coal storage area. Furthermore, the problem of spontaneous combustion in coal storage areas,
Expenses were needed to deal with safety and environmental regulations, such as the issue of soot and dust scattering. Furthermore, unlike liquid fuel, it is difficult to automate the handling of this type of fuel, and it requires a large amount of manpower. Furthermore, with conventional techniques, it is difficult to measure flow rates, etc., and expensive measuring instruments are required. As described above, coal combustion according to the prior art is more expensive than gas or liquid fuels, and even if coal, which is advantageous in price, is used, the overall economic efficiency is low. In order to eliminate these drawbacks of the conventional technology, pulverized coal is mixed with a liquid medium such as water to form a slurry.
A technology has been developed that allows it to be handled in the same way as liquid fuel. This slurry-like mixture of pulverized coal and liquid medium is named CWM. Physically, CWM is simply a mixture of pulverized coal and a liquid medium such as water, so if the piping that transports CWM remains stationary for a long period of time, the pulverized coal will settle and some of it will dissolve. There is a problem that it becomes solid. Furthermore, water (liquid medium) controls the fluidity of CWM.
has a tendency to evaporate when heated, which is the CWM
This will promote solidification. That is, conventional
CWM combustion equipment has a problem in that clogging in the piping reduces the operational reliability of the combustion equipment.

〔考案の目的〕[Purpose of invention]

本考案の目的は上述した従来技術の欠点を除去
して、CWM配管中の固体化による詰りを防止し
て、安全で、信頼性の高いCWM燃焼装置を得る
ことを目的としている。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art, prevent clogging due to solidification in CWM piping, and obtain a safe and reliable CWM combustion device.

本考案によれば、CWMを貯蔵する貯蔵タンク
と、CWM圧送用ポンプを含むCWM供給配管と、
CWM供給配管に連結されたバーナガンとを含
み、少くとも1系統の戻り配管が設けられ、該戻
り配管が分級器と、粗粒のCWMを再粉砕する湿
式ミルとを含んでいるCWM燃焼装置が提供され
る。
According to the present invention, a storage tank for storing CWM, a CWM supply pipe including a pump for pumping CWM,
A CWM combustion apparatus includes a burner gun connected to a CWM supply pipe, and at least one return pipe is provided, the return pipe including a classifier and a wet mill for re-grinding coarse CWM. provided.

本考案によれば従来技術の上述した欠点が除去
され、高効率燃焼が可能であり、且つ安全性、信
頼性の高いCWM燃焼装置が得られる。
According to the present invention, the above-mentioned drawbacks of the prior art are eliminated, and a CWM combustion device capable of highly efficient combustion and highly safe and reliable can be obtained.

CWMの品質の劣化を防止することができ、燃
焼装置の作動信頼性が著しく向上する。
It is possible to prevent deterioration of CWM quality and significantly improve the operational reliability of combustion equipment.

さらに本考案によれば、少くとも1系統のパー
ジ装置をCWM供給配管に連結し、該供給配管中
のCWMをパージ流体によつて置換可能とした、
CWM燃焼装置が提供される。
Further, according to the present invention, at least one purge device is connected to the CWM supply pipe, and the CWM in the supply pipe can be replaced by the purge fluid.
CWM combustion equipment is provided.

〔考案の実施例〕[Example of idea]

以下、添付図面に例示する本考案の望ましい実
施例を詳述し、本考案の作用および効果を明確と
する。
Hereinafter, preferred embodiments of the present invention will be described in detail as illustrated in the accompanying drawings to clarify the functions and effects of the present invention.

第1図は本考案によるCWM燃焼装置の基本的
構造を示し、貯蔵タンク1に貯えられたCWMは
前ストレーナ2で粗粒粉を分離し、ポンプ3で加
圧され、後ストレーナ4でさらに粗粒粉を分離除
去した後、CWMマニホルド5、CWM供給枝管
6を介してそれぞれバーナガン(図示しない)に
供給され、燃焼せしめられる。貯蔵タンク1、前
ストレーナ2、後ストレーナ4、マニホルド5に
はそれぞれドレン管7,8,910が設けられ、
各ドレンは湿式ミル11、配管12を経て、貯蔵
タンク1に連結される。なお第1図において流量
計、弁などは図示されていない。第1図の装置に
よれば、ストレーナによつて分離された粗粒粉、
ドレンされたCWMは湿式ミル11によつて改質
されて貯蔵タンクに戻されるから、系統内の
CWMの品質は良好に維持される。なお、CWM
は貯蔵タンク1の底部や側部などにも、濃縮した
CWMが生じ易い傾向があり、タンクドレン管7
はこのような濃縮CWMを排出し、改質する作用
も有している。
Figure 1 shows the basic structure of the CWM combustion device according to the present invention. CWM stored in a storage tank 1 is separated from coarse powder by a front strainer 2, pressurized by a pump 3, and further coarsened by a rear strainer 4. After the grain powder is separated and removed, it is supplied to a burner gun (not shown) via a CWM manifold 5 and a CWM supply branch pipe 6, and is burned. Drain pipes 7, 8, 910 are provided in the storage tank 1, front strainer 2, rear strainer 4, and manifold 5, respectively,
Each drain is connected to the storage tank 1 via a wet mill 11 and piping 12. Note that in FIG. 1, flow meters, valves, etc. are not shown. According to the apparatus shown in FIG. 1, coarse powder separated by a strainer,
The drained CWM is reformed by the wet mill 11 and returned to the storage tank.
CWM quality is maintained well. In addition, CWM
There is also concentrated water at the bottom and sides of storage tank 1.
CWM tends to occur easily, tank drain pipe 7
also has the function of discharging and reforming such concentrated CWM.

第2図は本考案の実施例を示しており、戻り配
管中に分級器13が湿式ミル11の手前に設けら
れており、粗粒粉や固体化したCWMのみが湿式
ミル11に送られる。分級器13を通つた微粒粉
は湿式ミル11を通つた微粒粉CWMと合流して
貯蔵タンク1へ戻される。この配置は湿式ミル1
1の容量で小ですみ、配管の詰りを防止するとい
う利点がある。
FIG. 2 shows an embodiment of the present invention, in which a classifier 13 is installed in the return pipe before the wet mill 11, and only coarse powder and solidified CWM are sent to the wet mill 11. The fine powder that has passed through the classifier 13 is combined with the fine powder CWM that has passed through the wet mill 11 and is returned to the storage tank 1. This arrangement is wet mill 1
It has the advantage of having a small capacity of 1 and preventing clogging of pipes.

CWMでは特に約10μm以下の微粒粉によつて
粘度特性が変化し、微粒粉が多いほゞ良質とな
る。湿式ミルによつて再粉砕を行うことにより、
CWMの粒子間で新しい架橋が作られ、CWMの
沈降が生じにくくなる。なお、湿式ミル11にお
いて、粒子間の架橋の生成を促進するために添加
剤を加えてもよい。
In CWM, the viscosity characteristics change depending on the fine powder of about 10 μm or less, and the more fine powder there is, the better the quality. By re-grinding with a wet mill,
New bridges are created between CWM particles, making it difficult for CWM to settle. Note that in the wet mill 11, additives may be added to promote the formation of crosslinks between particles.

本考案は媒体流体が水であるCWM以外に、例
えばメチルアルコールなどの粘度の低い媒体流体
を含むCWMにも適用可能である。
The present invention is applicable not only to CWM in which the medium fluid is water, but also to CWM including a medium fluid with low viscosity, such as methyl alcohol.

本考案によればCWMの利用率を100%近くに
することが可能である。なお、一時的に品質の悪
いCWMが貯蔵タンク1に供給された場合でもそ
の品質を改質することができる。さらに、再粉砕
によつてCWMの粘度特性が改善され、その結
果、燃焼効率を向上させることができる。なお、
CWM供給装置の詰り防止が可能であり、安全性
や信頼性を高めることができる。
According to the present invention, it is possible to achieve a CWM utilization rate of nearly 100%. Note that even if CWM of poor quality is temporarily supplied to the storage tank 1, its quality can be improved. Furthermore, re-grinding improves the viscosity properties of CWM, which can improve combustion efficiency. In addition,
It is possible to prevent clogging of the CWM supply device, increasing safety and reliability.

第3図は本考案の別の実施例を示すが、戻り配
管中の分級器と湿式ミルとは省略してある。
CWM供給系統として貯蔵タンク1、ポンプ3、
ストレーナ4、ヒータ兼ヘツダ5′、分岐配管6、
バーナガン15が設けられ、火炉17内に噴射さ
れたCWMは火焔16を形成して燃焼する。
CWM戻り配管として、破線によつてストレーナ
4からの戻り配管9、ヘツダ5′からの配管10、
配管6またはバーナガン15からの戻り配管1
0′が示されている。これらの戻り配管は図示の
如く別個に貯蔵タンク1に戻されてもよいが、第
1図又は第2図に示す如く共通配管としてもよ
く、湿式ミルや分級器を設けてもよい。本実施例
では上述のほか、パージ装置が設けられている。
パージ装置はパージ用流体源18、パージ用配管
19,20,21,22等を含んでいる。通常の
運転状態ではCWMは実線に示す配管を通つてバ
ーナガン15で燃焼せしめられる。運転を停止す
るときは、ヒータ兼ヘツダ5′内で加熱される
CWMは流動が停止すると水分の多い上層部と微
粉炭の多い下層部とに分離する傾向が生じ、下層
部のCWM濃度が上昇し固体化が発生する。そこ
で運転停止に際してはヒータ兼ヘツダの加熱動作
を停止し、できるだけ短時間でヒータ兼ヘツダ
5′の戻り管10を経てCWM貯蔵タンク1に戻
す必要がある。さらに、バーナガン15の場合は
火炉17から熱輻射を受けやすく、高温になるの
でCWMが残留すると固体化してしまう。そこで
バーナガン15内のCWMは炉内に噴射してパー
ジ流体と置換することが必要である。このためパ
ージ流体を供給源18から配管22を介してバー
ナガン15に供給する。なおパージ流体としては
水、空気、N2ガス、燃料油などが使用される。
FIG. 3 shows another embodiment of the invention, but the classifier and wet mill in the return line are omitted.
CWM supply system includes storage tank 1, pump 3,
Strainer 4, heater/header 5', branch piping 6,
A burner gun 15 is provided, and the CWM injected into the furnace 17 forms a flame 16 and burns.
As CWM return piping, a return piping 9 from the strainer 4, a piping 10 from the header 5', indicated by broken lines,
Return piping 1 from piping 6 or burner gun 15
0' is shown. These return pipes may be returned to the storage tank 1 separately as shown, but they may also be a common pipe as shown in FIG. 1 or 2, or a wet mill or classifier may be provided. In this embodiment, in addition to the above, a purge device is provided.
The purge device includes a purge fluid source 18, purge pipes 19, 20, 21, 22, and the like. Under normal operating conditions, the CWM is combusted by the burner gun 15 through the piping shown by the solid line. When the operation is stopped, it is heated in the heater/header 5'.
When CWM stops flowing, it tends to separate into an upper layer with a lot of water and a lower layer with a lot of pulverized coal, and the CWM concentration in the bottom layer increases and solidification occurs. Therefore, when the operation is stopped, it is necessary to stop the heating operation of the heater/header and return it to the CWM storage tank 1 via the return pipe 10 of the heater/header 5' as quickly as possible. Furthermore, in the case of the burner gun 15, it is susceptible to heat radiation from the furnace 17 and reaches a high temperature, so if CWM remains, it will solidify. Therefore, it is necessary to inject the CWM in the burner gun 15 into the furnace and replace it with purge fluid. For this purpose, purge fluid is supplied from the supply source 18 to the burner gun 15 via the piping 22. Note that water, air, N2 gas, fuel oil, etc. are used as the purge fluid.

CWM供給配管中でCWMが固体化して詰りが
生ずることを防止するために、詰りが生ずる傾向
のある部位にパージ流体供給配管を設け、戻り配
管を介して貯蔵タンク1へかえす。第3図の実施
例において、ポンプ3、ストレーナ4についても
パージ流体供給配管19,20、戻り配管9が設
けられている。この配置はポンプ3、ストレーナ
4の故障対策としても有効である。
In order to prevent CWM from solidifying and clogging the CWM supply piping, a purge fluid supply piping is provided at a location where clogging tends to occur, and the purge fluid is returned to the storage tank 1 via a return piping. In the embodiment shown in FIG. 3, the pump 3 and strainer 4 are also provided with purge fluid supply piping 19, 20 and return piping 9. This arrangement is also effective as a countermeasure against failures of the pump 3 and strainer 4.

第4図はCWMの濃度と粘度との関係を示して
いる。この特性は石炭の性状や添加剤または製造
方法の違いによるCWMの粒度分布によりいくら
か変化するが、CWMが或る濃度(少くとも80%
以上)以上になると粘度が急激に上昇して固体化
が生ずる傾向がある。なおCWM燃焼装置の場
合、OWM濃度が低下すれば火炉中に過量の水が
送入されることとなり、水による潜熱損失が増加
する傾向を本質的に有しており、高濃度のCWM
が望ましい。しかし、濃度が高くなりすぎると固
体化が発生するのでCWMの濃度はかなり狭い範
囲に限定され、4〜5%の濃度変化であつても固
体化が生ずる。
Figure 4 shows the relationship between CWM concentration and viscosity. This property varies somewhat depending on the particle size distribution of CWM due to differences in coal properties, additives, or manufacturing methods, but it is important to note that this property varies somewhat depending on the particle size distribution of CWM due to differences in coal properties, additives, or manufacturing methods.
Above), the viscosity tends to increase rapidly and solidification tends to occur. In the case of CWM combustion equipment, if the OWM concentration decreases, an excessive amount of water will be fed into the furnace, which inherently tends to increase latent heat loss due to water.
is desirable. However, if the concentration becomes too high, solidification will occur, so the concentration of CWM is limited to a fairly narrow range, and even a change in concentration of 4 to 5% will cause solidification.

本考案によるCWM(微粉炭スラリ)の媒体は
水に限定されるものではなく、メチルアルコール
などの低級アルコール等を媒体とする微粉炭スラ
リについても適用可能である。低級アルコールは
水と対比して気化しやすく、スラリの固体化速度
がはやい。本考案はこのような場合にも特に有効
である。
The medium of the CWM (pulverized coal slurry) according to the present invention is not limited to water, but can also be applied to a pulverized coal slurry using a lower alcohol such as methyl alcohol as a medium. Lower alcohols vaporize more easily than water, and solidify the slurry more quickly. The present invention is particularly effective in such cases as well.

本考案は油と微粉炭とのスラリ(通常COMと
名付けられる)についても、同様に適用可能であ
る。COMの場合は加熱すると低粘度化し、また
バーナガン先端部の熱輻射を受けるところではコ
ーキング化する傾向を有しているが、本考案は同
様に適用可能である。
The invention is equally applicable to oil and pulverized coal slurries (commonly named COM). In the case of COM, the viscosity decreases when heated, and the area at the tip of the burner gun that receives heat radiation tends to become caulked, but the present invention is similarly applicable.

〔考案の効果〕[Effect of idea]

本考案によれば配管中の詰りが効果的に防止さ
れ、高い安全性と信頼性とを得ることができる。
さらに、本考案によれば、例えば詰りが生じても
その前後のCWM配管中のCWMを貯蔵タンクに
戻すことが可能であり、従つて保守、補修が容易
である。配管中のCWMを貯蔵タンクに戻すこと
によつて微粉炭の利用率を高めることができ、燃
料を節約することができる。
According to the present invention, clogging in the piping can be effectively prevented and high safety and reliability can be obtained.
Furthermore, according to the present invention, even if clogging occurs, it is possible to return the CWM in the CWM piping before and after the clogging to the storage tank, and therefore maintenance and repair are easy. By returning the CWM in the piping to the storage tank, the utilization rate of pulverized coal can be increased and fuel can be saved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案のCWM燃焼装置の基本的構造
を示す概略図、第2図は本考案の実施例を示す概
略系統図、第3図は本考案の別の実施例を一部を
省略して示す概略系統図、第4図はCWMの濃度
と粘度との関係を例示する図である。 1……貯蔵タンク、2……前ストレーナ、3…
…ポンプ、4……後ストレーナ、5……マニホル
ド、5′……ヒータ兼ヘツダ、6……CWM供給
枝管、7,8,9,10,10′……ドレン管、
11……湿式ミル、13……分離器、15……バ
ーナガン、17……火炉、18……パージ流体
源、19,20,21,22……パージ流体供給
管。
Fig. 1 is a schematic diagram showing the basic structure of the CWM combustion device of the invention, Fig. 2 is a schematic system diagram showing an embodiment of the invention, and Fig. 3 shows another embodiment of the invention with some parts omitted. The schematic system diagram shown in FIG. 4 is a diagram illustrating the relationship between the concentration and viscosity of CWM. 1... Storage tank, 2... Front strainer, 3...
... Pump, 4 ... Rear strainer, 5 ... Manifold, 5' ... Heater and header, 6 ... CWM supply branch pipe, 7, 8, 9, 10, 10' ... Drain pipe,
11... Wet mill, 13... Separator, 15... Burner gun, 17... Furnace, 18... Purge fluid source, 19, 20, 21, 22... Purge fluid supply pipe.

Claims (1)

【実用新案登録請求の範囲】 (1) CWMを貯蔵する貯蔵タンクと、CWM圧送
用ポンプを含むCWM供給配管と、CWM供給
配管に連結されたバーナガンとを含むCWM燃
焼装置において、少くとも1系統の戻り配管が
設けられ、該戻り配管が分級器と、粗粒の
CWMを再粉砕する湿式ミルとを含むことを特
徴とするCWM燃焼装置。 (2) 少くとも1系統のパージ装置を前記CWM供
給配管に連結し、該供給配管内のCWMをパー
ジ流体によつて置換可能としたことを特徴とす
る請求項(1)に記載のCWM燃焼装置。 (3) パージ流体供給配管をパージ流体源から前記
CWM供給配管中の各素子、例えばポンプ、ス
トレーナ等のそれぞれまで導いて設けたことを
特徴とする請求項(2)に記載のCWM燃焼装置。
[Scope of Claim for Utility Model Registration] (1) At least one system in a CWM combustion device including a storage tank for storing CWM, a CWM supply pipe including a pump for pumping CWM, and a burner gun connected to the CWM supply pipe. A return pipe is provided, and the return pipe connects the classifier and coarse particles.
A CWM combustion device comprising: a wet mill for re-grinding CWM; (2) The CWM combustion according to claim (1), characterized in that at least one system of purge equipment is connected to the CWM supply pipe, and the CWM in the supply pipe can be replaced by the purge fluid. Device. (3) Connect the purge fluid supply piping from the purge fluid source to the
3. The CWM combustion apparatus according to claim 2, wherein the CWM combustion apparatus is provided so as to be led to each element in the CWM supply piping, such as a pump and a strainer.
JP3625383U 1983-03-15 1983-03-15 CWM combustion device Granted JPS59144336U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3625383U JPS59144336U (en) 1983-03-15 1983-03-15 CWM combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3625383U JPS59144336U (en) 1983-03-15 1983-03-15 CWM combustion device

Publications (2)

Publication Number Publication Date
JPS59144336U JPS59144336U (en) 1984-09-27
JPH0125878Y2 true JPH0125878Y2 (en) 1989-08-02

Family

ID=30166931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3625383U Granted JPS59144336U (en) 1983-03-15 1983-03-15 CWM combustion device

Country Status (1)

Country Link
JP (1) JPS59144336U (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249173A (en) * 1975-10-04 1977-04-19 Teckton Inc Electric instrument heating packed foods
JPS5528453A (en) * 1978-08-22 1980-02-29 Nippon Furnace Kogyo Kaisha Ltd Supply piping for mixed fuel of liquid fuel and solid fuel
JPS5792617A (en) * 1980-12-01 1982-06-09 Kobe Steel Ltd Control method of slurry fuel combustion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249173A (en) * 1975-10-04 1977-04-19 Teckton Inc Electric instrument heating packed foods
JPS5528453A (en) * 1978-08-22 1980-02-29 Nippon Furnace Kogyo Kaisha Ltd Supply piping for mixed fuel of liquid fuel and solid fuel
JPS5792617A (en) * 1980-12-01 1982-06-09 Kobe Steel Ltd Control method of slurry fuel combustion

Also Published As

Publication number Publication date
JPS59144336U (en) 1984-09-27

Similar Documents

Publication Publication Date Title
JPH0125878Y2 (en)
JPH0611388B2 (en) Solid-liquid mixed fluid transport pipeline blockage prevention operation method
CN217567202U (en) Device for preventing coal spontaneous combustion in coal storage yard
JP2855874B2 (en) High temperature CWM supply device
JP3286762B2 (en) Slurry supply conduit and pressurized fluidized bed combustion furnace
JPH0524406B2 (en)
JPH0354719B2 (en)
Winkler Heavy Distillate Gas Turbine Fuels-Handling Requirements for Land and Sea
JPH0139013B2 (en)
JP2575084B2 (en) Coal reforming method
Fallon Flow Improver Additives—Effective for Winterizing Diesel Fuels
JP3616110B2 (en) Pasty fuel manufacturing method and apparatus
JPH0353008Y2 (en)
JPH0351631Y2 (en)
JPH0347316B2 (en)
Lecky Coal-oil-mixture technology: a status report
JPS60186594A (en) Regulation of slurry fuel composed of solid carbon particles and liquid
JPH09250736A (en) Emulsion combustion device
JPS6317316B2 (en)
JPS6370018A (en) Combustion device for coal-water slurry
JPS5910969B2 (en) Coal slurry blast furnace injection method and device
JPS61268916A (en) Fuel oil blending device
JPS59193151A (en) Prevention of clogging of coal supply pipe
JPS5984982A (en) Combustion assistant for liquid fuel and mixture of solid and liquid fuels
Lu et al. The regeneration of diesel particulates filter (DPF) with hydrogen