JPH01257026A - High-strength polyvinyl alcohol series hydrogel molded body and its manufacture - Google Patents

High-strength polyvinyl alcohol series hydrogel molded body and its manufacture

Info

Publication number
JPH01257026A
JPH01257026A JP63085844A JP8584488A JPH01257026A JP H01257026 A JPH01257026 A JP H01257026A JP 63085844 A JP63085844 A JP 63085844A JP 8584488 A JP8584488 A JP 8584488A JP H01257026 A JPH01257026 A JP H01257026A
Authority
JP
Japan
Prior art keywords
pva
water
strength
degree
hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63085844A
Other languages
Japanese (ja)
Inventor
Fujio Ueda
上田 富士男
Masahiko Hayashi
政彦 林
Hiroyoshi Tanaka
宏佳 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63085844A priority Critical patent/JPH01257026A/en
Publication of JPH01257026A publication Critical patent/JPH01257026A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a PVA series hydrogel molded body whose water retention rate and strength are high by a method wherein the title molded body is comprised of polyvinyl alcohol(PVA) whose degree of saponification and that of polymerization are at least a specific value and the water retention rate and breaking strength under a hydrous state are specified. CONSTITUTION:This is a high-strength PVA series hydrogel molded body which is comprised of PVA whose degree of saponification is 99-88mol% and that of polymerization is at least 1500 and a water retention rate and breaking strength under a hydrous state are respectively at least 100wt.% and 10kg/cm<2>. When the degree of saponification is more than 99mol%, the water retention rate of the PVA hydrogel becomes less than 100wt.% and when the degree of saponification is lower than 88mol%, the molded body is swollen and molten remarkably under water of a room temperature and breaking strength also of hydrogel under a hydrous state does not arrive at 10kg/cm<2> into the bargain. Even under a high hydrous state of at least 100wt.%, the high-strength PVA series hydrogel molded body having a breaking strength of at least 10kg/cm<2> is obtained by making use of the PVA whose degree of the polymerization is at least 1500.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高強度ポリビニルアルコールく以下、PVA
と略す)系ヒドロゲル成形体およびその製造法に関し、
さらに詳しくは、保水率が高いうえに強度も高く、かつ
、ゴム状弾性を示し、水産、農業、土木、医療等の分野
に展開できる新規PVA系ヒドロゲル成形体およびその
工業的製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to high-strength polyvinyl alcohol, PVA
Regarding the hydrogel molded body and its manufacturing method,
More specifically, the present invention relates to a novel PVA-based hydrogel molded product that has a high water retention rate, high strength, and rubber-like elasticity, and can be applied to fields such as fisheries, agriculture, civil engineering, and medicine, and an industrial method for producing the same.

[従来技術] 近年、含水状態で水に溶解せず、適度な機械的強度を有
する成形体、即ち、ヒドロゲルの有する機能が注目され
、その用途展開が検討されてきている。例えば、ソフト
コンタクトレンズ、医薬徐放性担体、生体111!復材
、人工鍵、人工皮膚等の医用材料や、保水材、保冷用熱
媒体、人工水苔、水耕栽培用人工土壌、漁業用擬似餌、
土質改良材等の産業用途が考えられろ。
[Prior Art] In recent years, the functions of molded bodies that do not dissolve in water in a hydrated state and have appropriate mechanical strength, that is, hydrogels, have attracted attention, and the development of their applications has been studied. For example, soft contact lenses, sustained release pharmaceutical carriers, living organisms 111! Medical materials such as recycled wood, artificial keys, artificial skin, water retaining materials, heat medium for cooling, artificial sphagnum moss, artificial soil for hydroponic cultivation, artificial bait for fishing,
Possible industrial uses include soil improvement materials.

このようなヒドロゲルの原料としては、デンプン、ゼラ
チン、寒天等の天然高分子、PVA、ボリアクリル酸、
ポリアクリルアミド、ポリヒドロキシエチルメタクリレ
ート、ポリビニルメチルエーテル、ポリビニルピロリド
ン等の親水性、もしくは水溶性合成高分子が用いられて
いる。
Raw materials for such hydrogels include starch, gelatin, natural polymers such as agar, PVA, polyacrylic acid,
Hydrophilic or water-soluble synthetic polymers such as polyacrylamide, polyhydroxyethyl methacrylate, polyvinyl methyl ether, and polyvinyl pyrrolidone are used.

これらのうち、含水状態においても機械的強度が高いヒ
ドロゲル原料としてはPVAが最も優れており、数多く
の検討がなされている。例えば、特開昭60−1770
66号公報には、PVAの濃厚水溶液を一5℃以下の低
温で5時間以上凍結させた後、10°C以下の比較的低
温で10時間以上放置結晶化させることにより、高強度
PVAヒドロゲルを得る方法が開示されている。また、
特開昭61−252261号公報には、P ’V Aを
水と有機溶剤の混合溶媒中に溶解した後、−20℃のフ
リーザー中で3時間凍結結晶化させた後、水洗すること
により、引張強度が10Kg/cm”以上、含水率が5
0〜98重量%のPVAヒドロゲルを得る方法が開示さ
れている。
Among these, PVA is the most excellent hydrogel raw material that has high mechanical strength even in a water-containing state, and has been studied extensively. For example, JP-A-60-1770
Publication No. 66 discloses that a high-strength PVA hydrogel is produced by freezing a concentrated aqueous solution of PVA at a low temperature of -5°C or lower for 5 hours or more, and then leaving it to crystallize at a relatively low temperature of 10°C or lower for 10 hours or more. A method for obtaining the information is disclosed. Also,
JP-A No. 61-252261 discloses that by dissolving P'VA in a mixed solvent of water and an organic solvent, freezing and crystallizing it in a -20°C freezer for 3 hours, and washing with water, Tensile strength is 10Kg/cm or more, moisture content is 5
A method for obtaining 0-98% by weight PVA hydrogel is disclosed.

[本発明が解決しようとする課題] しかしながら、上記したPVA系ヒドロゲルは、確かに
機械的強度は高いものの、保水率が低く (100重量
%未満)、高い保水率の要求される用途、例えば保水材
、保冷材、人工土壌、土質改良材等の産業用途には適し
ていなかった。
[Problems to be Solved by the Present Invention] However, although the above-mentioned PVA-based hydrogel does have high mechanical strength, it has a low water retention rate (less than 100% by weight) and is suitable for applications requiring a high water retention rate, such as water retention. It was not suitable for industrial uses such as lumber, cold insulation materials, artificial soil, and soil improvement materials.

また、上記したPVA系ヒドロゲルの製法は、−20°
Cという低温度下で処理したり、低温で10時間以上放
置結晶化させるというように非常に生産効率の低い゛製
法であり、PVA系ヒドロケルを工業的に連続生産する
には適していなかった。
In addition, the method for producing the PVA-based hydrogel described above is -20°
This manufacturing method has extremely low production efficiency, as it requires treatment at a low temperature of 100% C or more than 10 hours for crystallization at a low temperature, and was not suitable for continuous industrial production of PVA-based hydrokels.

また、上記した製法で得られるヒドロゲルの形状に関し
ても制約が多く、フィルムやIIIのような連続成形体
、1〜100ミクロン程度の極薄、極細成形体等を製造
することは困難であった。
Furthermore, there are many restrictions regarding the shape of the hydrogel obtained by the above-mentioned manufacturing method, and it has been difficult to produce continuous molded products such as films and III, ultrathin and ultrafine molded products of about 1 to 100 microns, and the like.

本発明者らは、保水率が高く、かつ、機械的強度も高い
PVA系ヒドロゲル成形体について鋭意検討行った結果
、低ケン化高重合度PVAを高倍率延伸した後、特定温
度下の水中で弛緩させることにより、従来のPVA系ヒ
ドロゲルに比べ著しく保水率が高いうえ、破断強度も高
い新規P■、λ系ヒドロゲル成形体が得られることを見
出し、本発明を為すにいたった。
The present inventors conducted intensive studies on PVA-based hydrogel molded products with high water retention and high mechanical strength. After stretching low saponified high polymerization degree PVA at a high magnification, the It was discovered that by relaxing, a new P■, λ hydrogel molded article having a significantly higher water retention rate and higher breaking strength than conventional PVA hydrogels could be obtained, and the present invention was accomplished based on this finding.

即ち、本発明の課題とするところは、従来のPVA系ヒ
ドロゲル成形体に比べ保水率が極めて高いうえ、破断強
度も高く、また含水状態でゴム状弾性を示し、医療用途
ばかりでなく、高い保水率の要求される農業、土木、水
産等の産業用途にも展開可能なPVA系ヒドロゲル成形
体を提供するにあり、他の課題は、このような優れた性
能を有するPVA系ヒドロゲル成形体の工業的または商
業的な製造方法を提供するにある。
In other words, the object of the present invention is that it has an extremely high water retention rate compared to conventional PVA-based hydrogel molded products, has high breaking strength, and exhibits rubber-like elasticity in a water-containing state. Another challenge is to provide a PVA-based hydrogel molded product that can be used in industrial applications such as agriculture, civil engineering, and fisheries that require high performance. The objective is to provide a commercial or commercial manufacturing method.

[課題を解決するための手段] 本発明の上記解決課題は、 (1)ケン化度が99〜88モル%、重合度が1500
以上のポリビニルアルコールからなり、保水率が100
重量%以上、含水状態における破断強度が10Kg/c
m2以上である高強度ポリビニルアルコール系ヒドロゲ
ル成形体、および、(2)ケン化度が99〜88モル%
、重合度が1500以上のポリビニルアルコールを乾湿
式成形、またはゲル成形した後、全延伸倍率が10倍以
上になるように延伸し、さらに、延伸後の成形体の水溶
前温度なTS(℃)とした時、温度がTs −50℃以
上Ts−5℃以下の水中で成形体を50%以上収縮させ
ることを特徴とする高強度ポリビニルアルコール系ヒド
ロゲル成形体の製造法、 によって達成できる。
[Means for Solving the Problems] The above problems to be solved by the present invention are as follows: (1) The degree of saponification is 99 to 88 mol%, and the degree of polymerization is 1500.
It is made of polyvinyl alcohol with a water retention rate of 100%.
Weight% or more, breaking strength in hydrated state is 10Kg/c
A high-strength polyvinyl alcohol-based hydrogel molded body having a size of m2 or more, and (2) a degree of saponification of 99 to 88 mol%
After dry-wet molding or gel molding polyvinyl alcohol with a degree of polymerization of 1500 or more, it is stretched so that the total stretching ratio is 10 times or more, and the temperature TS (°C) of the stretched molded product before water dissolution is This can be achieved by a method for producing a high-strength polyvinyl alcohol-based hydrogel molded body, which is characterized by shrinking the molded body by 50% or more in water at a temperature of Ts -50°C or more and Ts -5°C or less.

本発明における高強度PVA系ヒドロゲル成形体を構成
するPVAのケン化度は、99〜88モル%、好ましく
は98〜90モル%、さらに好ましくは97〜91モル
%である。ケン化度が99モル%を上回ると、PVAヒ
ドロゲルの保水率が100重量%未満になり、また、ケ
ン化度が88モル%を下回ると、室温の水中で著しく膨
潤したり、溶解したりするうえ、含水状態におけるヒド
ロゲルの破断強度も10Kg/cm2に到達しない。
The degree of saponification of PVA constituting the high-strength PVA-based hydrogel molded article in the present invention is 99 to 88 mol%, preferably 98 to 90 mol%, and more preferably 97 to 91 mol%. When the degree of saponification exceeds 99 mol%, the water retention rate of the PVA hydrogel will be less than 100% by weight, and when the degree of saponification is less than 88 mol%, it will swell or dissolve significantly in water at room temperature. Moreover, the breaking strength of the hydrogel in a water-containing state does not reach 10 Kg/cm2.

さらに、□本発明の高強度PVA系ヒドロゲル成形体に
用いられるPVAの重合度は、1500以上、好ましく
は2000以上、ざらに好ましくは2500以上であり
、このように高い重合度のPVAを用いることにより、
100重量%以上という高い含水状態でも、10Kg/
cm”以上の破断強度を有する高強度PVA系ヒドロゲ
ル成形体が得られるのである。
Furthermore, the degree of polymerization of PVA used in the high-strength PVA-based hydrogel molded article of the present invention is 1500 or more, preferably 2000 or more, and more preferably 2500 or more, and it is preferable to use PVA with such a high degree of polymerization. According to
Even in a high water content state of 100% by weight or more, 10kg/
A high-strength PVA-based hydrogel molded article having a breaking strength of cm" or more can be obtained.

本発明のPVA系ヒドロゲル成形体は、上記したように
高重合度低ケン化度P vAからなるものであり、ゲル
の機械的性能を低下せしめることなく親水性を向上せし
めているため、保水率は、100重量%以上、好ましく
は200重量%以上、さらに好ましくは250重量%以
上、最も好ましくは300重量%以上であり、破断強度
は、10Kg/cm2以上、好ましくは15Kg/Cm
2以上、さらに好ましくは20に3/cm2以上になる
As mentioned above, the PVA-based hydrogel molded article of the present invention is made of PvA with a high degree of polymerization and a low degree of saponification, and has improved hydrophilicity without reducing the mechanical performance of the gel, so it has a high water retention rate. is 100% by weight or more, preferably 200% by weight or more, more preferably 250% by weight or more, most preferably 300% by weight or more, and the breaking strength is 10Kg/cm2 or more, preferably 15Kg/Cm
2 or more, more preferably 20 to 3/cm2 or more.

また、本発明の高強度PVA系ヒドロゲル成形体は、破
断伸度も200%以上であることが望ましい。
Further, it is desirable that the high-strength PVA-based hydrogel molded article of the present invention also has a breaking elongation of 200% or more.

本発明の高強度PVA系ヒドロゲル成形体の好ましい形
体としては、繊維、中空糸、フィルム、テープ、シート
、チューブ、ロッド、ブロック、バイブ、球、レンズ、
らせん等を上げることができるが、このかぎりではない
Preferred forms of the high-strength PVA-based hydrogel molded article of the present invention include fibers, hollow fibers, films, tapes, sheets, tubes, rods, blocks, vibrators, spheres, lenses,
It is possible to raise spirals, etc., but this is not the only option.

本発明におけるPVAの重合度、ケン化度、ヒドロケル
の保水率、破断強度は、次のように定義(測定)される
The polymerization degree, saponification degree, water retention rate of hydrokel, and breaking strength of PVA in the present invention are defined (measured) as follows.

(a)PVAの重合度 JIS  K6726に基づき、30℃における水溶液
の極限粘度[ηコから次へにより重合度(Pn)を算出
した。
(a) Polymerization degree of PVA Based on JIS K6726, the degree of polymerization (Pn) was calculated from the intrinsic viscosity of an aqueous solution at 30° C.

log(Pn) = 1.613刈og([77] X
lO4/8.29)ただし、[ηコ ; ml/g (b)PVAのケン化度 JIS  K6726に基づき、中和滴定法により求め
た残存酢酸基量より計算で求めた。
log(Pn) = 1.613 log([77]
ml/g (b) Saponification degree of PVA Calculated from the amount of residual acetic acid groups determined by neutralization titration method based on JIS K6726.

(c)ヒドロゲルの保水率 ヒドロゲル成形体約togを25°Cの水中に24時間
浸漬後、15分間遠心脱水(回転数; 1500rpm
 ) L/た後、重ff1(W)を測る。さらに、脱水
後のヒドロゲル成形体を温度60°Cて減圧下(≦1m
mHg) 24時間乾燥し、絶乾重量(Wo)を測る。
(c) Water retention rate of hydrogel After immersing approximately tog of the hydrogel molded body in water at 25°C for 24 hours, centrifugal dehydration for 15 minutes (rotation speed: 1500 rpm)
) After measuring L/, measure the weight ff1 (W). Furthermore, the hydrogel molded body after dehydration was heated to 60°C under reduced pressure (≦1 m
mHg) Dry for 24 hours and measure the absolute dry weight (Wo).

次式より保水率を求めた。The water retention rate was calculated from the following formula.

保水率= ((W −Wo) / Wo) X 100
 (%)(d)ヒドロゲルの破断強度 ヒドロゲル成形体を25°Cの水中に24時間浸漬後、
15分間遠心脱水(回転数: 1500rpm )した
後、引張試験機を用いて、試料長100mm、引張速度
100mm/分の条件て破断強度を測定した。
Water retention rate = ((W - Wo) / Wo) x 100
(%) (d) Breaking strength of hydrogel After immersing the hydrogel molded body in water at 25°C for 24 hours,
After centrifugal dehydration for 15 minutes (rotation speed: 1500 rpm), the breaking strength was measured using a tensile tester under conditions of a sample length of 100 mm and a tensile speed of 100 mm/min.

次に、本発明の高強度PVA系ヒドロゲル成形体の製造
例について説明する。
Next, a manufacturing example of the high-strength PVA-based hydrogel molded article of the present invention will be explained.

即ち、本発明においては、高重合度低ケン化度PVAを
高倍率に延伸配向せしめ、成形体の結晶化度を向上せし
めることにより、成形体中に結晶架橋点を構成させ、さ
らに水中で親水性高配向非晶相のみを高度に含水緩和さ
せることにより、室温の水中でも膨潤溶解せず、高い保
水性を有し、かつ、機械的強度も高いヒドロゲル成形体
を得るところに製法上の特徴がある。そのため、本発明
においては、上記した低ケン化高重合度PVAの全延伸
倍率が10倍以上、好ましくは12倍以上、さらに好ま
しくは15倍以上になるように延伸する必要がある。全
延伸倍率が10倍を下回ると、延伸後の成形体の結晶化
度が低くなるため、ヒドロゲルの破断強度がl0Kg/
cm2に到達しなかったり、水中での収縮率が50%を
下回り、保水率が100重量%に到達しない。 本発明
においては、上記したように高重合度低ケン化度PVA
を高度に延伸配向せしめる必要があり、このような高倍
率延伸を可能ならしめる成形法として、乾湿式成形また
はゲル成形を行う必要がある。
That is, in the present invention, the highly polymerized and low saponified PVA is stretched and oriented at a high magnification to improve the crystallinity of the molded product, thereby forming crystal crosslinking points in the molded product and further making it hydrophilic in water. By highly relaxing only the highly oriented amorphous phase with water, a hydrogel molded product that does not swell or dissolve even in water at room temperature, has high water retention, and has high mechanical strength is obtained. There is. Therefore, in the present invention, it is necessary to stretch the above-mentioned low saponified high polymerization degree PVA so that the total stretching ratio is 10 times or more, preferably 12 times or more, and more preferably 15 times or more. If the total stretching ratio is less than 10 times, the crystallinity of the stretched molded product will be low, and the breaking strength of the hydrogel will be lower than 10 kg/kg.
cm2, the shrinkage rate in water is less than 50%, and the water retention rate does not reach 100% by weight. In the present invention, as described above, high polymerization degree low saponification degree PVA
It is necessary to draw and orient the material to a high degree, and wet-dry molding or gel molding is necessary as a molding method that enables such high-magnification stretching.

そこで、本発明における乾湿式成形およびゲル成形につ
いて説明する。
Therefore, wet-dry molding and gel molding in the present invention will be explained.

まず、乾湿式成形とは、成形溶液をダイ(成形体が繊維
の場合は口金、フィルムの場合はスリット)から−旦空
気、窒素、ヘリウム、アルゴン等の不活性雰囲気中に吐
出し、次いてこの吐出成形溶液を凝固浴中に導入して凝
固せしめる方法である。
First, wet-dry molding is a process in which a molding solution is first discharged from a die (a die if the molded object is a fiber, a slit if it is a film) into an inert atmosphere such as air, nitrogen, helium, argon, etc. This is a method in which this extrusion molding solution is introduced into a coagulation bath and coagulated.

この際、乾湿式成形の成形溶媒としては、ジメチルスル
ホキシド(以下、DMSOと略す。)、水、グリセリン
、エチレングリコール、ジエチレングリコール、トリエ
チレングリコール、チオシアン酸ナトリウムのJ原水溶
液、および、これらの混合溶媒等があるが、好ましくは
DMSO1水、グリセリン、エチレングリコールがよく
、さらに好ましくはDMSOがよい。
At this time, the molding solvent for the wet-dry molding is dimethyl sulfoxide (hereinafter abbreviated as DMSO), water, glycerin, ethylene glycol, diethylene glycol, triethylene glycol, J raw aqueous solution of sodium thiocyanate, and a mixed solvent thereof. Among them, DMSO, water, glycerin, and ethylene glycol are preferable, and DMSO is more preferable.

更に、本発明においては、前記したPVAのケン化度は
、最終成形体においても保持することが不可避であり、
このためには、成形溶液の調整に当り、80°C以上の
温度下で長時間(例えば、6時間以上)放置してもケン
化反応が進行しない溶剤、具体的に一例を上げれば、2
5℃における水素イオン濃度(pH)が6〜8になるよ
うに酸で調整されたDMSOを用いるなどの配慮が望ま
しい。
Furthermore, in the present invention, it is inevitable that the saponification degree of PVA described above is maintained even in the final molded product,
To this end, when preparing the molding solution, it is necessary to use a solvent that does not allow the saponification reaction to proceed even if it is left at a temperature of 80°C or higher for a long time (for example, 6 hours or more).
It is desirable to use DMSO adjusted with an acid so that the hydrogen ion concentration (pH) at 5° C. is 6 to 8.

また、本発明における凝固浴としては、低ケン化度PV
Aが水溶性であるため、メタノール、エタノール、ブタ
ノールなどのアルコール類、アセトン、ベンゼン、トル
エンなどの有機溶剤、および、これらの溶剤の一種以上
と前記した成形溶媒との混合溶剤があるが、好ましくは
メタノールとDMSOの混合溶剤(混合比は、メタノー
ル/DM S O= 10010〜15/85重量比、
好ましくは10010−10/90重量比)がよい。
In addition, as the coagulation bath in the present invention, low saponification degree PV
Since A is water-soluble, alcohols such as methanol, ethanol and butanol, organic solvents such as acetone, benzene and toluene, and mixed solvents of one or more of these solvents and the above-mentioned molding solvents are preferred. is a mixed solvent of methanol and DMSO (mixing ratio is methanol/DMSO = 10010 to 15/85 weight ratio,
Preferably, the weight ratio is 10010-10/90).

次にゲル成形とは、成形溶液をダイから不活性雰囲気の
微少空間に吐出し、次に吐出成形溶液を成形溶液の溶媒
に対して非混和性の溶剤からなる冷却浴中に導入してそ
のまま(吐出成形体溶液の重合体濃度を実質的に変化さ
せることなく)冷却ゲル化させる方法である。
Next, gel molding involves discharging the molding solution from a die into a microscopic space in an inert atmosphere, and then introducing the discharged molding solution into a cooling bath consisting of a solvent that is immiscible with the solvent of the molding solution. This is a method of cooling and gelling (without substantially changing the polymer concentration of the extruded molded body solution).

このゲル成形における成形溶液の溶媒としては、PVA
系重合体を高温で加熱、溶解して得られる溶液を冷却す
るとゲル化するものが好ましい。具体的には、グリセリ
ン、エチレングリコール、プロピレングリコール、ジエ
チレングリコール、トリエチレングリコール、テトラエ
チレングリコール、トリメチロールプロパンなどの多価
アルコール類、ベンゼンスルボンアミド、カプロラクタ
ムなど常温で非揮発性の溶剤を例示することができるが
、好ましくはグリセリン、エチレングリコールがよい。
As a solvent for the molding solution in this gel molding, PVA
It is preferable to use a polymer that gels when the solution obtained by heating and dissolving the polymer at a high temperature is cooled. Specifically, examples include polyhydric alcohols such as glycerin, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and trimethylolpropane, and solvents that are non-volatile at room temperature such as benzenesulfonamide and caprolactam. However, glycerin and ethylene glycol are preferred.

また本発明においては、低ケン化PVAの熱安定性が低
いため(190〜230℃で分解)、溶液作製・成形に
あたっては、溶液温度を190°C以下、好ましくは1
80℃以下にするのが望ましい。
In addition, in the present invention, since low saponification PVA has low thermal stability (decomposes at 190 to 230°C), the solution temperature is set to 190°C or less, preferably 190°C or less during solution preparation and molding.
It is desirable to keep the temperature below 80°C.

ゲル成形の冷却浴としては、上記成形溶液の溶媒に対し
て混和性を有せず、PVA系重合体に対して、非溶剤の
もの、例えば、デカリン、トリクロルエチレン、四塩化
炭素、パラフィンオイルなどが用いられる。
The cooling bath for gel molding may be one that is not miscible with the solvent of the molding solution and is a non-solvent for PVA polymers, such as decalin, trichlorethylene, carbon tetrachloride, paraffin oil, etc. is used.

本発明においては、ヒドロゲル成形体の形体として多糸
条繊維に成形する場合、低ケン化度pvAの凝固・ゲル
化速度が極めて遅く、糸条間が接着しやすいため、接着
を防ぐために成形溶液における低ケン化度PVAの重合
体濃度を12〜30重量%、好ましくは15〜25重量
%にするのが望ましい。
In the present invention, when molding into multi-filament fibers as the form of a hydrogel molded body, since the coagulation and gelation speed of low saponification degree pvA is extremely slow and the fibers tend to adhere to each other, a molding solution is used to prevent adhesion. It is desirable that the polymer concentration of low saponification degree PVA is 12 to 30% by weight, preferably 15 to 25% by weight.

さらに、糸条間の接着を回避するため、凝固浴中または
冷却浴中ての凝固糸あるいはゲル化糸の滞留時間を5秒
以上、好ましくは10秒以上にするとよい。
Furthermore, in order to avoid adhesion between yarns, the residence time of the coagulated yarn or gelled yarn in the coagulation bath or cooling bath is preferably 5 seconds or more, preferably 10 seconds or more.

本発明においては、得られた凝固成形体またはゲル化成
形体を高度に延伸するためには、温度が180〜230
°C5好ましくは190〜225℃の加熱チューブ、加
熱炉、熱板、熱媒浴等により延伸するのがよい。
In the present invention, in order to highly stretch the obtained solidified molded product or gelled molded product, the temperature is 180 to 230°C.
℃5 Preferably, stretching is carried out using a heating tube, heating furnace, hot plate, heat medium bath, etc. at 190 to 225°C.

また、本発明においては、上記した熱延伸の前に、凝固
・ゲル化成形体を1〜7倍冷延伸、温熱延伸してもよい
Further, in the present invention, the solidified/gelled molded product may be cold-stretched and hot-stretched by 1 to 7 times before the above-described hot stretching.

本発明においては、このようにして得られた延伸成形体
を、延伸成形体の水溶解温度をTs(℃)とした時、温
度がTs−50℃以上Ts−5℃以下、好ましくはTs
−40℃以上Ts−10℃以下、さらに好ましくはTs
−35°C以上Ts−10°C以下の水中で50%以上
、好ましくは55%以上収縮させる必要がある。
In the present invention, the stretched molded product thus obtained has a temperature of Ts-50°C or more and Ts-5°C or less, preferably Ts, where the water dissolution temperature of the stretched molded product is Ts (°C).
-40℃ or more and Ts-10℃ or less, more preferably Ts
It is necessary to shrink by 50% or more, preferably 55% or more in water at -35°C or more and Ts -10°C or less.

ここで、本発明における延伸成形体の水溶解温度(Ts
)とは、成形体に1にg/cm2の荷重をかけて、温度
5°Cの水中に入れ、昇温速度1℃/分で昇温し、成形
体が溶断する温度をいう。
Here, the water dissolution temperature (Ts
) refers to the temperature at which the molded product is fused and cut by applying a load of g/cm2 to the molded product, placing it in water at a temperature of 5°C, increasing the temperature at a rate of 1°C/min.

延伸成形体を収縮させる際の水温がTs −50℃を下
回ると、延伸成形体の収縮率が50%以上に達するには
長時間を要するため、本発明のヒドロゲル成形体を工業
的に連続して生産することが困難になる。
If the water temperature when shrinking the stretched molded product is below Ts -50°C, it will take a long time for the stretched molded product to reach a shrinkage rate of 50% or more. production becomes difficult.

また、水温がTs−5℃を上回ると、収縮率が50%に
到達するまでの時間は極めて短くなるものの、水溶解温
度(Ts)との差が極めて小さく、延伸成形体中の親水
性非晶相ばかりでなく、結晶架橋相も含水緩和するため
、生成するヒドロゲル成形体の破断強度が低くなる。
Furthermore, when the water temperature exceeds Ts-5°C, although the time required for the shrinkage rate to reach 50% is extremely short, the difference from the water solubility temperature (Ts) is extremely small, and the hydrophilic non-containing material in the stretched product is Since not only the crystalline phase but also the crystalline crosslinked phase is hydrated, the breaking strength of the resulting hydrogel molded article is reduced.

本発明においては、上記した特定水温下で、延伸成形体
を50%以上、好ましくは55%以上収縮させる必要が
ある。収縮率が50%を下回ると、生成するヒドロゲル
成形体の保水率が100重量%に到達しない。
In the present invention, it is necessary to shrink the stretched molded article by 50% or more, preferably 55% or more at the above-mentioned specific water temperature. If the shrinkage rate is less than 50%, the water retention rate of the hydrogel molded product produced will not reach 100% by weight.

なお、延伸成形体を水中で収縮させる方法としては、二
連ローラ、多連ローラ等による連続収縮、あるいは、延
伸成形体を各ユニットに分断・切断し、収縮処理浴中で
完全弛緩状態、あるいはフレーム等に固定して不連続で
収縮させる方法等を上げることができるが、この限りで
はない。
In addition, methods for shrinking the stretched molded product in water include continuous shrinkage using double rollers, multiple rollers, etc., division and cutting of the stretched molded product into each unit, and complete relaxation in a shrinking treatment bath. Methods such as fixing it to a frame or the like and contracting it discontinuously can be mentioned, but the method is not limited to this.

このように、低ケン化度・高重合度PVAを乾湿式成形
・ゲル成形という特定成形方法を採用することにより、
高度に延伸配向結晶化せしめ、さらに、得られた延伸成
形体を特定温度下の水中で高度に収縮させることによっ
て、初めて、100重量%以上の高い保水率と10Kg
/cm2以上の高い破断強度を兼ねそなえた本発明の高
強度PVA系ヒドロゲル成形体が得られるのである。
In this way, by using specific molding methods such as dry-wet molding and gel molding for low-saponification and high-polymerization PVA,
By highly stretching-oriented crystallization and further shrinking the obtained stretched molded product in water at a specific temperature, it is possible to achieve a high water retention rate of 100% by weight or more and a weight of 10kg.
The high-strength PVA-based hydrogel molded article of the present invention, which also has a high breaking strength of /cm2 or more, can be obtained.

[実施例] 以下、実施例に基づき本発明をさらに具体的に説明する
[Examples] Hereinafter, the present invention will be explained in more detail based on Examples.

実施例1 ケン化度が95モル%、重合度が2800のPVAを重
合体濃度が20重量%になるようにDMSOに溶解し、
紡糸原液を作製した。なお、溶解に先たち、DMSO中
にパラトルエンスルホン酸を加えて、原液の水素イオン
濃度(pH; 25°C)を6.4に調整した。
Example 1 PVA with a degree of saponification of 95 mol% and a degree of polymerization of 2800 was dissolved in DMSO so that the polymer concentration was 20% by weight,
A spinning stock solution was prepared. Prior to dissolution, p-toluenesulfonic acid was added to DMSO to adjust the hydrogen ion concentration (pH; 25°C) of the stock solution to 6.4.

得られた原液を100°Cの温度に保ち、口径0.08
闘φ、孔数500の口金から、150cc/分の吐出量
で空気中に吐出し、10mmの空間部(口金面と凝固浴
液面間の距離)を走行させた後、2重量%のDMSOを
含む温度15°Cのメタノール凝固浴中に導入して凝固
せしめ、10m/分で引きとった。なお、この場合の凝
固糸条の凝固浴中での滞留時間は、15秒であった。
The obtained stock solution was kept at a temperature of 100°C, and the caliber was 0.08.
It was discharged into the air at a discharge rate of 150 cc/min from a nozzle with a diameter of 500 mm and 500 holes, and after traveling through a 10 mm space (distance between the nozzle surface and the liquid level of the coagulation bath), 2% by weight of DMSO was added. The mixture was introduced into a methanol coagulation bath at a temperature of 15° C. and coagulated, and then withdrawn at a rate of 10 m/min. In this case, the residence time of the coagulated thread in the coagulation bath was 15 seconds.

得られた未延伸糸条はメタノールで洗浄し、二連ローラ
により4倍に冷延伸し、シリコン系油剤(東しシリコー
ン(株)TE−1002)を1重量%メタノールに溶解
した油剤洛中を通過せしめた後、60°Cの加熱ローラ
て乾燥した。乾燥糸条は220℃の窒素気流を有する加
熱筒を通して4.5倍に延伸し、ワインダーにて巻き取
った。得られた延伸糸条の全延伸倍率は18.0倍で単
糸間の接着は全くなく、水溶解温度(Ts)は52℃、
30℃の水中における収縮率は77%であった。この延
伸糸条を、連続的に30℃の水浴中で70%収縮させ、
ゴム弾性を有するヒドロゲル繊維束を得た。得られたヒ
ドロゲル成形体の保水率は418%、破断強度は39K
g/cm2であった。
The obtained undrawn yarn was washed with methanol, cold-stretched by a double roller to four times its original size, and passed through an oil solution containing 1% by weight of a silicone oil (TE-1002, manufactured by Toshi Silicone Co., Ltd.) dissolved in methanol. After drying, it was dried using a heated roller at 60°C. The dried yarn was stretched 4.5 times through a heating tube with a nitrogen stream at 220° C., and wound up with a winder. The total stretching ratio of the obtained drawn yarn was 18.0 times, there was no adhesion between single yarns, and the water dissolution temperature (Ts) was 52 ° C.
The shrinkage rate in water at 30°C was 77%. This drawn yarn was continuously shrunk by 70% in a 30°C water bath,
A hydrogel fiber bundle having rubber elasticity was obtained. The water retention rate of the obtained hydrogel molded body was 418%, and the breaking strength was 39K.
g/cm2.

実施例2,3,4、比較例1 実施例1で得られた4倍冷延伸糸を220°Cの窒素気
流を有する加熱筒を通して全延伸倍率が、7倍、12倍
、16倍、19倍になるように延伸し、得られた延伸糸
条を30°Cの水中で5分間収縮させてヒドロゲル繊維
束を作製した。各々の延伸糸条の収縮率と、得られたヒ
ドロゲル繊維束の保水率と破断強度を表−1に示す。
Examples 2, 3, 4, Comparative Example 1 The 4-fold cold-drawn yarn obtained in Example 1 was passed through a heating tube with a nitrogen stream at 220°C to give a total stretching ratio of 7 times, 12 times, 16 times, and 19 times. The stretched yarn was stretched to double its original size, and the resulting stretched yarn was shrunk in water at 30°C for 5 minutes to produce a hydrogel fiber bundle. Table 1 shows the shrinkage rate of each drawn yarn, the water retention rate, and the breaking strength of the obtained hydrogel fiber bundle.

(以下、余白) 表−1 比較例−2 ケン化度95モル%、重合度800のPVAを重合体濃
度が25重量%にした以外は実施例1と同様の方法で糸
条を作製した。ただし、実施例1に比べて延伸性が低く
、全延伸倍率は15倍にとどまった。得られた延伸糸条
の水溶前温度は56℃であり、30°Cの水中での収縮
率は46%であった。収縮後のヒドロゲル繊維の保水率
は96%であり、破断強度は8Kg/cm”であった。
(The following is a blank space) Table 1 Comparative Example 2 A yarn was produced in the same manner as in Example 1, except that PVA with a degree of saponification of 95 mol% and a degree of polymerization of 800 was used at a polymer concentration of 25% by weight. However, the stretchability was lower than in Example 1, and the total stretching ratio was only 15 times. The temperature of the obtained drawn yarn before dissolution in water was 56°C, and the shrinkage rate in water at 30°C was 46%. The water retention rate of the hydrogel fibers after shrinkage was 96%, and the breaking strength was 8 Kg/cm''.

実施例5,6、比較例3,4 開始剤としてα、αゝ−アゾビスイソブチロニトリルを
用いて、重合温度50℃で酢酸ビニルの塊状重合を行い
、高重合度ポリ酢酸ビニルを得た。
Examples 5 and 6, Comparative Examples 3 and 4 Using α,αゝ-azobisisobutyronitrile as an initiator, bulk polymerization of vinyl acetate was carried out at a polymerization temperature of 50°C to obtain highly polymerized polyvinyl acetate. Ta.

このポリ酢酸ビニルをPVAに変換する際のフルカリケ
ン化条件を変更することにより、重合度4000でケン
化度が86.92.96.99.5モル%の4種のPV
Aを作製した。
By changing the full cali saponification conditions when converting this polyvinyl acetate into PVA, four types of PV with a polymerization degree of 4000 and a saponification degree of 86.92.96.99.5 mol% were produced.
A was created.

得られたPVAを重合体濃度が17重置火になるように
DMSOに溶解した以外は、実施例1と同様の方法で4
倍冷延伸糸を作製した。得られた各々の冷延伸糸を19
5℃の窒素気流を有する加熱筒を通して3.8倍に延伸
し、ワインダーに巻き取った。
4 in the same manner as in Example 1, except that the obtained PVA was dissolved in DMSO so that the polymer concentration was 17.
A double cold drawn yarn was produced. Each of the obtained cold-drawn yarns was
It was stretched 3.8 times through a heating tube with a nitrogen stream at 5° C. and wound up in a winder.

得られた延伸糸条の水溶前温度(Ts)と、延伸糸条を
Ts −20℃の水温下で70%収縮させて得られたヒ
ドロゲル繊維の保水率と破断強度を表−2に示す。
Table 2 shows the temperature before water dissolution (Ts) of the obtained drawn thread, and the water retention rate and breaking strength of the hydrogel fiber obtained by shrinking the drawn thread by 70% at a water temperature of Ts -20°C.

(以下、余白) 表−2 木・・・25°C水中で溶解 木本・・・100℃以下ではゲル化せず、測定不可 実施例7,8、比較例5,6 ケン化度96モル%、重合度4800のPVAを重合体
濃度が15重量%になるようにグリセリンに溶解し、紡
糸原液を作製した。
(The following is a blank space) Table 2 Wood: Dissolved in water at 25°C Wood: Does not gel at 100°C or lower and cannot be measured Examples 7 and 8, Comparative Examples 5 and 6 Saponification degree 96 mol % and a degree of polymerization of 4800 was dissolved in glycerin so that the polymer concentration was 15% by weight to prepare a spinning stock solution.

得られた原液を170°Cの温度に保ち、口径0.12
mmφ、孔数100の口金から、45cc/分の吐出量
で空気中に吐出し、20mmの空間部(口金面と冷却浴
液面間の距離)を走行させた後、温度5°Cのデカリン
からなる冷却浴中に導入してゲル化せしめ、10m/分
で引きとった。なお、この場合のゲル化糸条の冷却浴中
ての滞留時間は20秒であった。
The obtained stock solution was kept at a temperature of 170 °C, and the caliber was 0.12.
From a nozzle with mmφ and 100 holes, it was discharged into the air at a rate of 45 cc/min, and after traveling through a 20 mm space (distance between the nozzle surface and the cooling bath liquid level), decalin at a temperature of 5°C was discharged. The mixture was introduced into a cooling bath consisting of 300 ml of water to form a gel, and the mixture was drawn off at a rate of 10 m/min. In this case, the residence time of the gelled yarn in the cooling bath was 20 seconds.

得られたゲル化糸条を20℃のメタノール洗浄浴中でグ
リセリンを抽出した後、二連ローラにより4倍に冷延伸
し、シリコン系油剤(東しシリコーン(株) TE−1
002)を1重量%メタノールに溶解した油剤浴中を通
過せしめた後、50℃の加熱ローラで乾燥した。乾燥糸
条は225°Cの窒素気流を有する加熱筒を通して4.
1倍に延伸し、ワインダーに巻き取った。得られた延伸
糸条の全延伸倍率は16.4倍て単糸間の接着は全くな
く、水溶前温度(Ts)は61°Cであった。
After extracting glycerin from the obtained gelled yarn in a methanol washing bath at 20°C, it was cold-stretched to 4 times its original size using a double roller, and was coated with a silicone oil agent (Toshi Silicone Co., Ltd. TE-1).
002) was dissolved in 1% by weight methanol, and then dried with a heated roller at 50°C. 4. The dried yarn is passed through a heating tube with a nitrogen stream at 225°C.
It was stretched to 1x and wound up on a winder. The total stretching ratio of the obtained drawn yarn was 16.4 times, there was no adhesion between the single yarns, and the temperature before water dissolution (Ts) was 61°C.

得られた延伸糸条な、温度を15.30.45.58°
Cに調整した水浴中で70%収縮させ、収縮に要した時
間(収縮時間)、収縮後のヒドロゲル繊維束の保水率と
破断強度を表−3に示す。
The temperature of the obtained drawn yarn was 15.30.45.58°.
Table 3 shows the time required for shrinkage (shrinkage time), water retention rate, and breaking strength of the hydrogel fiber bundle after shrinkage.

(以下、余白) 表−3 *・・・24時間でも70%収縮しない実施例9 ケン化度97モル%、重合度が2200のPVAを重合
体濃度が20重量%になるようにDMSOに溶解しく溶
解に先たち、DMSO中にパラトルエンスルホン酸を加
えて、溶液の水素イオン濃度(pH;25°C)を6.
0に調整した)、得られた溶液を100℃の温度に保ち
、巾0.2闘、長ざI Ommのスリット口金から、1
00cc/分の吐出量で15mmの空間部を(口金面と
凝固浴液面間の距離)を走行させた後、3重量%のDM
SOを含む温度17℃のメタノール凝固浴中に導入して
凝固せしめ、10m/分で引きとった。
(The following is a margin) Table 3 *...Example 9 that does not shrink by 70% even in 24 hours PVA with a degree of saponification of 97 mol% and a degree of polymerization of 2200 is dissolved in DMSO so that the polymer concentration is 20% by weight. Prior to dissolution, para-toluenesulfonic acid was added to DMSO to adjust the hydrogen ion concentration (pH; 25°C) of the solution to 6.
The resulting solution was kept at a temperature of 100°C, and was slit through a slit cap with a width of 0.2 mm and a length of I 0 mm.
After traveling through a space of 15 mm (distance between the nozzle surface and the coagulation bath liquid level) at a discharge rate of 00 cc/min, 3% by weight of DM
It was introduced into a methanol coagulation bath containing SO at a temperature of 17°C to coagulate it, and was withdrawn at a rate of 10 m/min.

得られた未延伸フィルムはメタノールで洗浄し、二連ロ
ーラにより4倍に冷延伸し、60℃の加熱ローラで乾燥
した。乾燥フィルムは225°Cの窒素気流を有する加
熱筒を通して4倍に延沖し、ワインダーにて巻き取った
The obtained unstretched film was washed with methanol, cold-stretched to 4 times with double rollers, and dried with heated rollers at 60°C. The dried film was stretched four times through a heating tube with a nitrogen stream at 225°C and wound up with a winder.

得られた一軸延伸フィルムの水溶前温度(Ts)は65
°Cてあり、40°Cの水浴中で60%収縮させて得ら
れたヒドロゲルフィルムの保水率は370%、破断強度
は41に3/cm2てあった。
The temperature before water dissolution (Ts) of the obtained uniaxially stretched film was 65
The hydrogel film obtained by shrinking 60% in a water bath at 40°C had a water retention rate of 370% and a breaking strength of 41.3/cm2.

[発明の効果コ 本発明の高強度PVA系ヒドロゲル成形体は、含水状態
でゴム状弾性を示し、保水率が100重量%以上で、か
つ、破断強度も10Kg/cm2以上という優れた性能
を有しており、また、形状も繊維、フィルム、チューブ
、ロッド等自由に成形できるため、人工肘、人工筋肉、
人工皮膚、人工血管、人工関節、義歯床、生体修復材、
カテーテル、ソフトコンタクトレンズ、抗血栓性素材、
医薬徐放性担体、酵素や菌体の固定化担体等の医用材料
ばかりでなく、保水材、保冷材、保冷用熱媒体、人工水
苔、水耕栽培用人工土壌、漁業用凝似餌、土質改良材、
防藻材、防汚材、印刷ロール用素材、芳香剤の徐放性担
体等の高い保水率の要求される産業用途分野への展開が
大いに期待される。
[Effects of the Invention] The high-strength PVA-based hydrogel molded article of the present invention exhibits rubber-like elasticity in a water-containing state, has a water retention rate of 100% by weight or more, and has excellent properties such as a breaking strength of 10 kg/cm2 or more. In addition, it can be freely formed into fibers, films, tubes, rods, etc., so it can be used for artificial elbows, artificial muscles,
Artificial skin, artificial blood vessels, artificial joints, denture bases, biological repair materials,
catheters, soft contact lenses, antithrombotic materials,
In addition to medical materials such as sustained-release carriers for pharmaceuticals, carriers for immobilizing enzymes and microbial cells, we also provide water retention materials, cold insulation materials, thermal media for cold storage, artificial sphagnum moss, artificial soil for hydroponic cultivation, fishing lures, soil conditioner,
It is highly anticipated that it will be used in industrial applications that require high water retention, such as algae-proofing materials, antifouling materials, materials for printing rolls, and sustained-release carriers for fragrances.

Claims (2)

【特許請求の範囲】[Claims] (1)ケン化度が99〜88モル%、重合度が1500
以上のポリビニルアルコールからなり、保水率が100
重量%以上、含水状態における破断強度が10Kg/c
m^2以上である高強度ポリビニルアルコール系ヒドロ
ゲル成形体。
(1) Saponification degree is 99-88 mol%, polymerization degree is 1500
It is made of polyvinyl alcohol with a water retention rate of 100%.
Weight% or more, breaking strength in hydrated state is 10Kg/c
A high-strength polyvinyl alcohol-based hydrogel molded article having a tensile strength of m^2 or more.
(2)ケン化度が99〜88モル%、重合度が1500
以上のポリビニルアルコールを乾湿式成形、またはゲル
成形した後、全延伸倍率が10倍以上になるように延伸
し、さらに、延伸後の成形体の水溶解温度をTs(℃)
とした時、温度がTs−50℃以上Ts−5℃以下の水
中で成形体を50%以上収縮させることを特徴とする高
強度ポリビニルアルコール系ヒドロゲル成形体の製造法
(2) Saponification degree is 99-88 mol%, polymerization degree is 1500
After dry-wet molding or gel molding the above polyvinyl alcohol, it is stretched so that the total stretching ratio is 10 times or more, and the water dissolution temperature of the stretched molded product is Ts (℃).
A method for producing a high-strength polyvinyl alcohol-based hydrogel molded article, which comprises shrinking the molded article by 50% or more in water at a temperature of Ts-50°C or more and Ts-5°C or less.
JP63085844A 1988-04-06 1988-04-06 High-strength polyvinyl alcohol series hydrogel molded body and its manufacture Pending JPH01257026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63085844A JPH01257026A (en) 1988-04-06 1988-04-06 High-strength polyvinyl alcohol series hydrogel molded body and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63085844A JPH01257026A (en) 1988-04-06 1988-04-06 High-strength polyvinyl alcohol series hydrogel molded body and its manufacture

Publications (1)

Publication Number Publication Date
JPH01257026A true JPH01257026A (en) 1989-10-13

Family

ID=13870176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63085844A Pending JPH01257026A (en) 1988-04-06 1988-04-06 High-strength polyvinyl alcohol series hydrogel molded body and its manufacture

Country Status (1)

Country Link
JP (1) JPH01257026A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336551A (en) * 1992-12-14 1994-08-09 Mizu Systems, Inc. Reinforced polyvinyl alcohol hydrogels containing uniformly dispersed crystalline fibrils and method for preparing same
JP2007031296A (en) * 2005-07-22 2007-02-08 Hisamitsu Pharmaceut Co Inc Hydrogel composition
CN109355725A (en) * 2018-08-23 2019-02-19 浙江理工大学 A kind of preparation method of self-healing property aquagel fibre

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336551A (en) * 1992-12-14 1994-08-09 Mizu Systems, Inc. Reinforced polyvinyl alcohol hydrogels containing uniformly dispersed crystalline fibrils and method for preparing same
US5422050A (en) * 1992-12-14 1995-06-06 Mizu Systems Inc. Reinforced polyvinyl alcohol hydrogels containing uniformly dispersed crystalline fibrils and method for preparing same
JP2007031296A (en) * 2005-07-22 2007-02-08 Hisamitsu Pharmaceut Co Inc Hydrogel composition
CN109355725A (en) * 2018-08-23 2019-02-19 浙江理工大学 A kind of preparation method of self-healing property aquagel fibre

Similar Documents

Publication Publication Date Title
EP0094980B1 (en) Novel polymer composition including polyacrylonitrile polymers and process for preparing same
US5336551A (en) Reinforced polyvinyl alcohol hydrogels containing uniformly dispersed crystalline fibrils and method for preparing same
US4851168A (en) Novel polyvinyl alcohol compositions and products prepared therefrom
US3878284A (en) Processes for making shaped articles such as filaments or films from solutions of polyglycolic acid
US4943618A (en) Method for preparing polyacrylonitrile copolymers by heterogeneous reaction of polyacrylonitrile aquagel
US5677360A (en) Hydrophilic polymer alloy, fiber and porous membrane comprising this polymer alloy, and methods for preparing them
US4360488A (en) Removal of solvent from gels of poly(hydroxybutyrate) and shaped articles formed therefrom
JPS61252261A (en) Porous transparent polyvinyl alcohol gel and production thereof
JPS5926450B2 (en) Method for producing an oriented chitin molded body
CN100415821C (en) Polyvinyl alcohol gels
JPH04100913A (en) Biodegradable fiber, biodegradable film and its production
JPH01257026A (en) High-strength polyvinyl alcohol series hydrogel molded body and its manufacture
JPH01272814A (en) Polyvinyl alcohol-based yarn having excellent hot water resistance and production thereof
WO2001068746A1 (en) Molding made of polyvinyl alcohol and process for producing the same
US4144299A (en) Process for producing acrylonitrile polymer film
JPH0611796B2 (en) Polyvinyl alcohol molding and method for producing the same
JP3281014B2 (en) Method for producing hydrophilic polymer alloy and method for producing porous membrane comprising hydrophilic polymer alloy
JPH037751A (en) Novel polyacrylonitrile composition and production thereof
JPH0216028A (en) Manufacture of polyvinyl alcohol group molding
JPH04108109A (en) Polyvinyl alcohol-based fiber and production thereof
CA1099879A (en) Process for producing acrylonitrile polymer film
JPH0959819A (en) Production of polyvinyl alcohol fiber
JPH0428804B2 (en)
JPH0737537B2 (en) Chitin film
JPS63190010A (en) Production of high-tenacity polyvinyl alcohol based fiber