JPH01258234A - Optical disk device - Google Patents

Optical disk device

Info

Publication number
JPH01258234A
JPH01258234A JP8560488A JP8560488A JPH01258234A JP H01258234 A JPH01258234 A JP H01258234A JP 8560488 A JP8560488 A JP 8560488A JP 8560488 A JP8560488 A JP 8560488A JP H01258234 A JPH01258234 A JP H01258234A
Authority
JP
Japan
Prior art keywords
optical axis
output
deviation
sensor
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8560488A
Other languages
Japanese (ja)
Other versions
JPH067414B2 (en
Inventor
Tsuguaki Mashita
著明 真下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teac Corp
Original Assignee
Teac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teac Corp filed Critical Teac Corp
Priority to JP8560488A priority Critical patent/JPH067414B2/en
Publication of JPH01258234A publication Critical patent/JPH01258234A/en
Publication of JPH067414B2 publication Critical patent/JPH067414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To correct a focus error by respectively calculating dislocation in the (y) direction of an optical axis, the dislocation in an (x) direction, maximum dislocation in the (x) and (y) directions, an error signal and the dislocating component of the optical axis in the error signal from the outputs of the respective dividing parts of a four-dividing optical sensor. CONSTITUTION:The outputs of the respective dividing parts of the four-dividing optical sensor are operated by adding circuits 30 and 31 and a subtracting circuit 37 and the dislocation in the (y) direction of the optical axis is calculated. Similarly, the dislocation in the (x) direction is calculated by adding circuit 32 and 33 and a subtracting circuit 38, the maximum dislocation in the (x) and (y) directions is calculated by adding circuits 34-36 and the error signal is calculated by the adding circuits 34 and 35 and a subtracting circuit 39 respectively. An arithmetic circuit 22 calculates the dislocating component of the optical axis in the error signal from the subtracting circuits 37 and 38 and adding circuit 36 and the outputs of the arithmetic circuits 22 and 39 are supplied to a subtracting circuit 23. Thus, the output signal of the subtracting circuit 23 goes to be only a true error signal component and the focus error is prevented from being generated by the dislocation of the optical axis. Then, the degradation of recording performance and reproducing performance can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光ディスク装置に関し、非点収差法のフォーカ
ス・サーボを行なう光ディスク装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical disc device, and more particularly to an optical disc device that performs focus servo using an astigmatism method.

従来から、コンパクトディスク(CD)Wの再生(9用
の光ディスクがあり、最近、書ぎ込み可能及び占き換え
可能の光ディスクが開発されている。
Conventionally, there have been optical discs for compact disc (CD) W playback (9), and recently, writable and rewritable optical discs have been developed.

このような光ディスクの記録装置、再生装置では光ディ
スクの信号面上に高精度にレーデ光の焦点(フォーカス
)を合わせる必要があり、光ディスクはその回転ととも
に信号面が上下するため、フォーカス・サーボ・コント
ロールを行なっている。
In such optical disk recording and playback devices, it is necessary to focus the radar light on the signal surface of the optical disk with high precision, and since the signal surface of the optical disk moves up and down as it rotates, focus servo control is required. is being carried out.

従来の技術 従来から、フォーカス・サーボ・コントロールとして非
点収差法がある。
2. Description of the Related Art Conventionally, there has been an astigmatism method for focus servo control.

この非点収差法はシリンドリカルレンズを通ったレーザ
光が焦点位置で真円となり、焦点より前で例えば縦長の
楕円となり、焦点より後ろで横長の楕円となることを利
用して、これを4分割した光センサで検出する6式であ
る。
This astigmatism method takes advantage of the fact that the laser beam that passes through a cylindrical lens becomes a perfect circle at the focal point, becomes a vertically long ellipse in front of the focal point, and becomes a horizontally long ellipse behind the focal point, and divides it into four parts. There are 6 types of sensors that are detected by optical sensors.

例えば光ディスクが適寸ぎる場合、4分割した光センサ
の分割部a、b、c、dに投影される光の形は第8図(
A)の如く右下がりの楕円となり、合焦点の場合同図(
B)の如く光の形は真円となり、速すぎる場合同図(C
)の如く左下がりの楕円(同図(A)の楕円に対して長
軸が90度回転している)となる。
For example, if the optical disc is too large, the shape of the light projected onto the four-divided optical sensor divisions a, b, c, and d will be as shown in Figure 8 (
It becomes an ellipse that slopes downward to the right as shown in A), and in the case of a focused point, it becomes an ellipse (
The shape of the light is a perfect circle as shown in B), and if it is too fast, it will become a perfect circle as shown in the same figure (C
), it becomes an ellipse that slopes downward to the left (the major axis is rotated 90 degrees with respect to the ellipse in FIG. 2A).

これによって、分割部a〜dが受光量に比例した電力を
出力するとき、分割部a、Cの出力電圧の和から分割部
す、dの出力電圧の和の差をとった誤差信号を得て、光
ディスクが合焦点か、近すぎるか、速すぎるかを知るこ
とができ、フォーカス・サーボは誤差信号によって焦点
位置を移動させる。
As a result, when dividing parts a to d output power proportional to the amount of received light, an error signal is obtained by subtracting the difference between the sum of the output voltages of dividing parts a and d from the sum of the output voltages of dividing parts a and c. This allows us to know whether the optical disc is in focus, too close, or too fast, and the focus servo moves the focus position based on the error signal.

発明が解決しようとする課題 光ディスク装置では経時変化、急激な温度、湿度の変化
により、光学系と光センサとの相対位置にずれを生じ、
光センサ上で光軸がずれる。例えば第8図(D)は合焦
点で光軸がX方向にのみずれ、同図(E)は合焦点で光
軸がy方向にのみずれ、同図(F)は合焦点で光軸がx
yh向にずれた状態を示す。
Problems to be Solved by the Invention In optical disk devices, changes over time and sudden changes in temperature and humidity can cause shifts in the relative positions of the optical system and the optical sensor.
The optical axis shifts on the optical sensor. For example, Fig. 8 (D) shows a focused point with the optical axis shifted only in the x
It shows a state shifted in the yh direction.

同図(F)の如く合焦点で光軸がxy力方向ずれた場合
、誤差信号は零とならずフォーカス・サーボによって焦
点が移動せしめられ、フォーカス・エラーつまり焦点ず
れが発生する。このフォーカス・エラーによって光ディ
スクの信号面上のレーザ光エネルギーが小さくなり、光
ディスク装置の記録性能及び再生竹能が劣化するという
問題があった。
If the optical axis deviates in the x and y force directions at the focused point as shown in FIG. 2(F), the error signal does not become zero and the focus servo moves the focus, causing a focus error, that is, a focus shift. This focus error causes the laser light energy on the signal surface of the optical disc to decrease, resulting in a problem that the recording performance and reproduction performance of the optical disc device deteriorates.

本発明は上記の点に鑑みなされたもので、フォーカス・
エラーを補正し、記3j竹能及び再生性能の劣化を防止
する光ディスク装置を提供することを目的とする。
The present invention was made in view of the above points, and focuses on
It is an object of the present invention to provide an optical disc device that corrects errors and prevents deterioration of performance and playback performance.

課題を解決するための手段 本発明の光ディスク装置は、第1の演算手段で4分割光
センサの8分り1部の出力からセンサに対する光軸のy
h向のずれ誓を算出し、第2の演算手段で各分割部の出
力からセンサに対する光軸のX方向のずれ開をp出し、
第3の演算手段で各分割部の出力からセンサに対する光
軸のX方向及びy方向の最大ずれ苗を篩出し、第4の演
算手段で各分割部の出力から誤差信号を詐出し、第5の
演算手段で第1乃至第3の演算手段の出力から誤差信号
中の光軸のずれ成分を算出し、第6の滴り手段で第4及
び第5の演算手段の出力から光軸のずれ成分を除去した
フォーカスエラーだけの誤差信号を粋出し、この光軸の
ずれ成分を除去したフt−カス・エラーだけの誤差信号
でフォーカス・サーボを行なう。
Means for Solving the Problems The optical disk device of the present invention uses a first calculating means to calculate the y of the optical axis relative to the sensor from the output of one eighth of the four-split optical sensor.
Calculate the deviation in the h direction, calculate the deviation in the x direction of the optical axis with respect to the sensor from the output of each division part using the second calculation means
The third calculation means sifts out the seedlings with the maximum deviation of the optical axis in the X and Y directions with respect to the sensor from the output of each division part, the fourth calculation means sifts out an error signal from the output of each division part, and the fifth The calculation means calculates the optical axis deviation component in the error signal from the outputs of the first to third calculation means, and the sixth dripping means calculates the optical axis deviation component from the outputs of the fourth and fifth calculation means. The focus servo is performed using the error signal of only the focus error with the optical axis deviation component removed.

また、可変手段で第5の演算手段の出力する光軸のずれ
成分に応じて光ディスクに照射するレーデ先帝を可変し
、第4の演の手段の出力する誤差信号でフォーカス・サ
ーボを行なう。
Further, the variable means varies the amount of light irradiated onto the optical disk according to the optical axis deviation component outputted from the fifth calculating means, and focus servo is performed using the error signal outputted from the fourth calculating means.

更に、第7の演算手段で第1乃び第3の演算手段の出力
から光軸のy方向のずれ率を算出し、第8の演算手段で
第2及び第3の演算手段の出力から光軸のX方向のずれ
率を算出し、第1の駆動手段で第7の演算手段の出力す
るy7J向のずれ率に応じてy方向のずれ量がなくなる
ようセンサと光軸との相対位置を移動させ、第2の駆動
手段で第8の演算手段の出力するX方向のずれ率に応じ
てX方向のずれΦがなくなるようセンサと光軸との相対
位置を移動させ、第4の演算手段の出力するIfI差信
号でフォーカス・サーボを行なう。
Furthermore, the seventh calculation means calculates the deviation rate of the optical axis in the y direction from the outputs of the first and third calculation means, and the eighth calculation means calculates the deviation rate of the optical axis from the outputs of the second and third calculation means. The deviation rate of the axis in the X direction is calculated, and the relative position between the sensor and the optical axis is determined by the first driving means according to the deviation rate in the y7J direction output from the seventh calculation means so that the deviation amount in the y direction is eliminated. and the second driving means moves the relative position between the sensor and the optical axis so that the deviation Φ in the X direction is eliminated according to the deviation rate in the X direction output from the eighth calculation means, and the fourth calculation means Focus servo is performed using the IfI difference signal outputted by.

作用 本発明方式の原理について説明するに、第2図に丞す如
く、光軸がX’jZJ向にずれているときの光センサの
分割部a、b、c、d夫々の出力レベルをA、8.C,
Dと表し、Xy7J向のずれがないときの出力レベルを
Ao、So、Go、Doと表わす。つまり、第2図(A
)の斜線部の面積が出力レベルAに対応し、同図(B)
の斜線部の面積が出力レベルAoに対応する。ここで、
同図(C)の斜線部の面積に対応するX方向のヂれ聞X
は次式で表わされる。
Operation To explain the principle of the method of the present invention, as shown in Fig. 2, when the optical axis is shifted in the X'jZJ direction, the output levels of the divided parts a, b, c, and d of the optical sensor are , 8. C,
D, and the output levels when there is no deviation in the Xy7J direction are expressed as Ao, So, Go, and Do. In other words, Fig. 2 (A
) corresponds to the output level A, as shown in Figure (B).
The area of the hatched part corresponds to the output level Ao. here,
Deflection X in the X direction corresponding to the area of the shaded part in the same figure (C)
is expressed by the following equation.

X= (B+C)−(A+D)      −(1)ま
た、X方向の最大ずれffiXMは次式で表わされる。
X=(B+C)-(A+D)-(1) Furthermore, the maximum deviation ffiXM in the X direction is expressed by the following equation.

XM =A+B+C+D         ・・・■同
様にしてy方向のずれff1Y及びその最大値YMは次
式で表わされる。
XM=A+B+C+D . . . ■Similarly, the deviation ff1Y in the y direction and its maximum value YM are expressed by the following equation.

Y = (A+8)−(C→・D)    ・・・■Y
M=A+B+C+D         ・・・G4)上
記のずれfltX、XM、Y、YMを用いると第2図(
D)の右下がり斜線部の面積Xa及び左下がり斜線部の
面積Yaは次式の如く表わされる。
Y = (A+8)-(C→・D)...■Y
M=A+B+C+D...G4) Using the above deviations fltX, XM, Y, YM, Figure 2 (
In D), the area Xa of the diagonally downwardly shaded portion and the area Ya of the diagonally downwardly shaded portion to the left are expressed by the following equations.

Xa = ((A+8)/2) ・(X/XM )−(
EnYa = ((A+D)/2) ・(Y/YM )
−f3)これを用いて出力レベルAは近似的に次式の如
く表わされる。
Xa = ((A+8)/2) ・(X/XM)-(
EnYa = ((A+D)/2) ・(Y/YM)
-f3) Using this, the output level A can be expressed approximately as shown in the following equation.

A=Ao −((A+8)/2) ・(X/XM )+
((A−1−D)/2)・(Y/YM)・・・(10)
同様にして出力レベルB、C,Dは次式の如く表わされ
る。
A=Ao −((A+8)/2) ・(X/XM)+
((A-1-D)/2)・(Y/YM)...(10)
Similarly, output levels B, C, and D are expressed as in the following equations.

B=Bo+((A+B)/2)6 (X/XM)十【(
B→−C)/2)・(Y/YM)・・・(11)C=G
o + ((C+D)/2)  ・ (X/XM >−
((B+C)/2) ・ (Y/YM )・・・(12
)D=Do −((C4−D)/2)  ・ (X/X
M)−((A+D)/2)  ・ (Y/YM )・・
・(13)ここで、フォーカス・エラーの誤差信号は(
A+C) −(B+D)r与えられ、コレニ(1o)〜
(13)式を代入して次式が得られる。
B=Bo+((A+B)/2)6 (X/XM) ten [(
B→-C)/2)・(Y/YM)...(11)C=G
o + ((C+D)/2) ・(X/XM >-
((B+C)/2) ・(Y/YM)...(12
)D=Do −((C4−D)/2) ・(X/X
M) - ((A+D)/2) ・ (Y/YM)...
・(13) Here, the error signal of the focus error is (
A+C) −(B+D)r given, Koreni (1o) ~
By substituting equation (13), the following equation is obtained.

(A+C)−(B+D)= (Ao +Co ) −(Bo 十oo )−(A+B
−C−D)・(X/XM) + (A−ID−B−C)・(Y/YM)・・・(14
)これから次式が臂られる。
(A+C)-(B+D)=(Ao+Co)-(Booo)-(A+B
-C-D)・(X/XM) + (A-ID-B-C)・(Y/YM)...(14
) From this, the following formula is given.

(A→C)−、([3十〇)= (Ao +Co ) −(Bo +Do )−2−X−
Y/(A+8−+−C十〇)  ・(15)(15)式
右辺の第1項が真の誤差信号成分で、第2項が光軸のず
れ成分である。
(A→C)−, ([300)=(Ao +Co)−(Bo+Do)−2−X−
Y/(A+8-+-C10) (15) The first term on the right side of equation (15) is the true error signal component, and the second term is the optical axis deviation component.

本発明では、第6の演算手段で(15)式の左辺第2項
を除去した誤差信号を得ることによりフォーカス・エラ
ーを補正してフォーカス・サーボを行なうため、記録性
能及び再生性能の劣化が防止される。
In the present invention, since the focus servo is performed by correcting the focus error by obtaining the error signal obtained by removing the second term on the left side of equation (15) using the sixth calculation means, deterioration of recording performance and playback performance is avoided. Prevented.

また、(15)式で示すMuff信号でフォーカス・す
−ボを行なうと共に、可変手段でレーザ光量を可変する
ことにより、フォーカス・エラーを補正し、これによっ
て記録性能及び再生性能の劣化を防止できる。
In addition, by performing focus/speed control using the Muff signal expressed by equation (15) and varying the amount of laser light using a variable means, focus errors can be corrected, thereby preventing deterioration of recording performance and playback performance. .

また、光軸のy方向、X方向夫々のずれがなくなるよう
センダと光軸との相対IQ置を移動させてフォーカス・
エラーを補正し、これによって記録性能及び再生性能の
劣化を防止ぐきる。
In addition, the relative IQ position between the sender and the optical axis is moved to eliminate the deviation of the optical axis in the y direction and the
Errors are corrected, thereby preventing deterioration of recording performance and reproduction performance.

実施例 第1図は本発明方式の第1実施例のブロック図を示す。Example FIG. 1 shows a block diagram of a first embodiment of the system of the present invention.

同図中、10は光ディスクであり、モータ11により回
転せしめられる。レーザダイオード12の出力するレー
ザ光はコリメートレンズ13で平行ビームとされ、ビー
ムスプリッタ14.トラッキングミラー15を通って対
物レンズ16に導びかれて光ディスク10の信号面に収
束せしめられ、信号の記録及び再生が行なわれる。光デ
ィスク10の反射光は対物レンズ16.トラッキングミ
ラー15.ビームスプリッタ14を通ってビームスプリ
ッタ17に導びかれ、反射光の大部分は信号再生用の光
センダ18に導びかれる。また反射光の一部はミラー1
9よりシリンドリカルレンズ29を通してフォーカス・
サーボ用の4分割光センサ20に導びかれる。
In the figure, 10 is an optical disk, which is rotated by a motor 11. The laser light output from the laser diode 12 is converted into a parallel beam by a collimating lens 13, and is then converted into a parallel beam by a beam splitter 14. The light is guided through the tracking mirror 15 to the objective lens 16 and converged onto the signal surface of the optical disc 10, thereby recording and reproducing the signal. The reflected light from the optical disc 10 is reflected by the objective lens 16. Tracking mirror 15. The reflected light is guided to a beam splitter 17 through a beam splitter 14, and most of the reflected light is guided to an optical sender 18 for signal reproduction. Also, part of the reflected light is reflected by mirror 1.
9 through the cylindrical lens 29.
It is guided to a 4-split optical sensor 20 for servo.

4分割光セン+J20の各分割部a、b、c、d夫々の
出力A、B、C,Dは演算回路21に供給され、この演
算回路21及び演算回路22及び減口回路23によって
光軸のずれ成分を除去した誤差信号が得られ、この誤差
信号は増幅器24を通して駆動コイル 25に供給され
、これによって対物レンズ16は光ディスク10の信号
面にレーザ光が収束する方向に移動せしめられる。
The outputs A, B, C, and D of the divided parts a, b, c, and d of the 4-split optical sensor +J20 are supplied to an arithmetic circuit 21, and the optical axis is An error signal is obtained by removing the deviation component, and this error signal is supplied to the drive coil 25 through the amplifier 24, whereby the objective lens 16 is moved in a direction in which the laser beam is converged on the signal surface of the optical disk 10.

第3図は上記のv4p回路21.22の回路図を示す。FIG. 3 shows a circuit diagram of the v4p circuit 21,22 described above.

同図中、演算回路21は加算回路30〜35及び減算回
路36−39より構成されている。加点回路30は4分
割センザ20の分割部a、bの出力レベルA、Bを加算
し、信号A+8を出力する。
In the figure, the arithmetic circuit 21 is composed of addition circuits 30-35 and subtraction circuits 36-39. The addition circuit 30 adds the output levels A and B of the divided parts a and b of the 4-divided sensor 20, and outputs a signal A+8.

加n回路31は分割部c、dの出力レベルC,Dを加点
し、信号C+Dを出力する。同様に加点回路32〜35
夫々はセンダa−Cの出力レベルA〜Dを加点して、信
@B+C,A+D、A+C。
The addition circuit 31 adds up the output levels C and D of the division parts c and d, and outputs a signal C+D. Similarly, point addition circuits 32 to 35
Add output levels A to D of senders a to C, respectively, and receive signals @B+C, A+D, and A+C.

B+D夫々を出力する。Output each of B+D.

減口回路7は加n回路30の出力信号A+Bと加算回路
31の出力信号C+ Oとを減算し、信号(A+8) 
−(C+D)つまり0式に示すずれ量Yを表わす信号Y
を出力する。減算回路8は加鋒回路32.33の出力信
号をyA算して0)式に示すずれff1Xを表わす信号
を出力する。同様にして加点回路36は加算回路34.
35の出力信号を加算して■又は(4)式に丞すずれ槍
Xa1又はYalを表わす信号(A+B+C+D)を出
力する。減算回路39は加偽回路34.35の出力信号
を減口して(15)式に示す誤差信号(A+C)−(B
+D)を出力する。
The subtraction circuit 7 subtracts the output signal A+B of the addition circuit 30 and the output signal C+O of the addition circuit 31 to obtain a signal (A+8).
−(C+D), that is, a signal Y representing the amount of deviation Y shown in equation 0
Output. The subtraction circuit 8 calculates yA from the output signals of the addition circuits 32 and 33 and outputs a signal representing the deviation ff1X shown in equation 0). Similarly, the point addition circuit 36 is connected to the addition circuit 34.
35 output signals are added to output a signal (A+B+C+D) representing the Xa1 or Yal according to equation (4) or (4). The subtraction circuit 39 subtracts the output signals of the addition/falsification circuits 34 and 35 to obtain an error signal (A+C)-(B) shown in equation (15).
+D) is output.

ここで、加点回路30.31.減n回路37で第1の演
算手段を構成し、加篩回路32.33゜減n゛回路38
で第2の演算手段を構成し、加→回路34〜36で第3
の@鼻手段を構成し、加口回路34.35.減偉回路3
9で第4の演算1段を構成している。
Here, the point addition circuits 30.31. The subtraction n circuit 37 constitutes the first arithmetic means, and the addition sieving circuit 32,33° reduction n゛ circuit 38
constitutes a second arithmetic means, and addition->circuits 34 to 36 constitute a third arithmetic means.
constitutes the @nose means, and the opening circuits 34, 35. Reduction circuit 3
9 constitutes one stage of fourth operation.

第5の@p手段である演口回路22は減口回路37.3
8及び加算回路36夫々の出力信号X。
The performance circuit 22, which is the fifth @p means, is the performance reduction circuit 37.3.
8 and the output signal X of the adder circuit 36, respectively.

Y、(A+B+C+D)を演口して、つまり(15)式
第2項に表わされる光軸のずれ成分を表わす信号(2・
X −Y/ (A+B+C+D))を出力する。演算回
路22及び演算回路39夫々の出力信号は端子40.4
1夫々より第6の演算手段である第1図の減り回路23
に供給される。
Y, (A+B+C+D), that is, the signal (2.
Outputs X - Y/ (A+B+C+D)). The output signals of the arithmetic circuit 22 and the arithmetic circuit 39 are connected to the terminal 40.4.
1. The reduction circuit 23 of FIG. 1, which is the sixth calculation means,
supplied to

これによって減口回路23の出力信号は(15)式の第
1項に表わされる真の誤差信号成分だけとなり、光軸の
ずれによるフォーカス・エラーを防止できる。従って光
ディスク装置の記録性能及び再生性能の劣化を防止でき
る。
As a result, the output signal of the aperture reduction circuit 23 becomes only the true error signal component expressed by the first term of equation (15), and it is possible to prevent focus errors due to optical axis deviation. Therefore, deterioration of the recording performance and reproduction performance of the optical disc device can be prevented.

第4図は本発明方式の第2実施例のブロック図を示す。FIG. 4 shows a block diagram of a second embodiment of the system of the present invention.

同図中、第1図と同一部分には同一符号を付し、その説
明を省略する。
In the figure, the same parts as in FIG. 1 are designated by the same reference numerals, and their explanations will be omitted.

第4図においては、演算回路21が端子41から出力す
る(15)式で表わされる信号はそのまま増幅器24に
供給されフォーカス・す−ボが行なわれる。
In FIG. 4, the signal expressed by equation (15) output from the arithmetic circuit 21 from the terminal 41 is supplied as is to the amplifier 24 for focus/boosting.

このため、従来と同一の焦点ずれが発生するが、演口回
路22が端子40より出力する光軸のずれ成分を表わす
信号が可変手段であるレーザダイオード駆動回路50に
供給される。レーザダイオード駆動回路50は光軸のず
れ成分である演算回路22の出力信号の絶対値が人なる
稈レーザダイオード12の駆動電流を人としてレーザ光
mを増大させる。これによって光ディスク10の信号面
上のレーザ光エネルギーがフォーカス・エラーを補償す
るよう増大し、記録性能及び再生性、能の劣化を防止で
きる。
Therefore, the same focal point shift as in the prior art occurs, but a signal representing the optical axis shift component output from the aperture circuit 22 from the terminal 40 is supplied to the laser diode drive circuit 50, which is a variable means. The laser diode driving circuit 50 increases the laser light m by using the driving current of the culm laser diode 12, which has the absolute value of the output signal of the arithmetic circuit 22, which is the optical axis deviation component, as the absolute value. As a result, the laser light energy on the signal surface of the optical disc 10 increases to compensate for the focus error, and it is possible to prevent deterioration of recording performance, playback performance, and performance.

第5図は本発明方式の第3実施例のブロック図を示す。FIG. 5 shows a block diagram of a third embodiment of the system of the present invention.

同図中、第4図と同一部分には同一符号を付し、その説
明を省略する。
In this figure, the same parts as in FIG. 4 are given the same reference numerals, and their explanations will be omitted.

第5図においては、演算回路22の代りに第7゜第8の
演算手段である演算回路26a、26bが設けられてい
る。演算回路26aは第6図に示す如く、信号Yと信号
(A +B −1−C−1−D )とよりy方向のずれ
率を表わす信N Y / Y Mを生成して端子42よ
り出力し、演酔回路26 b &、を信号Xと信号(A
+B+C+D)とよりX方向のずれ率を表わす信号X 
/ X Mを生成して端子43より出力する。
In FIG. 5, in place of the arithmetic circuit 22, arithmetic circuits 26a and 26b, which are seventh and eighth arithmetic means, are provided. As shown in FIG. 6, the arithmetic circuit 26a generates a signal N Y / Y M representing the deviation rate in the y direction from the signal Y and the signal (A + B -1 - C -1 - D) and outputs it from the terminal 42. Then, the intoxication circuit 26 b &, is connected to the signal X and the signal (A
+B+C+D) and a signal X representing the deviation rate in the X direction.
/XM is generated and output from the terminal 43.

信号Y/YM、X/XM夫々ハ第1.第2の駆動手段で
ある駆動コイル27a、27b夫々に供給され、これに
よってミラー19は回動して反射光の光軸を信号Y/Y
M、X/XM夫々に応じて4分割センサ20のy方向、
X方向夫々に移動せしめ、セン+120に対する光軸の
ずれが補償される。
Signals Y/YM and X/XM respectively C first. The signal is supplied to drive coils 27a and 27b, which are second drive means, so that the mirror 19 rotates to direct the optical axis of the reflected light to the signal Y/Y.
the y direction of the four-part sensor 20 according to M, X/XM, respectively;
The optical axis is moved in each of the X directions to compensate for the deviation of the optical axis relative to +120.

また、この変形例として、第7図に示す如く、信号Y/
YM、X/XM夫々ヲ第1.第2の駆動手段である駆動
コイル28a、28b夫々に供給し、4分割センサ20
をy方向、X方向夫々に移動せしめ、センサ20に対す
る光軸のずれを補償することもできる。
Further, as a modification of this example, as shown in FIG.
YM, X/XM each 1st. It is supplied to each of the drive coils 28a and 28b which are the second drive means, and the 4-split sensor 20
It is also possible to compensate for the deviation of the optical axis with respect to the sensor 20 by moving the optical axis in both the y direction and the x direction.

発明の効果 上述の如く、本発明の光ディスク装置によれば、センサ
に対する光軸のずれによって発生するフォーカス・エラ
ーを補正し、記録性能及び再生性能の劣化を防止でき、
実用上きわめて有用である。
Effects of the Invention As described above, according to the optical disc device of the present invention, it is possible to correct focus errors caused by misalignment of the optical axis with respect to the sensor, and prevent deterioration of recording performance and playback performance.
It is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第4図、第5図、第7図夫々は本発明方式の各
実施例のブロック図、第2図は本発明の詳細な説明する
ための図、第3図は第1図の一部回路の回路構成図、第
6図は第5図の一部回路の回路構成図、第8図は光軸の
ずれを説明するための図である。 12・・・レーザダイオード、20・・・4分割光セン
サ、21.22,26a、26b−・・演算回路、23
 ・・・減口回路、°27a、27b、28a。 28b・・・駆動コイル、29・・・シリンドリカルレ
ンズ。 第2図
1, 4, 5, and 7 are block diagrams of each embodiment of the system of the present invention, FIG. 2 is a diagram for explaining the present invention in detail, and FIG. 3 is a diagram similar to that of FIG. 1. 6 is a circuit diagram of a partial circuit of FIG. 5, and FIG. 8 is a diagram for explaining the deviation of the optical axis. 12... Laser diode, 20... 4-split optical sensor, 21.22, 26a, 26b-... Arithmetic circuit, 23
... reduction circuit, °27a, 27b, 28a. 28b... Drive coil, 29... Cylindrical lens. Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)光ディスクの反射光をシリンドリカルレンズを通
して4分割光センサに投影し、該センサの各分割部の出
力からフォーカス・エラーの誤差信号を得て非点収差法
のフォーカス・サーボを行なう光ディスク装置において
、 該各分割部の出力からセンサに対する光軸のy方向のず
れ量を算出する第1の演算手段と、該各分割部の出力か
らセンサに対する光軸のx方向のずれ量を算出する第2
の演算手段と、該各分割部の出力からセンサに対する光
軸のx方向及びy方向の最大ずれ量を算出する第3の演
算手段と、 該各分割部の出力から該誤差信号を算出する第4の手段
と、 該第1乃至第3の演算手段の出力から該誤差信号中の光
軸のずれ成分を算出する第5の演算手段と、 該第4及び第5の演算手段の出力から光軸のずれ成分を
除去したフォーカス・エラーだけの誤差信号を算出する
第6の演算手段とを有し、該光軸のずれ成分を除去した
フォーカス・エラーだけの誤差信号でフォーカス・サー
ボを行なうことを特徴とする光ディスク装置。
(1) In an optical disc device that performs focus servo using an astigmatism method by projecting reflected light from an optical disc onto a four-split optical sensor through a cylindrical lens, and obtaining a focus error error signal from the output of each split part of the sensor. , a first calculating means that calculates the amount of deviation of the optical axis in the y-direction from the sensor from the output of each of the dividing sections, and a second calculation means that calculates the amount of deviation of the optical axis in the x-direction of the sensor from the output of each of the dividing sections.
a third calculating means for calculating the maximum deviation of the optical axis in the x and y directions of the optical axis with respect to the sensor from the output of each dividing section; and a third calculating means for calculating the error signal from the output of each dividing section. a fifth calculating means for calculating an optical axis deviation component in the error signal from the outputs of the first to third calculating means; and a sixth calculation means for calculating an error signal of only the focus error with the axis deviation component removed, and performing focus servo using the error signal of only the focus error with the optical axis deviation component removed. An optical disc device characterized by:
(2)光ディスクの反射光をシリンドリカルレンズを通
して4分割光センサに投影し、該センサの各分割部の出
力からフォーカス・エラーの誤差信号を得て非点収差法
のフォーカス・サーボを行なう光ディスク装置において
、 該各分割部の出力からセンサに対する光軸のy方向のず
れ量を算出する第1の演算手段と、該各分割部の出力か
らセンサに対する光軸のx方向のずれ量を算出する第2
の演算手段と、該各分割部の出力からセンサに対する光
軸のx方向及びy方向の最大ずれ量を算出する第3の演
算手段と、 該各分割部の出力から該誤差信号を算出する第4の手段
と、 該第1乃至第3の演算手段の出力から該誤差信号中の光
軸のずれ成分を算出する第5の演算手段と、 該第5の演算手段の出力する光軸のずれ成分に応じて該
光ディスクに照射するレーザ光量を可変する可変手段と
を有し、 該第4の演算手段の出力する誤差信号でフォーカス・サ
ーボを行なうことを特徴とする光ディスク装置。
(2) In an optical disc device that performs focus servo using an astigmatism method by projecting reflected light from an optical disc onto a four-split optical sensor through a cylindrical lens and obtaining a focus error error signal from the output of each split part of the sensor. , a first calculating means that calculates the amount of deviation of the optical axis in the y-direction from the sensor from the output of each of the dividing sections, and a second calculation means that calculates the amount of deviation of the optical axis in the x-direction of the sensor from the output of each of the dividing sections.
a third calculating means for calculating the maximum deviation of the optical axis in the x and y directions of the optical axis with respect to the sensor from the output of each dividing section; and a third calculating means for calculating the error signal from the output of each dividing section. 4, a fifth calculation means for calculating an optical axis deviation component in the error signal from the outputs of the first to third calculation means; and an optical axis deviation output from the fifth calculation means. An optical disc device comprising variable means for varying the amount of laser light irradiated onto the optical disc according to the component, and performing focus servo using an error signal output from the fourth calculation means.
(3)光ディスクの反射光をシリンドリカルレンズを通
して4分割光センサに投影し、該センサの各分割部の出
力からフォーカス・エラーの誤差信号を得て非点収差法
のフォーカス・サーボを行なう光ディスク装置において
、 該各分割部の出力からセンサに対する光軸のy方向のず
れ量を算出する第1の演算手段と、該各分割部の出力か
らセンサに対する光軸のx方向のずれ量を算出する第2
の演算手段と、該各分割部の出力からセンサに対する光
軸のx方向及びy方向の最大ずれ量を算出する第3の演
算手段と、 該各分割部の出力から該誤差信号を算出する第4の演算
手段と、 該第1乃至第3の演算手段の出力から光軸のy方向のず
れ率を算出する第7の演算手段と、該第2及び第3の演
算手段の出力から光軸のx方向のずれ率を算出する第8
の演算手段と、該第7の演算手段の出力するy方向のず
れ率に応じて該y方向のずれ量がなくなるよう該センサ
と該光軸との相対位置を移動させる第1の駆動手段と、 該第8の演算手段の出力するx方向のずれ率に応じて該
x方向のずれ量がなくなるよう該センサと該光軸との相
対位置を移動させる第2の駆動手段とを有し、 該第4の演算手段の出力する誤差信号でフォーカス・サ
ーボを行なうことを特徴とする光ディスク装置。
(3) In an optical disc device that performs focus servo using an astigmatism method by projecting reflected light from an optical disc onto a four-split optical sensor through a cylindrical lens, and obtaining a focus error error signal from the output of each division of the sensor. , a first calculating means that calculates the amount of deviation of the optical axis in the y-direction from the sensor from the output of each of the dividing sections, and a second calculation means that calculates the amount of deviation of the optical axis in the x-direction of the sensor from the output of each of the dividing sections.
a third calculating means for calculating the maximum deviation of the optical axis in the x and y directions of the optical axis with respect to the sensor from the output of each dividing section; and a third calculating means for calculating the error signal from the output of each dividing section. 4 calculation means; seventh calculation means for calculating the deviation rate of the optical axis in the y direction from the outputs of the first to third calculation means; Eighth step to calculate the deviation rate in the x direction of
and a first driving means for moving the relative position of the sensor and the optical axis so that the amount of deviation in the y direction is eliminated in accordance with the deviation rate in the y direction output from the seventh calculation means. , a second driving means for moving the relative position of the sensor and the optical axis so that the amount of deviation in the x direction is eliminated according to the deviation rate in the x direction outputted by the eighth calculation means, An optical disc device characterized in that focus servo is performed using an error signal output from the fourth calculation means.
JP8560488A 1988-04-07 1988-04-07 Optical disk device Expired - Lifetime JPH067414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8560488A JPH067414B2 (en) 1988-04-07 1988-04-07 Optical disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8560488A JPH067414B2 (en) 1988-04-07 1988-04-07 Optical disk device

Publications (2)

Publication Number Publication Date
JPH01258234A true JPH01258234A (en) 1989-10-16
JPH067414B2 JPH067414B2 (en) 1994-01-26

Family

ID=13863429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8560488A Expired - Lifetime JPH067414B2 (en) 1988-04-07 1988-04-07 Optical disk device

Country Status (1)

Country Link
JP (1) JPH067414B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137230A (en) * 1990-09-28 1992-05-12 Teac Corp Optical disk device
WO2006098071A1 (en) * 2005-03-08 2006-09-21 Mitsubishi Denki Kabushiki Kaisha Optical device and optical disk unit using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137230A (en) * 1990-09-28 1992-05-12 Teac Corp Optical disk device
WO2006098071A1 (en) * 2005-03-08 2006-09-21 Mitsubishi Denki Kabushiki Kaisha Optical device and optical disk unit using it
US7839733B2 (en) 2005-03-08 2010-11-23 Mitsubishi Electric Corporation Optical device and optical disc apparatus utilizing the optical device

Also Published As

Publication number Publication date
JPH067414B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
US6826133B2 (en) Optimizing a distance between lenses of a two objective lens for minimizing wavefront aberration and offsetting focus control
JP2000040237A (en) Optical recording and reproducing device and its method
JPH0626972Y2 (en) Optical pickup device
CN101111890B (en) Optical device and optical disk unit using it
CN100365715C (en) Optical disc apparatus and spherical aberration correction controlling apparatus
KR100601632B1 (en) Error signal detecting apparatus for optical recording/reproducing device
JPH03108128A (en) Optical information recording and reproducing device
JPS60195745A (en) Tracking servo signal producing system
JPH0760527B2 (en) Optical pickup device
JPH0652563A (en) Controlling system for optical disk device
JP2638279B2 (en) Optical disk drive
JPH01258234A (en) Optical disk device
JPS58125241A (en) Optical recording and reproducing device
JP3491253B2 (en) Optical disk automatic adjustment device
US7468939B2 (en) Optical disk apparatus with phase difference offset
US5471446A (en) Optical disk player having beam correction means
JP2788141B2 (en) Error detection device for optical disk device
JPH08335323A (en) Optical information recording and reproducing device
JP4000680B2 (en) Optical disk device
KR100218515B1 (en) Apparactus for correcting photo dafect signal in optical system
JP2908596B2 (en) Focus detection sensitivity correction method and optical pickup device
JPS61280041A (en) Optical pickup adjusting device
JP2000090476A (en) Optical pickup, information reproducing device and information recording device
JPH0944867A (en) Optical pickup and its spot deviation correcting method
JP2002074696A (en) Method for calculating focus error signal and optical pickup device