JPH0125810B2 - - Google Patents

Info

Publication number
JPH0125810B2
JPH0125810B2 JP1025584A JP1025584A JPH0125810B2 JP H0125810 B2 JPH0125810 B2 JP H0125810B2 JP 1025584 A JP1025584 A JP 1025584A JP 1025584 A JP1025584 A JP 1025584A JP H0125810 B2 JPH0125810 B2 JP H0125810B2
Authority
JP
Japan
Prior art keywords
steel
less
amount
ferrite
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1025584A
Other languages
Japanese (ja)
Other versions
JPS60155619A (en
Inventor
Manabu Tamura
Yoshito Ihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP1025584A priority Critical patent/JPS60155619A/en
Publication of JPS60155619A publication Critical patent/JPS60155619A/en
Publication of JPH0125810B2 publication Critical patent/JPH0125810B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は靭性に優れた高クロム鋼の製造方法に
関し、特に低温靭性及び耐熱性に優れた高クロム
鋼を製造することができる方法を提供せんとする
ものである。 ボイラの過熱器、蒸気管や化学プラント、原子
炉等の高温部に利用される鋼材には、高温強度だ
けでなく、耐食性、靭性、加工性、溶接性等の面
で優れた特性が要求される。特に近年、安全性が
重視され、また省エネルギーの視点から既存プラ
ントを少しでも長く使用しなければならないこと
から、長期間使用しても劣化を生じないような材
料が求められる傾向にあり、また補修時の衝撃荷
重にも耐え得ることが求められること等もあり、
耐熱鋼についても十分な靭性を持つことが必要条
件となつてきた。この種の用途に供される鋼とし
て、オーステナイト鋼、ニツケル基合金、フエラ
イト系ステンレス鋼、21/4Cr−1Mo鋼、9Cr− 1Mo鋼等が知られているが、これらのうち、オ
ーステナイト鋼は塩化物応力腐食割れ感受性が大
であり、またニツケル基合金は高価であるという
問題がある。またフエライト系ステンレス鋼は概
して強度が低く、脆いという欠点があり、また2
1/4Cr−1Mo鋼もCr含有量の関係から耐酸化性に 若干の問題が残されている。このような各種鋼の
中にあつて、9Cr−1Mo系の鋼が高温強度に優れ
しかも耐酸化性も良好であるため注目を集めつつ
ある。この9Cr−1Mo系の鋼には、その組織がフ
エライト−焼戻しマルテンサイトからなる二相鋼
と、焼戻しマルテンサイト一相の鋼があるが、こ
れらの鋼のうち一相系の9Cr−1Mo系の鋼は、概
してCが0.1〜0.2wt%と高いため溶接性が充分で
ないことが多い。これに対し、より低炭素含有量
の二相系9Cr−1Mo鋼は溶接性は良いが高温強度
が必ずしも十分であるとは言い難い。この欠点を
補うため、同系列の鋼にNb,Vさらに必要に応
じてBを添加し高温強度を改善した9Cr−1Mo−
V−Nb(B)鋼があるが、靭性が十分でない難点が
ある。このように従来の鋼は、高温における耐酸
化性、高温強度、靭性、溶接性の総てをバランス
良く満足させるというものではなく、いずれかの
特性に弱点を有するものであつた。 本発明はこのような事情に鑑み新たに研究開発
されたもので、耐酸化性、高温強度、低温靭性、
溶接性の総てをバランス良く満足させ得る鋼を提
供せんとするものであり、このため本発明は、低
Cの9Cr−1Mo−V−Nb系成分組成を採用する
とともにそのδフエライト量に当該鋼に加える加
工比(主として圧延比)との関係を調整すること
により、高温強度と溶接性を損うことなく靭性を
改善することに成功したものである。 すなわち本願第1の発明の基本的特徴は、C:
0.04〜0.15%、Si:1.0%以下、Mn:1.0%以下、
Cr:5〜12%、Mo及びWの1種又は2種を合計
で0.5〜2.0%、V:0.05〜1.5%、Nb(及びこれに
不可避的に随伴するTaの和):0.03〜0.6%、
Al:0.3%以下、N:0.1%以下を含有し、残部鉄
及び不可避的不純物からなり、δフエライト量が
1〜50%となるような鋼を、そのδフエライト量
(δ)に応じて下式で示されるPが0.2以上となる
ように加工するようにしたことにある。 P=logF−3δ/100 但し、F:加工比 また、本願第2の発明の基本的特徴は、C:
0.04〜0.15%、Si:1.0%以下、Mn:1.0%以下、
Cr:5〜12%、Mo及びWの1種又は2種を合計
で0.5〜2.0%、V:0.05〜1.5%、Nb(及びこれに
不可避的に随伴するTaの和):0.03〜0.6%、
Al:0.3%以下、N:0.1%以下、さらにB:0.01
%以下、Ni:1.0%以下の1種又は2種を含有し、
残部鉄及び不可避的不純物からなり、δフエライ
ト量が1〜50%となるような鋼を、そのδフエラ
イト量(δ)に応じて上記式で示されるPが0.2
以上となるように加工するようにしたことにあ
る。 以下、本発明の限定理由を説明する。 まず、本発明は上記した特定の成分組成を採用
する。Cは十分な高温強度を確保するためには
0.04%以上必要であるが、0.15%を超えると溶接
性を害するため好ましくない。このためC量は
0.04〜0.15%とする。 Siは脱酸剤として添加されるが、その量が1.0
%を超えると溶接性が害され、このためSi量は
1.0%以下に規制される。 Mnも脱酸剤としてSiとともに添加されるが、
その量が1.0%を超えると加工性と溶接性が劣化
し、このためMn量も1.0%以下に規制される。 Crは高温での耐酸化性を十分に確保するため
5%以上添加することが必要であるが、12%を超
えるとフエライト量が著しく少なくなり靭性を損
なうことになる。したがつてCr量は5〜12%と
する。 MoとWは高温強度を高めるための必須元素で
あり、それらの1種又は2種を合計で0.5%以上
添加することが必要である。一方、それらの1種
又は2種を合計で2.0%を超えて添加しても、添
加量に見合う高温強度の改善が期待できず、却つ
て経済性を損なうことになる。このためMo、W
量はその1種又は2種を合計で0.5〜2.0%の範囲
とする。 Vは高温強度に有効な元素であり、必要な高温
強度を得るために0.05%以上添加される。しかし
1.5%を超えると靭性を著しく害し、したがつて
V量は0.05〜1.5%とする。 NbはCとともにクリープ強度に寄与する元素
であるが、上述したCの範囲に対しては0.03%未
満ではその効果が薄く、このため0.03%以上添加
される。しかし、0.6%を超えると溶接性を著し
く害する。Nbは、これを添加する場合同様の性
質を有するTaを不可避的に随伴するものであり、
このためNb量はTaとの和の総量で0.03〜0.6%と
する。 Alは脱酸剤として添加され、且つ適量の添加
によつて窒素とともにAlNを形成し、これによ
る微細粒化作用によつて靭性を改善する。しかし
その添和量が0.3%を超えるとクリープ強度を低
下させるため好ましくなく、したがつてAl量は
0.3%以下とする。 Nは強度を高める元素であるが、0.1%を超え
ると靭性を害するとともに、厚板を電子ビーム溶
接等の高エネルギー溶接する場合に気泡を生じや
すく、このためN量は0.1%以下とする。 B及びNiは、本願第2の発明において以上の
基本成分に対して1種又は2種添加するものであ
る。このうち、Bはクリープ強度を高める元素で
あるが、その量が0.01%を超えると溶接性を害
し、このためB量は0.01%以下とする。 またNiは適量の添加により靭性を高める効果
があるが、1.0%を超えるような添加は塩化物応
力腐食割れを生じる可能性があるため好ましくな
く、このためNi量は1.0%以下とする。 本発明では、上述したような組成条件に加え、
さらに組織中のδフエライト量の規制が加えられ
る。すなわち、溶接性を改善するためには、焼戻
しマルテンサイト一相組織ではなく、δフエライ
ト+焼戻しマルテンサイトの混合組織が望まし
く、このためδフエライト量は少なくとも1%は
必要である。しかしδフエライトが50%を超える
と所定の靭性を確保するために必要な圧延・鍛錬
比を著しく大きくしなければならず、この結果、
所定寸法の材料を作成するため超大形鋼塊を作成
してこれを加工していくことが必要となり、極め
て不経済なものとなる。このようなことから、本
発明では鋼中δフエライト量が1〜50%の範囲に
限定される。なお、このようなδフエライト量と
しては、所定の熱処理を施した鋼を光学顕微鏡で
検鏡し、帯状又は島状をなしたフエライトの面積
率を求めることによつて得られる値を用いること
が一般的であるが、精度が十分確保されるなら
ば、当該鋼が含有する各元素の含有量から経験式
に基づいて得られる値を用いることもできる。 本発明では以上のような組成及び組織上の規制
に加え、さらに圧延等の加工の面でも一定の規制
が加えられる。本発明者等は、上記組成及び組織
上の規制に加え、δフエライト量との関係におい
て圧延等の加工を一定以上の加工比で行うことに
より優れた靭性が得られることを知見したもので
あり、これが本発明の大きな特徴である。すなわ
ち、Fを加工比(加工前素材断面積A/製品断面
積B)とした場合、δフエライト量(δ)との関
係で下式に示されるPが0.2以上となるような加
工比(F)で加工を行う。 P=logF−3δ/100 ここで、加工とは圧延、鍛造、押し出し等、鋳
造組織を破壊するいずれの加工でもよく、また熱
間加工、冷間加工の別を問わない。但し、当該加
工は、加工の容易さ等から1250〜1000℃の温度範
囲で行うことが好ましい。加工を行う上で1250℃
を超えて加熱することは炉の寿命を著しく短縮さ
せ、また1000℃未満では変形抵抗が大きくなり過
ぎ好ましくない。また上記加工比Fは、前記した
ように加工前素材断面積をA、製品の断面積をB
とした場合、 F=A/B で表わされるが、ここで加工前素材断面積Aは、
一般造塊で製造する場合には、分塊後の半製品の
断面積ではなく鋼塊そのものの断面積を意味し、
また連続鋳造で得たスラブ又はビレツトを使用し
て製造する場合においては、これらスラブ又はビ
レツトの断面積を意味するものである。 本発明において一般に採用される熱処理は通常
の焼準−焼戻処理であり、溶製した鋼を、鍛錬・
圧延後950℃以上で焼準し、次いで700℃以上Ac1
以下の温度で焼戻すものである。 〔実施例〕 第1表に示す組成の鋼を溶製し、これを圧延
後、焼準−焼戻処理を行い、フルサイズのシヤル
ピ衝撃試験とJISの最高硬さ試験(JISZ3101)を
行つた。その結果を同表に合せて示す。比較材と
しては、商用の焼戻マルテンサイト一相系の2
1/4Cr−1Mo鋼、9Cr−1Mo鋼及びX20CrMoV鋼 等を用いた。
The present invention relates to a method for manufacturing high chromium steel with excellent toughness, and particularly aims to provide a method for manufacturing high chromium steel with excellent low temperature toughness and heat resistance. Steel materials used in high-temperature parts such as boiler superheaters, steam pipes, chemical plants, and nuclear reactors are required to have excellent properties in terms of not only high-temperature strength but also corrosion resistance, toughness, workability, and weldability. Ru. Particularly in recent years, safety has been emphasized, and existing plants must be used for as long as possible from the perspective of energy conservation, so there is a trend for materials that do not deteriorate even after long-term use, and there is also a need for materials that do not deteriorate even after long-term use. It is also required to be able to withstand the impact loads of
It has also become a necessary condition for heat-resistant steel to have sufficient toughness. Austenitic steel, nickel-based alloy, ferritic stainless steel, 21/4Cr-1Mo steel, 9Cr-1Mo steel, etc. are known as steels used for this type of use. There are problems in that nickel-based alloys are highly susceptible to stress corrosion cracking and are expensive. In addition, ferritic stainless steels generally have low strength and are brittle;
1/4Cr-1Mo steel also has some problems in oxidation resistance due to the Cr content. Among these various steels, 9Cr-1Mo steel is attracting attention because it has excellent high-temperature strength and good oxidation resistance. There are two types of 9Cr-1Mo steels: duplex steels whose structure is composed of ferrite and tempered martensite, and steels whose structure is single-phase tempered martensite. Since steel generally has a high C content of 0.1 to 0.2 wt%, weldability is often insufficient. On the other hand, duplex 9Cr-1Mo steel with a lower carbon content has good weldability but does not necessarily have sufficient high-temperature strength. To compensate for this drawback, 9Cr-1Mo- is a steel of the same series with Nb, V, and B added as needed to improve high-temperature strength.
There is V-Nb(B) steel, but it has the drawback of not having sufficient toughness. As described above, conventional steels do not satisfy all of high-temperature oxidation resistance, high-temperature strength, toughness, and weldability in a well-balanced manner, and have weaknesses in any of the properties. The present invention was newly researched and developed in view of these circumstances, and has improved oxidation resistance, high temperature strength, low temperature toughness,
It is an object of the present invention to provide a steel that satisfies all aspects of weldability in a well-balanced manner, and for this purpose, the present invention adopts a low C 9Cr-1Mo-V-Nb composition and also changes the amount of δ ferrite to By adjusting the relationship with the working ratio (mainly rolling ratio) applied to the steel, we succeeded in improving toughness without impairing high-temperature strength and weldability. That is, the basic characteristics of the first invention of the present application are C:
0.04-0.15%, Si: 1.0% or less, Mn: 1.0% or less,
Cr: 5-12%, one or both of Mo and W in total 0.5-2.0%, V: 0.05-1.5%, Nb (and the sum of Ta that inevitably accompanies this): 0.03-0.6% ,
A steel containing Al: 0.3% or less, N: 0.1% or less, the balance consisting of iron and unavoidable impurities, and a δ ferrite amount of 1 to 50% is prepared according to its δ ferrite amount (δ). The reason is that processing is performed so that P shown in the formula is 0.2 or more. P=logF−3δ/100 where F: processing ratio Furthermore, the basic feature of the second invention of the present application is that C:
0.04-0.15%, Si: 1.0% or less, Mn: 1.0% or less,
Cr: 5-12%, one or both of Mo and W in total 0.5-2.0%, V: 0.05-1.5%, Nb (and the sum of Ta that inevitably accompanies this): 0.03-0.6% ,
Al: 0.3% or less, N: 0.1% or less, and B: 0.01
% or less, Ni: Contains one or two types of 1.0% or less,
A steel whose balance consists of iron and unavoidable impurities and whose δ ferrite content is 1 to 50% has P expressed by the above formula of 0.2 depending on its δ ferrite content (δ).
This is due to the fact that it was processed so that it would be as described above. The reasons for the limitations of the present invention will be explained below. First, the present invention employs the above-described specific component composition. C is required to ensure sufficient high temperature strength.
0.04% or more is necessary, but if it exceeds 0.15% it is not preferable because it impairs weldability. Therefore, the amount of C is
Set at 0.04-0.15%. Si is added as a deoxidizing agent, but the amount is 1.0
%, weldability is impaired, and for this reason the amount of Si is
It is regulated to 1.0% or less. Mn is also added as a deoxidizer along with Si, but
If the amount exceeds 1.0%, workability and weldability deteriorate, and therefore the amount of Mn is also regulated to 1.0% or less. It is necessary to add 5% or more of Cr to ensure sufficient oxidation resistance at high temperatures, but if it exceeds 12%, the amount of ferrite decreases significantly and toughness is impaired. Therefore, the Cr content is set to 5 to 12%. Mo and W are essential elements for increasing high-temperature strength, and it is necessary to add one or both of them in a total amount of 0.5% or more. On the other hand, even if one or both of them are added in a total amount exceeding 2.0%, no improvement in high-temperature strength commensurate with the added amount can be expected, which will actually impair economic efficiency. For this reason, Mo, W
The total amount of one or both of them is in the range of 0.5 to 2.0%. V is an effective element for high-temperature strength, and is added in an amount of 0.05% or more to obtain the necessary high-temperature strength. but
If it exceeds 1.5%, the toughness will be significantly impaired, so the V content should be 0.05 to 1.5%. Nb is an element that contributes to creep strength along with C, but its effect is weak when it is less than 0.03% in the above-mentioned range of C, so it is added in an amount of 0.03% or more. However, if it exceeds 0.6%, weldability will be significantly impaired. When Nb is added, it inevitably accompanies Ta, which has similar properties.
Therefore, the total amount of Nb including Ta is set to 0.03 to 0.6%. Al is added as a deoxidizing agent, and when added in an appropriate amount, forms AlN together with nitrogen, which improves toughness through the fine graining effect. However, if the amount added exceeds 0.3%, it is undesirable because it reduces the creep strength, and therefore the amount of Al is
0.3% or less. N is an element that increases strength, but if it exceeds 0.1%, it impairs toughness and tends to cause bubbles when high energy welding such as electron beam welding is performed on thick plates, so the amount of N is set to 0.1% or less. In the second invention of the present application, one or two types of B and Ni are added to the above basic components. Among these, B is an element that increases creep strength, but if its amount exceeds 0.01%, it impairs weldability, so the B amount is set to 0.01% or less. Further, although Ni has the effect of increasing toughness when added in an appropriate amount, addition of more than 1.0% is not preferable because it may cause chloride stress corrosion cracking, and therefore the amount of Ni is set to 1.0% or less. In the present invention, in addition to the composition conditions as described above,
Furthermore, regulations are added on the amount of δ ferrite in the tissue. That is, in order to improve weldability, it is desirable to have a mixed structure of δ ferrite + tempered martensite rather than a single phase structure of tempered martensite, and therefore the amount of δ ferrite is required to be at least 1%. However, if the content of δ ferrite exceeds 50%, the rolling/forging ratio required to ensure the desired toughness must be significantly increased, and as a result,
In order to create a material with a predetermined size, it is necessary to create and process an extremely large steel ingot, which is extremely uneconomical. For this reason, in the present invention, the amount of δ ferrite in the steel is limited to a range of 1 to 50%. In addition, as the amount of δ ferrite, it is possible to use a value obtained by examining steel that has been subjected to a prescribed heat treatment with an optical microscope and determining the area ratio of ferrite in the form of bands or islands. Although it is common, if sufficient accuracy is ensured, values obtained based on empirical formulas from the content of each element contained in the steel can also be used. In the present invention, in addition to the above compositional and structural restrictions, certain restrictions are also imposed on processing such as rolling. The present inventors have discovered that, in addition to the above-mentioned compositional and structural regulations, excellent toughness can be obtained by performing processing such as rolling at a processing ratio above a certain level in relation to the amount of δ-ferrite. , this is a major feature of the present invention. In other words, when F is the processing ratio (material cross-sectional area A before processing/product cross-sectional area B), the processing ratio (F ) to perform processing. P=logF-3δ/100 Here, processing may be any processing that destroys the cast structure, such as rolling, forging, extrusion, etc., and it does not matter whether it is hot working or cold working. However, the processing is preferably carried out at a temperature range of 1250 to 1000°C from the viewpoint of ease of processing. 1250℃ for processing
Heating above 1000°C significantly shortens the life of the furnace, and heating below 1000°C is undesirable because the deformation resistance becomes too large. In addition, the processing ratio F is defined as the cross-sectional area of the material before processing is A, and the cross-sectional area of the product is B.
In this case, it is expressed as F=A/B, where the cross-sectional area A of the material before processing is
When manufacturing by general ingot making, it refers to the cross-sectional area of the steel ingot itself, not the cross-sectional area of the semi-finished product after blooming.
Furthermore, in the case of manufacturing using a slab or billet obtained by continuous casting, it means the cross-sectional area of the slab or billet. The heat treatment generally adopted in the present invention is a normal normalizing-tempering treatment, in which the molten steel is forged and tempered.
After rolling, normalize at 950℃ or higher, then 700℃ or higher Ac 1
It is tempered at the following temperature. [Example] Steel with the composition shown in Table 1 was melted, rolled, normalized and tempered, and subjected to a full-size Sharpi impact test and a JIS maximum hardness test (JISZ3101). . The results are also shown in the same table. As a comparative material, commercially available tempered martensite single-phase 2
1/4Cr-1Mo steel, 9Cr-1Mo steel, X20CrMoV steel, etc. were used.

【表】【table】

【表】 ○印 本発明鋼
*1 0℃シヤルピテスト
*2 JIS Z 3101
同表中のB鋼とD鋼を比較しても判るように衝
撃試験の結果はδフエライト量が少ないほうが靭
性が優れているが、吸収エネルギー(0℃シヤル
ピテスト)に関しては鋼A〜Fをみても判るよう
に圧延比が高くδフエライト量との関係でP値が
0.2以上でないと好ましい靭性が得られていない。
第1図は、上記第1表中の供試鋼を含めたいくつ
かの供試鋼のP値を0℃シヤルピ吸収エネルギと
の関係を示したものであり、これによればP値が
0.2以上で0℃吸収エネルギが5Kg・m以上の優
れた靭性が得られることが判る。 一方、靭性に富むという点ではG鋼やH鋼のよ
うに一相系の鋼も有望であるが、第1表に示すよ
うに二相系の材料に較べて最高硬さ試験に示され
る溶接性には問題が残されている。また鋼たる
21/4Cr−1Mo鋼は靭性も溶接性も優れている が、クロム量が少なく、耐食性が不十分である。 第2図は本発明鋼たるA鋼と比較鋼たるG鋼
(焼戻しマルテンサイト系の9Cr−1Mo鋼、
STBA26)のクリープ強さ(650℃における)を
比較して示したものであり、これによれば本発明
鋼が優れた高温強度を備えていることが判る。 以上述べた本発明によれば、高温強度に優れ、
しかも低温靭性及び溶接性にも優れた高クロム鋼
を製造し得るものであり、ボイラや化学プラン
ト、原子炉用等の鋼材の製造方法として極めて有
用なものであるということができる。
[Table] ○ Invention steel *1 0°C Sialpi test *2 JIS Z 3101
As can be seen by comparing Steel B and Steel D in the same table, the impact test results show that the smaller the amount of δ ferrite, the better the toughness, but regarding the absorbed energy (Sharpi test at 0°C), steels A to F As can be seen, the P value increases due to the high rolling ratio and the relationship with the amount of δ ferrite.
If it is not 0.2 or more, preferred toughness cannot be obtained.
Figure 1 shows the relationship between the P values of several test steels, including the test steels in Table 1 above, and the Syarpy absorbed energy at 0°C.
It can be seen that excellent toughness with an absorbed energy of 5 kg·m or more at 0°C can be obtained at a temperature of 0.2 or more. On the other hand, single-phase steels such as G steel and H steel are promising in terms of their high toughness, but as shown in Table 1, compared to two-phase materials, the maximum hardness of welding Problems with sexuality remain. Further, although the steel 21/4Cr-1Mo steel has excellent toughness and weldability, it has a small amount of chromium and has insufficient corrosion resistance. Figure 2 shows Steel A, which is the steel of the present invention, and Steel G, which is the comparative steel (tempered martensitic 9Cr-1Mo steel,
This figure shows a comparison of the creep strength (at 650°C) of STBA26), which shows that the steel of the present invention has excellent high-temperature strength. According to the present invention described above, it has excellent high temperature strength,
Furthermore, it is possible to produce high chromium steel with excellent low-temperature toughness and weldability, and it can be said to be extremely useful as a method for producing steel materials for boilers, chemical plants, nuclear reactors, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1表に示す供試鋼等においてP値と
シヤルピ吸収エネルギとの関係を示すものであ
る。第2図は第1表におけるA鋼とG鋼のクリー
プ強さを比較して示すものである。
FIG. 1 shows the relationship between the P value and the Syarpy absorbed energy for the test steels shown in Table 1. FIG. 2 shows a comparison of the creep strength of steel A and steel G in Table 1.

Claims (1)

【特許請求の範囲】 1 C:0.04〜0.15%、Si:1.0%以下、Mn:1.0
%以下、Cr:5〜12%、Mo及びWの1種又は2
種を合計で0.5〜2.0%、V:0.05〜1.5%、Nb(及
びこれに不可避的に随伴するTaの和):0.03〜0.6
%、Al:0.3%以下、N:0.1%以下を含有し、残
部鉄及び不可避的不純物からなり、δフエライト
量が1〜50%となるような鋼を、そのδフエライ
ト量(δ)に応じて下式で示されるPが0.2以上
となるように加工することを特徴とする靭性に優
れた高クロム鋼の製造方法。 P=logF−3δ/100 但し、F:加工比 2 C:0.04〜0.15%、Si:1.0%以下、Mn:1.0
%以下、Cr:5〜12%、Mo及びWの1種又は2
種を合計で0.5〜2.0%、V:0.05〜1.5%、Nb(及
びこれに不可避的に随伴するTaの和):0.03〜0.6
%、Al:0.3%以下、N:0.1%以下、さらにB:
0.01%以下、Ni:1.0%以下の1種又は2種を含
有し、残部鉄及び不可避的不純物からなり、δフ
エライト量が1〜50%となるような鋼を、そのδ
フエライト量(δ)に応じて下式で示されるPが
0.2以上となるように加工することを特徴とする
靭性に優れた高クロム鋼の製造方法。 P=logF−3δ/100 但し、F:加工比
[Claims] 1 C: 0.04 to 0.15%, Si: 1.0% or less, Mn: 1.0
% or less, Cr: 5 to 12%, one or two of Mo and W
Total seeds: 0.5-2.0%, V: 0.05-1.5%, Nb (and the sum of Ta that inevitably accompanies this): 0.03-0.6
%, Al: 0.3% or less, N: 0.1% or less, the balance consists of iron and unavoidable impurities, and the amount of δ ferrite is 1 to 50%, depending on the amount of δ ferrite (δ). A method for producing high chromium steel with excellent toughness, characterized by processing the steel so that P expressed by the following formula is 0.2 or more. P=logF-3δ/100 However, F: Processing ratio 2 C: 0.04 to 0.15%, Si: 1.0% or less, Mn: 1.0
% or less, Cr: 5 to 12%, one or two of Mo and W
Total seeds: 0.5-2.0%, V: 0.05-1.5%, Nb (and the sum of Ta that inevitably accompanies this): 0.03-0.6
%, Al: 0.3% or less, N: 0.1% or less, and B:
0.01% or less, Ni: 1.0% or less, the balance consists of iron and unavoidable impurities, and the amount of δ ferrite is 1 to 50%.
Depending on the amount of ferrite (δ), P expressed by the following formula is
A method for manufacturing high-chromium steel with excellent toughness, which is characterized by processing it to a toughness of 0.2 or higher. P=logF−3δ/100, where F: processing ratio
JP1025584A 1984-01-25 1984-01-25 Manufacture of high chromium steel having superior toughness Granted JPS60155619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1025584A JPS60155619A (en) 1984-01-25 1984-01-25 Manufacture of high chromium steel having superior toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1025584A JPS60155619A (en) 1984-01-25 1984-01-25 Manufacture of high chromium steel having superior toughness

Publications (2)

Publication Number Publication Date
JPS60155619A JPS60155619A (en) 1985-08-15
JPH0125810B2 true JPH0125810B2 (en) 1989-05-19

Family

ID=11745206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1025584A Granted JPS60155619A (en) 1984-01-25 1984-01-25 Manufacture of high chromium steel having superior toughness

Country Status (1)

Country Link
JP (1) JPS60155619A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63434A (en) * 1986-06-20 1988-01-05 Power Reactor & Nuclear Fuel Dev Corp High strength ferrite steel for atomic reactor

Also Published As

Publication number Publication date
JPS60155619A (en) 1985-08-15

Similar Documents

Publication Publication Date Title
JP4561834B2 (en) Low alloy steel
US4331474A (en) Ferritic stainless steel having toughness and weldability
JP3514182B2 (en) Low Cr ferritic heat resistant steel excellent in high temperature strength and toughness and method for producing the same
EP0384433B1 (en) Ferritic heat resisting steel having superior high-temperature strength
US5591391A (en) High chromium ferritic heat-resistant steel
JP2000239807A (en) Heat resistant austenitic stainless steel
JPH0621323B2 (en) High strength and high chrome steel with excellent corrosion resistance and oxidation resistance
EP0411515B1 (en) High strength heat-resistant low alloy steels
JP4369612B2 (en) Steel plate for low quenching or normalizing type low alloy boiler steel pipe excellent in toughness, and method of manufacturing steel pipe using the same
JPH062927B2 (en) High strength low alloy steel with excellent corrosion resistance and oxidation resistance
EP0525331B1 (en) Heat resisting, ferritic steel with high chromium content and having improved resistance to embrittlement by intergranular precipitation of copper
US3278298A (en) Chromium-nickel-aluminum steel and method
EP0199046B1 (en) High-strength heat-resisting ferritic steel pipe and tube
JPH0694583B2 (en) Heat-resistant austenitic cast steel
US6162307A (en) BN-precipitation-strengthened low-carbon-ferritic heat-resistant steel excellent in weldability
US3201232A (en) Use of steel involving prolonged stressing at elevated temperatures
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JPS5914097B2 (en) Ferritic heat-resistant steel with improved toughness
JP2000204434A (en) Ferritic heat resistant steel excellent in high temperature strength and its production
US3719476A (en) Precipitation-hardenable stainless steel
JPH0543986A (en) High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone
JP2689198B2 (en) Martensitic heat resistant steel with excellent creep strength
JP3418884B2 (en) High Cr ferritic heat resistant steel
JPH0125810B2 (en)
JP3368413B2 (en) Manufacturing method of high Cr ferritic heat resistant steel