JPH0125612B2 - - Google Patents

Info

Publication number
JPH0125612B2
JPH0125612B2 JP55132516A JP13251680A JPH0125612B2 JP H0125612 B2 JPH0125612 B2 JP H0125612B2 JP 55132516 A JP55132516 A JP 55132516A JP 13251680 A JP13251680 A JP 13251680A JP H0125612 B2 JPH0125612 B2 JP H0125612B2
Authority
JP
Japan
Prior art keywords
tube
gas
permeable membrane
porous
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55132516A
Other languages
Japanese (ja)
Other versions
JPS5756021A (en
Inventor
Hidetake Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP13251680A priority Critical patent/JPS5756021A/en
Publication of JPS5756021A publication Critical patent/JPS5756021A/en
Publication of JPH0125612B2 publication Critical patent/JPH0125612B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明は機械的強度を補強した多孔性物質の膜
よりなる混合ガスの透過による分離器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mixed gas permeation separator comprising a membrane of porous material with reinforced mechanical strength.

透過膜によるガス分離器に用いられる膜には大
別して非多孔質高分子膜と多孔質ガラス、アルミ
ナ、多孔質炭素等の多孔質膜とがある。非多孔質
高分子膜はこれを用いた場合かなり純度の高い製
品が得られるため工業的ガス分離用として実用化
されているが、多孔質膜に比して透過係数が非常
に小さいため大きな透過面積が要求され、微細な
中空繊維を束ねた型式の分離器が開発されてい
る。しかし高分子膜は耐熱性が低く200℃以上の
温度では使用に耐えないので、高温度の反応系と
組合せて使用するためには冷却、再加熱工程を必
要としこの工程に多額の費用を要する。また極細
の中空繊維等はガス中に含まれる粉塵、タール分
等により目詰まり、劣化を起し易くこれらを除去
するための精製工程が必要でその為にも多額の費
用を要する欠点がある。
Membranes used in gas separators using permeable membranes are broadly classified into non-porous polymer membranes and porous membranes such as porous glass, alumina, and porous carbon. Non-porous polymer membranes have been put into practical use for industrial gas separation because they can yield products with fairly high purity, but their permeability coefficients are very small compared to porous membranes, so they have large permeability. Due to the area requirements, a type of separator in which fine hollow fibers are bundled has been developed. However, polymer membranes have low heat resistance and cannot be used at temperatures above 200°C, so in order to use them in combination with high-temperature reaction systems, cooling and reheating processes are required, which requires a large amount of cost. . Further, ultrafine hollow fibers are easily clogged and deteriorated by dust, tar, etc. contained in the gas, and a purification process is required to remove these substances, which also requires a large amount of cost.

一方セラミツクス膜によつて代表される多孔質
膜はその物性上特定の用途に対しては工業的ガス
分離用として可成り有望である。即ち、多孔質膜
の分離機構は主としてKnudsenの理論に基き、ガ
スの平均自由工程よりはるかに小さい孔をガスが
通過するとき、2つのガス成分の分離係数αは次
式のように各成分の分子量m1,m2の比の平方根
で表わされ、 この程度の分離係数では各成分ガスをを一回の
分離操作によつて高純度に精製することは出来な
いが単位面積当りの透過量が大きくまた一般に耐
熱性の材料であるため、低純度の製品を得る場合
または混合ガスの組成を調整する場合等について
はこの多孔質膜を用いた比較的小型の装置で目的
を達成し得、且つ高温反応ガスを常温まで冷却す
ることなく高温度のまま分離器に導入できるので
設備費、エネルギー費の両面で経済的である。こ
の様な場合の具体的例としては重質油、石炭など
の部分酸化により発生した水素と一酸化炭素との
混合ガスを化学合成に利用するためにその混合比
率をその合成反応に応じて調整する場合、高温に
於て水素を他のガスから分離する場合等である。
多孔質膜によるガス分離はこの様な場合には目的
に適した方法であるが、一般に膜材料は機械的強
度に於て信頼できるものが少なく実装置化が困難
であつた。例えば多孔質膜としての多孔質炭素な
どは脆く機械的強度の点で劣るため、数十気圧の
高圧ガスを大きな圧力差をかけて分離するような
厳しい条件の工業装置には使用できなかつた。本
発明はこれらの点に鑑み上記の様な多孔質膜の両
面を金属板で補強して機械的強度を備えた多孔質
膜を構成素子とすることにより高圧下でのガス分
離を可能にした膜透過によるガス分離器に関する
ものである。以下本発明を図に従い詳細説明す
る。
On the other hand, porous membranes typified by ceramic membranes are quite promising for industrial gas separation due to their physical properties. In other words, the separation mechanism of porous membranes is mainly based on Knudsen's theory. When gas passes through pores that are much smaller than the mean free path of the gas, the separation coefficient α of the two gas components is calculated as follows: It is expressed as the square root of the ratio of molecular weight m 1 and m 2 , With this level of separation coefficient, it is not possible to purify each component gas to high purity in a single separation operation, but since the amount of permeation per unit area is large and the material is generally heat resistant, When obtaining a product or adjusting the composition of a mixed gas, the purpose can be achieved with a relatively small device using this porous membrane, and the high temperature reaction gas can be kept at a high temperature without being cooled to room temperature. Since it can be introduced into the separator, it is economical in terms of both equipment costs and energy costs. A specific example of such a case is to use a mixed gas of hydrogen and carbon monoxide generated by partial oxidation of heavy oil, coal, etc. for chemical synthesis, and adjust the mixing ratio according to the synthesis reaction. This is the case when hydrogen is separated from other gases at high temperatures.
Gas separation using a porous membrane is a method suitable for the purpose in such cases, but in general, there are few membrane materials with reliable mechanical strength, making it difficult to implement into practical equipment. For example, porous membranes such as porous carbon are brittle and have poor mechanical strength, so they cannot be used in industrial equipment that operates under severe conditions, such as those that separate high-pressure gases at tens of atmospheres by applying a large pressure difference. In view of these points, the present invention has made gas separation under high pressure possible by using a porous membrane as a component that has mechanical strength by reinforcing both sides of the porous membrane as described above with metal plates. This invention relates to a gas separator using membrane permeation. The present invention will be explained in detail below with reference to the drawings.

第1図は本発明による膜透過式ガス分離器の一
実施例の縦断面図、第2図は第1図の―部の
横断面図、第3図は透過膜素子の縦断面図であ
る。第1図に於て、1は透過膜素子であり、該透
過膜素子1が複数本集つて該図に示した如く平行
に且つその横断面は第2図の如く配置されて透過
膜素子群2を構成している。透過膜素子1は管壁
に多数の小孔3aを有する金属製の外管3と、同
様に管壁に多数の小孔4aを有する金属製の内管
4とを夫々の両端部に環5を介して同心円状に組
立て該外管3と内管4との間隙に多孔質膜6を充
填し前記環5と外管3と接触面7および内管4と
の接触面8はろう付け等により封着して構成す
る。上記多孔質膜6として用いられる多孔性物質
は多孔質炭素等で、その孔の径は一般に100Å乃
至200Å程度である。この炭素系多孔質膜として
は例えば予め上記間隙に微粉炭と粘結剤とを混合
したものを充填しておき、組立て後加熱焼結して
製造する。これら多孔質膜は前記の如く特定の場
合のガス分離の目的には適しているが、いづれも
機械的強度が小さい。従つてこれを補強するため
に該多孔質膜6を両面よりサンドウイツチ状には
さむ外管3および内管4は機械的強度が大きく且
つ耐蝕性の大きいステンレススチール等が望まし
い。
FIG. 1 is a longitudinal cross-sectional view of an embodiment of a membrane gas separator according to the present invention, FIG. 2 is a cross-sectional view of the part shown in FIG. 1, and FIG. 3 is a vertical cross-sectional view of a permeable membrane element. . In FIG. 1, reference numeral 1 denotes a transmission membrane element, and a plurality of transmission membrane elements 1 are arranged in parallel as shown in the figure and with their cross sections as shown in FIG. 2, forming a transmission membrane element group. 2. The permeable membrane element 1 includes a metal outer tube 3 having a large number of small holes 3a in the tube wall, and a metal inner tube 4 having a large number of small holes 4a in the tube wall, each having a ring 5 at each end. The gap between the outer tube 3 and the inner tube 4 is filled with a porous membrane 6, and the contact surface 7 between the ring 5 and the outer tube 3, and the contact surface 8 between the outer tube 3 and the inner tube 4 are brazed, etc. It is configured by sealing it. The porous substance used as the porous membrane 6 is porous carbon or the like, and the diameter of the pores is generally about 100 Å to 200 Å. This carbon-based porous membrane is manufactured by, for example, filling the above-mentioned gap in advance with a mixture of pulverized coal and a binder, and then heating and sintering it after assembly. Although these porous membranes are suitable for the purpose of gas separation in specific cases as described above, they all have low mechanical strength. Therefore, in order to reinforce this, the outer tube 3 and inner tube 4 sandwiching the porous membrane 6 from both sides in a sandwich-like manner are preferably made of stainless steel or the like having high mechanical strength and high corrosion resistance.

外管3および内管4の径、長さ、板厚、小孔3
aおよび4aの径、数、配置、また多孔質膜6の
種類、厚さ等の諸元は分離対象である混合ガスの
種類および与えられる条件により任意に選択す
る。次にこの様に構成された透過膜素子1を複数
本平行に配置した透過膜素子群2は胴9内に収容
される。更に透過膜素子群2の下端および上端を
夫々管板10aおよび10bに第3図に示す如く
取付け該管板10aおよび10bに明けた外管3
の外径とほぼ同径の孔と外管3との接触面11a
および11bはろう付等により溶着する。同様に
胴9の上端部および下端部も管板10aおよび1
0bにろう付け又は溶接により固着する。管板1
0aおよび10bにはガスの出入口12aおよび
12bを有する鏡板13aおよび13bを取付け
る。管板10aと鏡板13aおよび管板10bと
鏡板13bとの固着はフランジ部14a,14b
をパツキンを介してボルト・ナツトにより行な
う。なお前記胴9にはその上部および下部にガス
の出口管15a,15bを取り付ける。胴9、管
板10a,10b、鏡板13a,13bおよびガ
スの出入口管12a,12b,15a,15bに
はいづれも機械的強度が大きく耐蝕性のステンレ
ススチールを使用する。
Diameter, length, plate thickness, small hole 3 of outer tube 3 and inner tube 4
Specifications such as the diameter, number, and arrangement of a and 4a, and the type and thickness of the porous membrane 6 are arbitrarily selected depending on the type of mixed gas to be separated and the conditions to be provided. Next, a transmission membrane element group 2 in which a plurality of transmission membrane elements 1 configured in this manner are arranged in parallel is housed in the body 9. Furthermore, the lower and upper ends of the transmission membrane element group 2 are attached to the tube sheets 10a and 10b, respectively, as shown in FIG. 3, and the outer tube 3 is opened in the tube sheets 10a and 10b.
A contact surface 11a between the outer tube 3 and a hole having approximately the same diameter as the outer diameter of the
and 11b are welded by brazing or the like. Similarly, the upper and lower ends of the body 9 are also connected to the tube plates 10a and 1.
0b by brazing or welding. tube plate 1
End plates 13a and 13b having gas inlets and outlets 12a and 12b are attached to 0a and 10b. The tube plate 10a and the end plate 13a and the tube sheet 10b and the end plate 13b are fixed by the flange portions 14a and 14b.
This is done using bolts and nuts through the packing. Incidentally, gas outlet pipes 15a and 15b are attached to the upper and lower parts of the body 9. The body 9, tube plates 10a, 10b, end plates 13a, 13b, and gas inlet/outlet tubes 12a, 12b, 15a, 15b are all made of stainless steel, which has high mechanical strength and is corrosion resistant.

本発明による膜透過式ガス分離器の構成は以上
の如くであるが、次にこのガス分離器の実施例を
その運転例と共に説明する。まず透過膜素子1の
諸元は次の通りである。外管3の内径26mm、内管
4の外径20mm、各々の長さは3000mm、外管3、内
管4共に板厚2mmのステンレススチールであり、
共に直径1mmの小孔を0.7ケ/cm2の割合で等間隔
に明けた。多孔質膜は厚さ3mmの炭素系多孔質膜
で、予め微粉炭に結合剤としてタールピツチを加
えて練つたものを外管3と内管4との間隙に詰め
た後、約800℃に加熱して焼結した。この様な透
過膜素子1を1500本、断面積15000cm2の胴9に収
納し透過膜素子群2を構成した。また胴9、管板
10a,10b、鏡板13a,13b等はいづれ
もステンレススチールを使用した。
The structure of the membrane permeable gas separator according to the present invention is as described above. Next, an embodiment of this gas separator will be described together with an example of its operation. First, the specifications of the transmission membrane element 1 are as follows. The inner diameter of the outer tube 3 is 26 mm, the outer diameter of the inner tube 4 is 20 mm, each length is 3000 mm, and both the outer tube 3 and the inner tube 4 are made of stainless steel with a plate thickness of 2 mm.
In both cases, small holes with a diameter of 1 mm were made at equal intervals at a rate of 0.7 holes/cm 2 . The porous membrane is a carbon-based porous membrane with a thickness of 3 mm. After kneading pulverized coal with tar pitch as a binder and filling it into the gap between the outer tube 3 and the inner tube 4, it is heated to about 800℃. and sintered. A transmission membrane element group 2 was constructed by housing 1,500 such transmission membrane elements 1 in a body 9 having a cross-sectional area of 15,000 cm 2 . Further, the body 9, tube plates 10a, 10b, end plates 13a, 13b, etc. were all made of stainless steel.

次にこのガス分離器を用いて水素と一酸化炭素
の混合ガスを分離した運転例を第1図及び第3図
に従つて説明する。水素50容量%、一酸化炭素50
容量%の組成を有する混合ガス1000Nm3/hが
50ata(絶対気圧)、500℃の状態でガス入口管12
aより導入され、管板10aと鏡板13cとによ
り形成される小室16aで分配されて各透過膜素
子1の内管4内へ流入する。この混合ガス流は各
透過膜素子の内管4内を流れつつ、その壁面に分
布する小孔4aを通つて内外管の間隙に充填され
た炭素系多孔質膜6に接触し、混合ガスを構成す
る分子中の水素ガス分子が優先的に該多孔質膜6
内を拡散して外管3に達し、該外管3の壁面に分
布する小孔3aより胴9内の空間17に到達す
る。次いで一酸化炭素分子も多孔質膜6中を遅い
速度で拡散、透過して空間17に到達する。これ
によつて各透過膜素子1を透過して空間17に達
したガスの組成は水素80容量%、一酸化炭素20容
量%となる。こうして空間17に得られる混合ガ
ス500Nm3/hはこの間に10ataに降下しガス出口管
15a,15bより取り出される。一方内管4内
を流れるガスの内多孔質膜を透過しなかつた分は
一酸化炭素が濃縮して、管板10bと鏡板13b
により形成される小室16bに集合し、水素20容
量%、一酸化炭素80容量%の組成、49.8ataの圧
力で500Nm3/hがガス出口管12bより取り出さ
れる。
Next, an example of operation in which a mixed gas of hydrogen and carbon monoxide is separated using this gas separator will be described with reference to FIGS. 1 and 3. Hydrogen 50% by volume, carbon monoxide 50%
A mixed gas 1000Nm 3 /h with a composition of volume%
Gas inlet pipe 12 at 50ata (absolute atmospheric pressure) and 500℃
a, the liquid is distributed in the small chamber 16a formed by the tube plate 10a and the end plate 13c, and flows into the inner tube 4 of each permeable membrane element 1. This mixed gas flow flows through the inner tube 4 of each permeable membrane element, passes through the small holes 4a distributed on the wall surface, and comes into contact with the carbon-based porous membrane 6 filled in the gap between the inner and outer tubes, and the mixed gas flows through the inner tube 4 of each permeable membrane element. Hydrogen gas molecules in the constituent molecules preferentially form the porous membrane 6
It diffuses inside and reaches the outer tube 3, and then reaches the space 17 in the body 9 through the small holes 3a distributed on the wall surface of the outer tube 3. Next, carbon monoxide molecules also diffuse and permeate through the porous membrane 6 at a slow speed, reaching the space 17. As a result, the composition of the gas that has passed through each permeable membrane element 1 and reached the space 17 is 80% by volume of hydrogen and 20% by volume of carbon monoxide. The mixed gas of 500 Nm 3 /h thus obtained in the space 17 drops to 10 ata during this time and is taken out from the gas outlet pipes 15a, 15b. On the other hand, carbon monoxide of the gas flowing through the inner tube 4 that does not pass through the inner porous membrane is concentrated, and the carbon monoxide is concentrated on the tube plate 10b and the end plate 13b.
500 Nm 3 /h is taken out from the gas outlet pipe 12b at a pressure of 49.8 ata with a composition of 20% by volume hydrogen and 80% by volume carbon monoxide.

本実施例ではこの程度の分離効率であるが、更
に純度の高い分離ガスが必要な場合は、同じガス
分離器をもう一段あるいは数段設けてこれを通過
させることにより目的を達することが出来ること
は言う迄もない。
In this example, the separation efficiency is at this level, but if a separated gas with even higher purity is required, the purpose can be achieved by providing one or more stages of the same gas separator and passing it through. Needless to say.

本発明は以上の如く構成され実施されるが、こ
れの特徴、効果は次の通りである。まず金属製の
外管と内管との間に多孔質透過膜を充填すること
により膜面にかかる高い圧力等の応力に耐える強
靭な透過膜素子が得られるようになつた。これに
よつて単位面積当りの透過量が大きく耐熱性が要
求される場合に適当な多孔質炭素等の透過膜を用
いてこれらの透過膜の欠点である機械的強度を有
する膜透過式ガス分離器を製作することが出来る
様になつた。即ち透過量が大で耐熱性があり、し
かも機械的強度を有する膜透過式ガス分離器の製
作が可能になつた。また透過膜素子の管板への取
付および透過膜素子群と胴、管板、鏡板等を含む
構造は多管式熱交換器の構造と類似しており、こ
の多管式熱交換器の通常の製作技術で容易に製作
することが出来る。
The present invention is configured and implemented as described above, and its features and effects are as follows. First, by filling a porous permeable membrane between a metal outer tube and an inner tube, it has become possible to obtain a strong permeable membrane element that can withstand stress such as high pressure applied to the membrane surface. As a result, when the amount of permeation per unit area is large and heat resistance is required, a suitable permeable membrane such as porous carbon can be used to achieve membrane permeation type gas separation that overcomes the mechanical strength that these permeable membranes have. I became able to make utensils. In other words, it has become possible to produce a membrane-permeable gas separator that has a large permeation rate, is heat resistant, and has mechanical strength. In addition, the structure including the attachment of the permeable membrane element to the tube plate, the permeable membrane element group, the body, the tube plate, the head plate, etc. is similar to the structure of a shell-and-tube heat exchanger, and the structure of this shell-and-tube heat exchanger is It can be easily manufactured using the following manufacturing technology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の膜透過によるガス分離器の一
実施例の縦断面図、第2図は第1図―の横断
面図、第3図は透過膜素子の縦断面図である。 1は透過膜素子、2は透過膜素子群、3は金属
製外管、4は金属製内管、3a,4aは小孔、6
は多孔質膜、9は胴、10a,10bは管板、1
2a,12bはガス入口管又は出口管、13a,
13bは鏡板、15a,15bはガス出口管であ
る。
FIG. 1 is a longitudinal cross-sectional view of an embodiment of a gas separator using membrane permeation according to the present invention, FIG. 2 is a cross-sectional view of FIG. 1, and FIG. 3 is a vertical cross-sectional view of a permeable membrane element. 1 is a permeable membrane element, 2 is a group of permeable membrane elements, 3 is a metal outer tube, 4 is a metal inner tube, 3a and 4a are small holes, 6
1 is a porous membrane, 9 is a body, 10a and 10b are tube plates, 1
2a, 12b are gas inlet pipes or outlet pipes, 13a,
13b is an end plate, and 15a, 15b are gas outlet pipes.

Claims (1)

【特許請求の範囲】[Claims] 1 管壁に複数個の小孔を有する金属製外管と管
壁に複数個の小孔を有する金属製内管との間に、
予め微粉炭と結合剤とを混合して充填し然る後こ
れを焼結してなる炭素質多孔性物質の透過膜を形
成し、前記金属製外管と内管の各上端および各下
端を封着してなる透過膜素子複数本により透過膜
素子群を構成し、該透過膜素子群をガス出口管を
有する胴に収容し、前記各透過膜素子および前記
胴の各上端および各下端を夫々管板に溶着し、且
つ該各管板にガス入口管または出口管を有する鏡
板を固着した構造を有することを特徴とする透過
膜によるガス分離器。
1. Between a metal outer tube having a plurality of small holes in the tube wall and a metal inner tube having a plurality of small holes in the tube wall,
A permeable membrane of carbonaceous porous material is formed by mixing and filling pulverized coal and a binder in advance and sintering the mixture. A permeable membrane element group is constituted by a plurality of sealed permeable membrane elements, and the permeable membrane element group is housed in a body having a gas outlet pipe, and each of the permeable membrane elements and each upper end and each lower end of the body are connected to each other. 1. A gas separator using a permeable membrane, characterized in that it has a structure in which an end plate having a gas inlet pipe or an outlet pipe is fixed to each tube sheet by welding to each tube sheet.
JP13251680A 1980-09-24 1980-09-24 Gas separator by permeable membrane Granted JPS5756021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13251680A JPS5756021A (en) 1980-09-24 1980-09-24 Gas separator by permeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13251680A JPS5756021A (en) 1980-09-24 1980-09-24 Gas separator by permeable membrane

Publications (2)

Publication Number Publication Date
JPS5756021A JPS5756021A (en) 1982-04-03
JPH0125612B2 true JPH0125612B2 (en) 1989-05-18

Family

ID=15083149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13251680A Granted JPS5756021A (en) 1980-09-24 1980-09-24 Gas separator by permeable membrane

Country Status (1)

Country Link
JP (1) JPS5756021A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102904A (en) * 1983-11-10 1985-06-07 Kurabo Ind Ltd Filter
JPS60171505U (en) * 1984-04-24 1985-11-13 ダイセル化学工業株式会社 Collective semipermeable membrane module
JPH1119480A (en) * 1997-06-27 1999-01-26 Hitachi Metals Ltd Precision filter

Also Published As

Publication number Publication date
JPS5756021A (en) 1982-04-03

Similar Documents

Publication Publication Date Title
US5498278A (en) Composite hydrogen separation element and module
US5931987A (en) Apparatus and methods for gas extraction
US2958391A (en) Purification of hydrogen utilizing hydrogen-permeable membranes
JP3705389B2 (en) Complex hydrogen separation elements and modules
US2961062A (en) Large surface area hydrogen permeation cell
US6183543B1 (en) Apparatus and methods for gas extraction
US5681373A (en) Planar solid-state membrane module
EP1317319B2 (en) Mixed conducting membranes for syngas production
KR101376082B1 (en) Oxidation reactor and oxidation process
US7658788B2 (en) Ion transport membrane module and vessel system with directed internal gas flow
US3534531A (en) Assembly of pure gas permeating separator
AU2001295502A1 (en) Mixed conducting membranes for syngas production
US3238704A (en) Diffusion purification of gases
AU2001274925A1 (en) Composite ceramic membrane oxygen separation method
JP2001050394A (en) Seal element, seal assembly, and sealing method between metallic member and ceramic member
EP1127606A1 (en) Membrane module for the separation of fluid mixtures
JP2020023488A (en) Manufacturing method of methanol
CN110921625A (en) Separation and recovery device for hydrogen and helium in purge gas of synthetic ammonia
JPH0125612B2 (en)
JP2021024801A (en) Method and device for producing alcohol
US20050200124A1 (en) High temperature joints for dissimilar materials
JPH06345405A (en) Hydrogen production device
Ohya et al. The separation of gaseous mixture with composite microporous glass membranes at high temperature
JP3197108B2 (en) Hydrogen production equipment
KR102213792B1 (en) A porous filter with a large amount of powder supported on metal or ceramics based structure and preparation method and use thereof