JPH0125829B2 - - Google Patents

Info

Publication number
JPH0125829B2
JPH0125829B2 JP14050183A JP14050183A JPH0125829B2 JP H0125829 B2 JPH0125829 B2 JP H0125829B2 JP 14050183 A JP14050183 A JP 14050183A JP 14050183 A JP14050183 A JP 14050183A JP H0125829 B2 JPH0125829 B2 JP H0125829B2
Authority
JP
Japan
Prior art keywords
amount
corrosion
steam generator
hydrogen
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14050183A
Other languages
Japanese (ja)
Other versions
JPS6033372A (en
Inventor
Koji Ikenaga
Yoji Ko
Masayuki Uchama
Koji Arioka
Hayami Nagano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Kansai Denryoku KK filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14050183A priority Critical patent/JPS6033372A/en
Publication of JPS6033372A publication Critical patent/JPS6033372A/en
Publication of JPH0125829B2 publication Critical patent/JPH0125829B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、蒸気発生器、熱交換器等に発生する
腐食モニタ方法に関し、特に腐食に伴つて発生す
る水素量を検知して腐食をモニタする方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for monitoring corrosion occurring in steam generators, heat exchangers, etc., and particularly to a method for monitoring corrosion by detecting the amount of hydrogen generated as a result of corrosion.

原子力発電所の蒸気発生器(以下PWR―SGと
略記)や、火力発電所、化学プラント等で多用さ
れる蒸発器、熱交換器などの伝熱管を経て熱伝達
も行なう機器においては、いずれも伝熱管に大き
な熱負荷をかけており、しばしば腐食事例が報告
される。
Steam generators in nuclear power plants (hereinafter abbreviated as PWR-SG), evaporators, heat exchangers, and other devices often used in thermal power plants, chemical plants, and other equipment that also transfer heat through heat transfer tubes are A large heat load is placed on the heat exchanger tubes, and corrosion cases are often reported.

ことにPWR−SGでは、腐食に係る事故が放射
性物質のリークの原因となり、即発電プラントの
停止につながるだけに腐食程度の把握または予測
ができれば、その効果は大きい。
In particular, in PWR-SG, accidents related to corrosion can cause a leak of radioactive materials, leading to immediate shutdown of the power plant, so being able to understand or predict the extent of corrosion would be very effective.

本発明者等は、PWR―SGの腐食に係る諸調
査・研究を実施してきた段階で、海外のPWR―
SGのデンテイング現象の重大性に着目し、この
現象の解明を行つたところ、次のような知見を得
た。すなわち、腐食は後述する式(1)の反応にもと
づいて水素ガス(以下H2)を発生するため、こ
れを正確に測定できれば腐食傾向が正確に把握で
き、その腐食現象の解明と事故防止または予測あ
るいは事前の対策が可能となり有効な結果が期待
される。
The inventors of the present invention, while conducting various surveys and research related to corrosion of PWR-SG, discovered that
Focusing on the significance of the SG denting phenomenon, we attempted to elucidate this phenomenon and obtained the following findings. In other words, corrosion generates hydrogen gas (hereinafter referred to as H 2 ) based on the reaction of equation (1) described below, so if this can be measured accurately, corrosion trends can be accurately grasped, and this can be used to clarify corrosion phenomena and prevent accidents. It is possible to make predictions or take measures in advance, and effective results are expected.

ところで、PWR―SGの腐食そのものが最近解
明されてきた技術分野であり、これのモニタ法に
ついて解析し、H2の発生原因(腐食、ヒドラジ
ン分解、H2透過)に着目して一定個所のH2
度、ヒドラジン(以下N2H4)分解挙動なども検
討し、これらのデータから腐食を把握できるとの
報文はない。
By the way, the corrosion of PWR-SG itself is a technical field that has recently been elucidated, and we will analyze the monitoring method for this and focus on the causes of H 2 generation (corrosion, hydrazine decomposition, H 2 permeation) to reduce H 2 at certain points. 2 concentration, hydrazine (hereinafter referred to as N 2 H 4 ) decomposition behavior, etc., and there are no reports stating that corrosion can be determined from these data.

そこで、従来は全測定点の試料水についてH2
N2H4,Fe,アンモニア(NH3)発生窒素量
(N2)を測定し、消去法的にPWR―SGの現象解
析がなされていた。
Therefore, in the past, H 2 ,
The amount of nitrogen (N 2 ) generated by N 2 H 4 , Fe, and ammonia (NH 3 ) was measured, and the phenomenon of PWR-SG was analyzed using the elimination method.

これに対し、本発明では、前記したように、
H2量のみを測定することにより腐食程度を把握
する方法を提供するものである。
In contrast, in the present invention, as described above,
This method provides a method for understanding the degree of corrosion by measuring only the amount of H2 .

すなわち本発明は、蒸気発生器入口給水と蒸気
発生器出口蒸気の水素量を検出して、蒸気発生器
内で増加した水素量を把握し、高圧給水加熱器ド
レンと蒸気発生器入口給水のヒドラジン濃度及び
電導度を検出して、蒸気発生器内でヒドラジンの
分解により生成した水素量を把握し、これら水素
量より蒸気発生器内で発生した水素量を算出し、
その量によつて蒸気発生器内の腐食程度を把握す
ることを特徴とする腐食モニタ方法に関するもの
である。
That is, the present invention detects the amount of hydrogen in the steam generator inlet water supply and the steam generator outlet steam, grasps the increased hydrogen amount in the steam generator, and detects the hydrogen content in the high pressure feed water heater drain and the steam generator inlet water supply. By detecting the concentration and conductivity, the amount of hydrogen generated by decomposition of hydrazine in the steam generator is determined, and from these hydrogen amounts, the amount of hydrogen generated in the steam generator is calculated.
The present invention relates to a corrosion monitoring method characterized in that the degree of corrosion inside a steam generator is determined based on the amount of corrosion.

以下、本発明をPWR―SGの腐食の場合を例に
とり、モニタ法及び腐食量の把握について述べ
る。なお、前述のようにH2量の測定・把握は後
述のように腐食と直接関連があるので、本発明の
応用分野はPWR―SGの腐食に限定するものでは
ない。
Hereinafter, using the present invention as an example of corrosion of PWR-SG, a monitoring method and understanding of the amount of corrosion will be described. Note that, as described above, measuring and understanding the amount of H 2 is directly related to corrosion as described later, so the field of application of the present invention is not limited to corrosion of PWR-SG.

PWR―SGの腐食は一般に式(1)の反応により
H2が発生する。
Corrosion of PWR-SG is generally caused by the reaction of formula (1).
H2 occurs.

3Fe+4H2O→Fe3O4+4H2 (1) 式(1)に係る反応は、温度、酸素、共存イオンな
どの作用によつて促進されるが、3モルのFeが
腐食して4モルのH2が発生する。したがつて、
腐食にもとづいたH2量の把握は直ちに伝熱管の
腐食による損傷程度の予測につながる。
3Fe+4H 2 O→Fe 3 O 4 +4H 2 (1) The reaction according to formula (1) is promoted by the effects of temperature, oxygen, coexisting ions, etc., but 3 moles of Fe corrode and 4 moles of H2 occurs. Therefore,
Understanding the amount of H 2 based on corrosion will immediately lead to predicting the degree of damage caused by corrosion to heat transfer tubes.

しかし、PWR―SGでは腐食以外に一次系から
のH2の伝熱管透過、注入N2H4の分解によるH2
の発生、例えば 5N2H4→6NH3+2N2+H2 (2) さらに供給水に含まれるH2などが区別なく測
定されるので、これらを類別して真の腐食に係る
H2量を知る必要がある。
However, in PWR-SG, in addition to corrosion, H 2 from the primary system permeates through the heat exchanger tube, and H 2 due to decomposition of injected N 2 H 4
For example, 5N 2 H 4 →6NH 3 +2N 2 +H 2 (2) In addition, since H 2 contained in the supplied water is measured without distinction, these can be classified to determine whether they are related to true corrosion.
It is necessary to know the amount of H2 .

PWR―SGブラントにおけるH2の収支は(3)式
が成立する。
Equation (3) holds for the balance of H 2 in PWR-SG blunt.

Σ〔H2SG=〔H2MS―〔H2HP―〔H2RCS
〔H2N2H4 (3) ここで、 Σ(H2SG;PWR―SG内の腐食に起因して発生
するH2(g/H・SG) 〔H2MS;蒸気発生器出口主蒸気中のH2(g/
H) 〔H2HP;高圧給水加熱器出口H2(g/H) 〔H2RCS;一次系(RCS)よりの透過水素量
(g/H) 〔H2N2H4:N2H4分解により発生したH2(g/
H) (3)式が成立すれば、プラントの適正な位置にお
いて適正なH2発生源及び量を測定し、マイクロ
コンピユーター等の活用によつてPWR―SGの腐
食進行の推移を常時知り、かつ予測することが可
能となる。
Σ[H 2 ] SG = [H 2 ] MS — [H 2 ] HP — [H 2 ] RCS
[H 2 ] N2H4 (3) Here, Σ(H 2 ] SG ; H 2 (g/H・SG) generated due to corrosion in PWR-SG; [H 2 ] MS ; Steam generator outlet main H2 in steam (g/
H) [H 2 ] HP ; High-pressure feed water heater outlet H 2 (g/H) [H 2 ] RCS ; Amount of hydrogen permeated from the primary system (RCS) (g/H) [H 2 ] N2H4 : N 2 H 4 H 2 (g/
H) If Equation (3) holds true, it is possible to measure the appropriate H 2 generation source and amount at the appropriate location in the plant, constantly monitor the progression of corrosion in the PWR-SG by using a microcomputer, etc. It becomes possible to predict.

すなわち、蒸気発生器(以下SG)出口の主蒸
気(以下MS)及び、入口の高圧給水加熱器(以
下HP)出口の給水(以下FW)系にH2計を配置
し、SG内で発生した全H2量を知る。さらにHP
ドレン、HP出口FWに電導度計及びN2H4計を配
置し、N2H4の分解により生成したH2量を求め
る。ここで電導度計は、N2H4の分解によつて生
成するNH3をモニタリングし、N2H4分解量及び
分解によるH2生成量をチエツクする。
In other words, H2 meters are placed in the main steam (hereinafter referred to as MS) at the outlet of the steam generator (hereinafter referred to as SG), the high pressure feed water heater (hereinafter referred to as HP) at the inlet, and the feed water (hereinafter referred to as FW) system at the outlet of the high pressure feed water heater (hereinafter referred to as HP), and H2 meters are placed in the main steam (hereinafter referred to as MS) system at the outlet of the steam generator (hereinafter referred to as SG) Know the total amount of H2 . More HP
A conductivity meter and a N 2 H 4 meter are placed at the drain and HP outlet FW, and the amount of H 2 generated by decomposition of N 2 H 4 is determined. Here, the conductivity meter monitors NH 3 produced by the decomposition of N 2 H 4 and checks the amount of N 2 H 4 decomposed and the amount of H 2 produced by the decomposition.

また、〔H2RCSは式(4)または実験的に求められ
る一次系H2の拡散透過H2量である。
Further, [H 2 ] RCS is the amount of diffusely transmitted H 2 of the primary system H 2 determined by equation (4) or experimentally.

JP=−Ddp1/2/dx (4) ここでJP:透過H2量 D;伝熱管のH2透過係数 P;H2分圧 x;透過距離 蒸気発生器の伝熱管として多用される
Inconel600中のH2透過係数等については文献に
も発表されているので〔H2RCSの計算に採用でき
る。例えば、高温水中290℃ではDは1.9×10-9
cm/sec・atm1/2の値等が知られている〔文献
P・Mayer,D.P.Dantovich;#2Inter―
national Congress on Hydrogen in Metal
(1977)〕。
J P = -Ddp1/2/dx (4) where J P : permeation H2 amount D: H2 permeation coefficient of heat exchanger tube P: H2 partial pressure x: permeation distance Frequently used as heat exchanger tube of steam generator
The H 2 permeability coefficient, etc. in Inconel 600 has been published in the literature, so it can be used in the calculation of [H 2 ] RCS . For example, in high-temperature water at 290℃, D is 1.9×10 -9
The values of cm/sec・atm 1/2, etc. are known [Reference P. Mayer, DPDantovich; #2Inter-
national Congress on Hydrogen in Metal
(1977)].

これらの測定計器及び計器配置の一例を第1図
に示す。該図には蒸気発生器のブロー系が示され
ていないが、実プラントにはある。主蒸気量に比
しブロー量は著しく小さく無視できるので、省略
したものである。
An example of these measuring instruments and instrument arrangement is shown in FIG. Although the blow system of the steam generator is not shown in the figure, it is present in the actual plant. The blow amount is omitted because it is extremely small compared to the main steam amount and can be ignored.

第1図において、SGは蒸気発生器で、この出
口に設けられたMS水素計にて主蒸気MSのH2
すなわち〔H2MSを測定する。HPは高圧給水加
熱器で、この出口の給水系FWにFWヒドラジン
計、FW電導度計およびFW水素計を設置し、
FWのN2H4量、N2H4分解で生成したNH3量およ
びH2量すなわち〔H2N2H4を測定する。ただし、
このFW水素計ではN2H4分解によるH2量すなわ
ち〔H2N2H4と、給水ポンプP2にて送られて来る
水中のH2量すなわち〔H2HPとが合計されたもの
(〔H2FW)として測定される。
In FIG. 1, SG is a steam generator, and an MS hydrogen meter installed at the outlet of the steam generator measures the amount of H 2 in the main steam MS, that is, [H 2 ] MS . HP is a high-pressure feed water heater, and a FW hydrazine meter, FW conductivity meter, and FW hydrogen meter are installed in the water supply system FW at this outlet.
Measure the amount of N 2 H 4 in the FW, the amount of NH 3 generated by decomposition of N 2 H 4 , and the amount of H 2 , that is, [H 2 ] N2H4 . however,
This FW hydrogen meter is the sum of the amount of H 2 resulting from N 2 H 4 decomposition, ie [H 2 ] N2H4 , and the amount of H 2 in the water sent by the water supply pump P 2 , ie, [H 2 ] HP ( [H 2 ] FW ).

また、上記のMS水素計で測定される〔H2MS
は、前述の蒸気発生器SGの伝熱管から透過して
来る一次系H2の拡散透過H2量すなわち〔H2RCS
を含むものとして測定されることは言うまでもな
く、この〔H2RCSは既知の数値が演算に適用でき
ることも言うまでもない。
In addition, [H 2 ] MS measured with the above MS hydrogen meter
is the amount of diffuse permeation H 2 of the primary system H 2 that permeates from the heat exchanger tube of the steam generator SG, that is, [H 2 ] RCS
It goes without saying that this [H 2 ] RCS can be measured as including , and it goes without saying that known numerical values can be applied to calculations.

なお、HPの出口のブロー系にはBL電導度計と
BLヒドラジン計とが設置され、ブロー中のNH3
量とN2H4とが測定される。
In addition, a BL conductivity meter and a BL conductivity meter are installed in the HP outlet blow system.
A BL hydrazine meter was installed to measure NH3 during blowing.
The amount and N 2 H 4 are measured.

第1図の測定にもとづく計算ステツプ及び本発
明に係るモニタリングのデータ処理法等を第2図
に示す。
FIG. 2 shows the calculation steps based on the measurements shown in FIG. 1 and the monitoring data processing method according to the present invention.

このモニタ法は、本発明者らの試験によりシス
テムとして成立することが確認されている。
This monitoring method has been confirmed to work as a system through tests conducted by the present inventors.

本発明では、○イMSにおける〔H2MSの測定点
の選定及び○ロN2H4,NH3等から〔H2N2H4を評価
する測定点としてHP水の選定が重要であり、ま
た○ハSGブロー量が無視できる、すなわち測定を
要しない。
In the present invention, it is important to select a measurement point for [H 2 ] MS in ○I MS and to select HP water as a measurement point for evaluating [H 2 ] N2H4 from ○B N 2 H 4 , NH 3 , etc. Also, the amount of SG blowout can be ignored, ie, no measurement is required.

すなわち、○イは(3)式Σ(H2SGから明らかなよう
に重要である。また○ロは注入N2H4の分解による
発生H2すなわち〔H2N2H4を正確に把握するため
の測定点の選定であり、注入N2H4の大部分が
HP以後で分解されることから重要なのである。
○ハはSGで発生するMSと廃棄物たるSGブローの
比が著るしく大きく、したがつて計算上無視でき
るのである。
That is, ○I is important as is clear from equation (3) Σ(H 2 ) SG . In addition, ○B is the selection of measurement points to accurately grasp the H 2 generated by the decomposition of the injected N 2 H 4 , that is, [H 2 ] N 2 H 4 , and most of the injected N 2 H 4 is
This is important because it is decomposed after HP.
○The ratio of MS generated in SG to SG blow, which is waste, is extremely large, so it can be ignored in calculations.

次に、本発明における〔H2SGの把握法の一例
を説明する。
Next, an example of a method for understanding [H 2 ] SG in the present invention will be explained.

先ず、SG内でのH2増加量〔△H2SGは式(5)で
与えられる。
First, the amount of increase in H 2 in SG [△H 2 ] SG is given by equation (5).

〔△H2SG={〔H2MS―〔H2FW}×GFW(5) ここで、GFW:給水流量 { }内は濃度基準とする。 [△H 2 ] SG = {[H 2 ] MS - [H 2 ] FW }×G FW (5) Here, G FW : Water supply flow rate The value in { } is the concentration standard.

式(5)中の〔H2MSは第1図のMS水素計で、
〔H2FWは第1図のFW水素計で測定できる。
[H 2 ] MS in equation (5) is the MS hydrogen meter shown in Figure 1,
[H 2 ] FW can be measured with the FW hydrogen meter shown in Figure 1.

また、N2H4の分解量△N2H4は、 〔△N2H4〕= {〔N2H4FW―{N2H4MS}×GFW (6) となり、〔H2N2H4は前述の(2)式より次式で与えら
れる。
Also, the decomposition amount of N 2 H 4 △N 2 H 4 is as follows: [△N 2 H 4 ] = {[N 2 H 4 ] FW - {N 2 H 4 ] MS }×G FW (6), H 2 ] N2H4 is given by the following equation from equation (2) above.

〔H2N2H4=〔△N2H4〕/5 (7) 式(6)中の〔N2H4FWは第1図のFWヒドラジン
計で、〔N2H4MSは第1図のBLヒドラジン計で測
定できる。
[H 2 ] N2H4 = [△N 2 H 4 ]/5 (7) In equation (6), [N 2 H 4 ] FW is the FW hydrazine meter in Figure 1, and [N 2 H 4 ] MS is the It can be measured using the BL hydrazine meter shown in Figure 1.

更に、SG内で伝熱管を通して1次系より透過
する〔H2RCSは 〔H2RCS=S・D・△P (8) ここでS :伝熱管表面積 △P:一次系(P1)と二次系(P2)の
水素分圧の差(P1―P2) したがつて、全水素増加量〔△H2Tptalは、〔△
H2Tptal=腐食によるH2+N2H4分解によるH2
透過によるH2 となり、必要とする腐食によるH2は結局、前述
の(3)式で得られる。これを第1図の測定及び第2
図の計算により自動的かつ容易にモニターでき
る。
Furthermore, the [H 2 ] RCS that permeates from the primary system through the heat transfer tube in the SG is [H 2 ] RCS = S・D・△P (8) where S: heat transfer tube surface area △P: primary system (P 1 ) and the secondary system (P 2 ) (P 1 - P 2 ) Therefore, the total hydrogen increase [△H 2 ] Tptal is [△
H 2 ] Tptal = H 2 + due to corrosion + H 2 + due to N 2 H 4 decomposition
H 2 is generated by permeation, and the necessary H 2 generated by corrosion can be obtained by the above-mentioned equation (3). This is measured in Figure 1 and in Figure 2.
Can be automatically and easily monitored by calculations in the diagram.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施態様例を示す図、
第2図は本発明の演算方法を示す図である。
FIG. 1 is a diagram showing an example of an embodiment of the method of the present invention,
FIG. 2 is a diagram showing the calculation method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸気発生器入口給水と蒸気発生器出口蒸気の
水素量を検出して、蒸気発生器内で増加した水素
量を把握し、高圧給水加熱器ドレンと蒸気発生器
入口給水のヒドラジン濃度及び電導度を検出し
て、蒸気発生器内でヒドラジンの分解により生成
した水素量を把握し、これら水素量より蒸気発生
器内で発生した水素量を算出し、その量によつて
蒸気発生器内の腐食程度を把握することを特徴と
する腐食モニタ方法。
1. Detect the amount of hydrogen in the steam generator inlet feed water and steam generator outlet steam to understand the increased amount of hydrogen in the steam generator, and check the hydrazine concentration and conductivity of the high pressure feed water heater drain and steam generator inlet feed water. The amount of hydrogen generated in the steam generator by the decomposition of hydrazine is determined by detecting the amount of hydrogen generated in the steam generator. A corrosion monitoring method characterized by determining the degree of corrosion.
JP14050183A 1983-08-02 1983-08-02 Corrosion monitoring method Granted JPS6033372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14050183A JPS6033372A (en) 1983-08-02 1983-08-02 Corrosion monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14050183A JPS6033372A (en) 1983-08-02 1983-08-02 Corrosion monitoring method

Publications (2)

Publication Number Publication Date
JPS6033372A JPS6033372A (en) 1985-02-20
JPH0125829B2 true JPH0125829B2 (en) 1989-05-19

Family

ID=15270100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14050183A Granted JPS6033372A (en) 1983-08-02 1983-08-02 Corrosion monitoring method

Country Status (1)

Country Link
JP (1) JPS6033372A (en)

Also Published As

Publication number Publication date
JPS6033372A (en) 1985-02-20

Similar Documents

Publication Publication Date Title
EP1685275B1 (en) Method of inhibiting corrosion in hot water systems
Macdonald et al. Corrosion potential measurements on type 304 SS and alloy 182 in simulated BWR environments
BRPI0813078A2 (en) method for creating a real-time oxidation-reduction potential ("orp") signature on a hot water system, digital storage media and device for analyzing an orp signature for a hot water system
EP2179076B1 (en) Method for preventing corrosion in hot water systems
JP5519920B2 (en) PWR power plant secondary cooling system water treatment system and method
De Bruyn Current corrosion monitoring trends in the petrochemical industry
Vagapov et al. The evaluation of the corrosion resistance of materials under the conditions of moisture condensation in the presence of carbon dioxide
JPH0125829B2 (en)
KR20000029584A (en) Corrosion monitoring process
Yang Real-time localized corrosion monitoring in industrial cooling water systems
CN105074346B (en) System and method for the corrosion in hot-water heating system to be monitored and controlled
Dean Corrosion monitoring for industrial processes
Farrell On-line monitoring of fireside corrosion in power plant
Badriev et al. The fault diagnostics methods for the operation process in a steam turbine condenser
Yang et al. Laboratory Comparison of Coupled Multielectrode Array Sensors with Electrochemical Noise Sensors for Real-Time Corrosion Monitoring
Kane et al. Plant applications of online corrosion monitoring: CO2 capture amine plant case study
CN115753903A (en) Device and method for quantitatively determining heteroatoms in trace organic matters in water
Saji et al. Fundamental mechanisms of component degradation by corrosion in nuclear power plants of Russian design
JPS62209349A (en) Apparatus for monitoring corrosive environment
McKee et al. Use of in-sodium hydrogen detectors during steam generator tests in the SCTI
Hayes Water leaks in sodium-heated fast reactor boilers
Rocchini The use of the linear response for characterizing corrosion inhibitors
KITTO JR Effect of Contaminants on Critical Heat Flux at Low Pressures
JPH0483153A (en) Corrosion detecting system and water quality control system
Cambillard Leak detection in Phenix and Super Phenix steam generators