JPH01257254A - Gas detecting element - Google Patents

Gas detecting element

Info

Publication number
JPH01257254A
JPH01257254A JP8589188A JP8589188A JPH01257254A JP H01257254 A JPH01257254 A JP H01257254A JP 8589188 A JP8589188 A JP 8589188A JP 8589188 A JP8589188 A JP 8589188A JP H01257254 A JPH01257254 A JP H01257254A
Authority
JP
Japan
Prior art keywords
powder
zno
gas
core
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8589188A
Other languages
Japanese (ja)
Inventor
Seiichi Nakatani
誠一 中谷
Kazuo Eda
江田 和生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8589188A priority Critical patent/JPH01257254A/en
Publication of JPH01257254A publication Critical patent/JPH01257254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To enlarge a specific surface area and to improve aging stability, by using ZnO powder having a needle crystal structure wherein a core part is provided and the needles are extending in the directions of different four axes from the core part as a main raw material for detecting element. CONSTITUTION:A piece of pure zinc wire whose purity is 99.99% undergoes flame coating in air by an arc discharge type flame coating method. The powder of the wire is recovered inputted into ion exchanged water and stirred in an automated mortar. The material is left alone for a specified time. Thereafter, the material is dried and water content is removed. The powder is put in a crucible made of alumina porcelain, and excessive heat treatment is performed. As a result, a specified ZnO having an apparent bulk specific gravity of 0.09 is formed. Aqueous solution of polyvinyl alcohol is added into the ZnO powder having a needle crystal structure as an organic binder. Thus, the powder is granulated and regulated in grain size. The granules are formed into a cylindrical shape by pressing. Platinum wires (electrodes) 2 and 2' are embedded. The element formed in this way is baked in an electric furnace. A sintered body 1 is placed in a coil shaped heater 3. The electrode part is bonded. The element is covered with an explosion proof net, and the detecting element is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ガス漏れ警報器等に使用されるガス検知素子
にかかり、各種ガスに対して高い感度を有するガス検知
素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas detection element used in a gas leak alarm or the like, and has high sensitivity to various gases.

従来の技術 従来、ガス検知素子としては、白金線の抵抗変化や塩化
パラジウム水溶液の変色などの現象を利用したものが知
られているが、これらは、いずれもガス感度が小さく、
検知方法が簡単でないなどの欠点を有している。また、
ガスクロマトグラフや化学分析法では、精度が高いもの
の分析に即時性がなく装置が大規模かつ高価であるなど
の欠点がある。
Conventional technology Conventionally, gas detection elements have been known that utilize phenomena such as resistance changes in platinum wires and discoloration of palladium chloride aqueous solutions, but these all have low gas sensitivity.
It has drawbacks such as the fact that the detection method is not simple. Also,
Although gas chromatographs and chemical analysis methods have high accuracy, they have drawbacks such as lack of immediate analysis and large-scale and expensive equipment.

発明が解決しようとする課題 一方、比較的安価で検知方法が簡単なものとして、酸化
第二錫(Snow)や酸化亜鉛(ZnO)、酸化カドミ
ウム(Cd O)のようなn型半導体を用いたガス検知
素子が知られている。この種のガス検知素子は、可燃性
ガスを即座にかつ定量的に検出することができるもので
あり、ガス感度の大きいものが得られ′る。そして、こ
れらはガスの吸脱着の応答性を高めるために、常時高温
度に保持されて使用されるように構成されている。しか
し、この種の検知素子においては、抵抗値の経時変化、
すなわち、寿命が充分であるかどうかが課題となってい
る。このことは、前記の金属酸化物半轟体を用いた素子
では、それ単独で使用した場合、充分な感度が得られな
いため、種々の貴金属触媒を添加して素子の活性化をは
かっているため、不安定となり寿命に大きな影響を及ぼ
しているものと思われる。
Problems to be Solved by the Invention On the other hand, n-type semiconductors such as stannic oxide (Snow), zinc oxide (ZnO), and cadmium oxide (CdO) have been used as relatively inexpensive and simple detection methods. Gas sensing elements are known. This type of gas detection element is capable of instantly and quantitatively detecting combustible gases, and has high gas sensitivity. In order to improve the responsiveness of gas adsorption and desorption, these are configured to be used while being constantly maintained at a high temperature. However, in this type of sensing element, changes in resistance value over time,
In other words, the issue is whether the lifespan is sufficient. This means that devices using the aforementioned metal oxide semi-dead bodies do not have sufficient sensitivity when used alone, so various noble metal catalysts are added to activate the device. Therefore, it is thought that it becomes unstable and has a large effect on the lifespan.

また、一般式M  Zna−zxoaで示される立方晶
系スピネルを主成分相とする焼結体(ただし、Mは3n
、Ti)が触媒の存在なくして、大きなガス感度(特に
メタンガス)を得ることがすでに開示されている。例え
ば特公昭61−29660号公報。
In addition, a sintered body whose main component phase is cubic spinel represented by the general formula M Zna-zxoa (where M is 3n
, Ti) has already been disclosed to obtain large gas sensitivities (particularly for methane gas) without the presence of a catalyst. For example, Japanese Patent Publication No. 61-29660.

しかし、以上述べた焼結体を用いたガス検知素子であっ
ても、寿命性能に不安定要因が存在する。
However, even in the gas detection element using the sintered body described above, there are factors that cause instability in the lifetime performance.

これは、充分な寿命安定性を得るためには、より高温で
焼結させ、機密な焼結体とすることが肝心であることは
周知の通りである。しかし、反面、充分なガス感応特性
を得るためには、比表面積を大きくしガスとの接触する
面積を充分に大きくする必要がある。この相反する条件
のため実用化の大きな課題となっている。
It is well known that in order to obtain sufficient life stability, it is important to sinter at a higher temperature to form a sintered body that is airtight. However, on the other hand, in order to obtain sufficient gas sensitivity characteristics, it is necessary to increase the specific surface area to sufficiently increase the area in contact with the gas. These contradictory conditions pose a major challenge for practical application.

現在、一般家庭のおけるエネルギー源としてのガスの普
及はめざましい。ところが、ガスの持つ危険性は周知の
ように大きい。ガスの危険性を排除し、安全に使用でき
るようにするために、家庭用ガス漏れ警報器の普及が急
がれている。
Currently, gas is becoming increasingly popular as an energy source for ordinary households. However, the dangers of gas are well known. In order to eliminate the dangers of gas and enable its safe use, there is an urgent need for household gas leak alarms to become widespread.

課題を解決するための手段 本発明は、ガス検知素子の主原料に、核部および核部か
ら異なる4軸方向に伸びた針状結晶構造のZnO粉を用
いることにより比表面積が大きく経時的に安定な焼結体
を得られるものである。
Means for Solving the Problems The present invention uses ZnO powder with a core and an acicular crystal structure extending from the core in four different axes directions as the main raw material of a gas sensing element. A stable sintered body can be obtained.

作用 核部および核部から異なる4軸方向に伸びた針状結晶構
造を有するZnO針状粉を用いることにより、ガス感応
特性を得る上で重要な比表面積の大きな感応体が得られ
た。また、焼成温度を高くしても全体的な焼結はあまり
進行せず針状粉の接触部から焼結が起るため、ポーラス
ではあるが構造的に安定な感応体が得られる。以下、本
発明にかかるガス検知素子について実施例に基づいて具
体的に示す。
By using a working core and a ZnO needle-like powder having a needle-like crystal structure extending from the core in four different axial directions, a sensitive material with a large specific surface area, which is important for obtaining gas-sensitive characteristics, was obtained. Further, even if the firing temperature is increased, the overall sintering does not progress much, and sintering occurs from the contact portions of the acicular powder, so that a porous but structurally stable sensitive material can be obtained. Hereinafter, the gas sensing element according to the present invention will be specifically described based on Examples.

実施例 (実施例1) まず、核部および核部から異なる4軸方向に伸びた針状
結晶構造のZnO粉の作成方法は、純度99.99%の
純亜鉛線を、アーク放電方式による溶射法で空気中に溶
射し、その粉末(金属亜鉛粉末)1 kgを回収し、こ
れをイオン交換水500g中に投入し、乳鉢型撞潰機で
約20分間攪拌する。次に温度26℃の水中に72時間
放置する。この水中放置後、150℃で30分間の乾燥
を行うことにより、粉末表面の水分を除去する。次にこ
の粉末をアルミナ磁器製るつぼ中に入れ、これを1oo
o℃に保たれた炉内に入れ、1時間の過熱処理を行う。
Example (Example 1) First, a ZnO powder having a core and an acicular crystal structure extending from the core in four different axes directions was created by thermal spraying a pure zinc wire with a purity of 99.99% using an arc discharge method. 1 kg of the powder (metallic zinc powder) is recovered, poured into 500 g of ion-exchanged water, and stirred in a mortar-type crusher for about 20 minutes. Next, it is left in water at a temperature of 26° C. for 72 hours. After standing in the water, the powder is dried at 150° C. for 30 minutes to remove water on the surface of the powder. Next, put this powder into an alumina porcelain crucible and
It is placed in a furnace maintained at 0° C. and heated for 1 hour.

この結果、上記るつぼ内の下層部には団塊状酸化亜鉛が
生成され、上層部には、みかけ窩比重0.09の酸化亜
鉛ウィスカーが生成された。生成酸化亜鉛中のウィスカ
ーの割合は86−1%であった。
As a result, nodular zinc oxide was produced in the lower layer of the crucible, and zinc oxide whiskers with an apparent cavity specific gravity of 0.09 were produced in the upper layer. The proportion of whiskers in the produced zinc oxide was 86-1%.

上記で得られたZnOウィスカーを電子顕微鏡により観
察したところ、核部および核部から異なる4軸方向に伸
びた結晶構造の針状粉が確認できた。この粉体は核部と
、この核部から異なる4軸方向に伸びた針状結晶部から
なる結晶体が明確に認められる。上記の針状結晶部は、
めのつけ根部分の径が1−10μmであり、長さは10
〜200μmである。針状結晶部が3軸あるいは2軸の
ものも認められるが、これらは4軸のものの一部が折Y
員したものと思われる。また、板状晶のものも認められ
た。いずれにしても、上記の方法によると、綾部および
核部から異なる4軸方向に伸びた針状結晶構造のものが
約80%を占める。
When the ZnO whiskers obtained above were observed using an electron microscope, a core and needle-like powder with a crystalline structure extending in four different axial directions from the core were confirmed. In this powder, a crystal body consisting of a core and needle-shaped crystal parts extending from the core in four different axial directions can be clearly recognized. The above needle-like crystal part is
The diameter of the root part of the eye is 1-10 μm, and the length is 10
~200 μm. Acicular crystals with 3 or 2 axes are also observed, but some of these have 4 axes with folded Y.
It seems that he was a member. In addition, plate-like crystals were also observed. In any case, according to the above method, about 80% of the crystals have an acicular crystal structure extending in four different axial directions from the tread and the core.

XNIA解析の結果、すべてのピークが酸化亜鉛を示す
ものであり、転移、格子欠陥の少ない単結晶性を示すも
dであった。
As a result of XNIA analysis, all peaks were indicative of zinc oxide, indicating single crystallinity with few dislocations and lattice defects.

以上のような核部および核部から異なる4軸方向に伸び
た針状結晶構造のZnO粉に、有機バインダとしてポリ
ビニルアルコール(PVA)を51%溶かした水溶液を
添加して、造粒、整粒を行い、長さ2鶴、直径211の
円筒状にプレス成型を行った。この時の成型圧力は70
0 kg / craで、成型時に太さ100μmの白
金線を2本、平行に埋設した。これは、素子の電極とな
るものである。
An aqueous solution containing 51% polyvinyl alcohol (PVA) as an organic binder is added to the ZnO powder having a core and an acicular crystal structure extending from the core in four different axes directions, and the powder is granulated and sized. Then, press molding was performed into a cylindrical shape with a length of 2 cranes and a diameter of 211 mm. The molding pressure at this time was 70
At 0 kg/cra, two platinum wires with a thickness of 100 μm were embedded in parallel during molding. This becomes the electrode of the element.

このように、一般的な窯業的手段によって作成された素
子を、電気炉にて空気中で1350°Cの温度で1時間
焼成した。
The element thus produced by common ceramic means was fired in an electric furnace at a temperature of 1350° C. for 1 hour in air.

この焼成温度は、従来のZnO粉では充分に焼結が進行
し、緻密化する温度であるが、本発明による核部および
核部から異なる4軸方向に伸びた針状結晶構造のZnO
粉では、焼結体密度から、約50%のポロシティ−であ
り、比表面積の大きな素子が得られた。反面、前記の埋
設白金線の引っ張り強度は約200〜350 g /木
で、焼結性は充分であると思われる。
This firing temperature is the temperature at which conventional ZnO powder sufficiently progresses sintering and becomes densified, but the ZnO powder of the present invention has a core and an acicular crystal structure extending from the core in four different axes directions.
In the case of powder, an element with a porosity of about 50% and a large specific surface area was obtained based on the density of the sintered body. On the other hand, the tensile strength of the buried platinum wire is approximately 200 to 350 g/wood, and the sinterability is considered to be sufficient.

次に、この焼結体を加熱するためのコイル状のヒータを
準備し、第1図に示すように、焼結体をコイル状ヒータ
内に入れて電極部をボンディングした。第1図において
、1は上記焼結体、2.2゜は出力を取り出す白金電極
線、3はニクロム線からなるコイル状ヒータ、4はヒー
タ3を絶縁するためのセメント、5.6.7.8はヒー
タ3および焼結体1のための電気端子である。上記構造
パンケージに従来の素子と同様に防爆ネットをかぶせ、
ガス検知素子とした。
Next, a coiled heater for heating this sintered body was prepared, and as shown in FIG. 1, the sintered body was placed inside the coiled heater and the electrode portions were bonded. In Fig. 1, 1 is the above sintered body, 2.2° is a platinum electrode wire for taking out the output, 3 is a coiled heater made of nichrome wire, 4 is cement for insulating the heater 3, 5.6.7 .8 is an electrical terminal for the heater 3 and the sintered body 1. The above structural pancage is covered with an explosion-proof net like the conventional element,
It was used as a gas detection element.

allll法は、端子7.8間にオーム計を接続し、ヒ
ータ3を加熱するため端子5.6に、焼結体fの温度が
ほぼ450℃になるように通電した。この時のヒータ電
力は1.15Wであった。測定対象となる雰囲気が十分
に清浄な空気中であることを確認した後、その時の焼結
体の抵抗値RAを測定した。
In the allll method, an ohmmeter was connected between the terminals 7 and 8, and in order to heat the heater 3, electricity was applied to the terminals 5 and 6 so that the temperature of the sintered body f was approximately 450°C. The heater power at this time was 1.15W. After confirming that the atmosphere to be measured was sufficiently clean air, the resistance value RA of the sintered body at that time was measured.

次にイソブタン(i  C= H+o)を3000pp
m含む空気中での抵抗値RMをガス雰囲気中に挿入した
後、30sec放置して測定した。その結果、上記のテ
トラポット状ZnOを用いた素子では、RAが15にΩ
、RMが2.5にΩ、感度RA /RMは6であり、実
用充分なものである。
Next, add 3000pp of isobutane (i C=H+o)
The resistance value RM in air containing m was measured after being inserted into a gas atmosphere and left for 30 seconds. As a result, in the device using the above-mentioned tetrapod-shaped ZnO, the RA was reduced to 15Ω.
, RM is 2.5Ω, and sensitivity RA/RM is 6, which is sufficient for practical use.

一方、従来の粒状ZnOでは、上記の条件の作成で、貴
金属触媒を用いていないことや、緻密な焼結体となるた
め、感度はほとんど得られなかっ・た。
On the other hand, with conventional granular ZnO, almost no sensitivity could be obtained under the above conditions because no noble metal catalyst was used and the result was a dense sintered body.

(実施例2) 実施例1に使用したZnOと同じ核部および核部から異
なる4軸方向に伸びた針状結晶構造のZnO粉に、種々
の量の酸化チタン粉末、および、酸化第二錫を加え、水
を更に加えて充分混合してからそれを乾燥させた。混合
粉を実施例1と同様の窯業的手段法を用いて素子を作製
し、電気炉で空気中において、1300℃の温度で1時
間焼成した。
(Example 2) Various amounts of titanium oxide powder and stannic oxide were added to ZnO powder having the same core as the ZnO used in Example 1 and an acicular crystal structure extending from the core in four different axial directions. was added, more water was added and mixed well, and then it was dried. A device was prepared from the mixed powder using the same ceramic method as in Example 1, and fired in an electric furnace at a temperature of 1300° C. for 1 hour in air.

以上のようにして得られた素子の性能を第1表に示す。Table 1 shows the performance of the device obtained as described above.

第1表 表において、Ti01 、Sn0w量のいずれも、X=
1.OO付近で最大感度を有していることがわかる。
In Table 1, both Ti01 and Sn0w amount, X=
1. It can be seen that the maximum sensitivity is near OO.

これにより、従来のように触媒を用いなくともガス感応
特性が充分に得られる。また、Tie、、SnO,によ
る化合物Mx Z n 4−!XO4を用いることでも
経時的に安定なガス検知素子が得られることがわかる。
As a result, sufficient gas sensitivity characteristics can be obtained without using a catalyst as in the conventional case. Moreover, the compound Mx Z n 4-! by Tie, SnO, It can be seen that a gas sensing element that is stable over time can also be obtained by using XO4.

発明の効果 本発明は、ZnOの出発原料に核部および核部から異な
る4軸方向に伸びた針状結晶構造のZnoウィスカーを
用いることにより、経時的に安定でかつ、ガス感応特性
に富むガス検知素子が得られるものである。すなわち、
核部および核部から異なる4軸方向に伸びた針状結晶構
造のZnO粉はみかけ窩比重が小さいため、接触部分の
焼結のみが進行するため、強度的に充分で、かつ、比表
面積の大きな焼結体が得られ、ガス感応体に適した焼結
体となる。また、本発明のような核部および核部から異
なる4軸方向に伸びた針状結晶構造のZnO粉を用いる
ことで従来のようにSaug、’I”tOt、ZnO単
独の場合のような触媒を必要とせず充分に大きなガス感
度が得られる。
Effects of the Invention The present invention uses Zno whiskers with a core and an acicular crystal structure extending in four different axes directions from the core as a starting material for ZnO, thereby producing a gas that is stable over time and has rich gas-sensitive characteristics. A sensing element is obtained. That is,
ZnO powder with an acicular crystal structure extending from the core in four different axes directions has a small apparent cavity specific gravity, so sintering only progresses at the contact area, which is sufficient in terms of strength and has a small specific surface area. A large sintered body is obtained, which is suitable for use as a gas-sensitive body. In addition, by using the core and ZnO powder with an acicular crystal structure extending from the core in four different axes directions, it is possible to use Sufficient gas sensitivity can be obtained without the need for

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にかかるガス検知素子の構造の一例を
示す構造図である。 l・・・・・・焼結体、2.2°・・・・・・白金電極
線、3・・・・・・ヒータ、4・・・・・・セメント、
5.6.7.8・・・・・・端子。
FIG. 1 is a structural diagram showing an example of the structure of a gas sensing element according to the present invention. l...Sintered body, 2.2°...Platinum electrode wire, 3...Heater, 4...Cement,
5.6.7.8...Terminal.

Claims (2)

【特許請求の範囲】[Claims] (1)核部および核部から異なる4軸方向に伸びた針状
結晶構造の酸化亜鉛を主成分とする焼結体をガス感応体
として用いてなることを特徴とするガス検知素子。
(1) A gas sensing element characterized in that it uses a core and a sintered body mainly composed of zinc oxide with an acicular crystal structure extending from the core in four different axial directions as a gas sensitive body.
(2)一般式MZn_4_−_2_xO_4(ただし、
MはTiおよびSnから選択された少なくとも一種0.
75≦x≦1.25)で表される立方晶スピネル相を主
成分相とする焼結体であって、酸化亜鉛の出発原料が核
部および核部から異なる4軸方向に伸びた結晶構造の針
状粉を用いることを特徴とするガス検知素子。
(2) General formula MZn_4_-_2_xO_4 (however,
M is at least one selected from Ti and Sn.
75≦x≦1.25) A sintered body whose main component phase is a cubic spinel phase expressed by A gas detection element characterized by using needle-like powder.
JP8589188A 1988-04-07 1988-04-07 Gas detecting element Pending JPH01257254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8589188A JPH01257254A (en) 1988-04-07 1988-04-07 Gas detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8589188A JPH01257254A (en) 1988-04-07 1988-04-07 Gas detecting element

Publications (1)

Publication Number Publication Date
JPH01257254A true JPH01257254A (en) 1989-10-13

Family

ID=13871514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8589188A Pending JPH01257254A (en) 1988-04-07 1988-04-07 Gas detecting element

Country Status (1)

Country Link
JP (1) JPH01257254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03293554A (en) * 1990-04-11 1991-12-25 Matsushita Electric Ind Co Ltd Temperature sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03293554A (en) * 1990-04-11 1991-12-25 Matsushita Electric Ind Co Ltd Temperature sensor

Similar Documents

Publication Publication Date Title
Nowick The “grain-boundary effect” in doped ceria solid electrolytes
JP5642845B2 (en) Hydrogen sensitive composite material, hydrogen gas sensor, and sensor for detecting hydrogen and other gases with improved reference resistance
US4136000A (en) Process for producing improved solid electrolyte oxygen gas sensors
EP0017502B1 (en) Oxygen sensor element
JPS6038350B2 (en) Solid electrolyte for oxygen sensor
US4013943A (en) Solid state electrolytic cell gas sensor head
CA1123117A (en) Rare earth or yttrium, transition metal oxide thermistors
US4459577A (en) Gas sensor
JPH01257254A (en) Gas detecting element
US3955268A (en) Method of fabricating an electrolytic cell gas sensor
JPS605548B2 (en) Zirconia sintered body for oxygen sensor
US4186071A (en) Process for producing oxygen gas sensor elements
JP2920109B2 (en) Nitrogen oxide sensor and method of manufacturing the same
JP3548798B2 (en) Bulk porous ceramic gas sensor and environmental purification device
CA1119250A (en) Process for producing an activated oxygen gas sensor element
JPS58201057A (en) Sensing element of gas
JPS5950352A (en) Detection element for nox
US4232441A (en) Method for preparing rare earth or yttrium, transition metal oxide thermistors
CN115436434A (en) Humidity sensor based on external electric field polarization bismuth ferrite and preparation method and application thereof
JPS6133466B2 (en)
JPS6129660B2 (en)
JP3355834B2 (en) Carbon dioxide sensor and method of manufacturing the same
JPH0684945B2 (en) Flammable gas sensor
KR0158561B1 (en) Method of manufacturing thick-film for one-fired inflammability gas sensor
JPH07209249A (en) Nitrogen oxide sensor