JPH01255774A - Electric fluid converting device - Google Patents

Electric fluid converting device

Info

Publication number
JPH01255774A
JPH01255774A JP8191988A JP8191988A JPH01255774A JP H01255774 A JPH01255774 A JP H01255774A JP 8191988 A JP8191988 A JP 8191988A JP 8191988 A JP8191988 A JP 8191988A JP H01255774 A JPH01255774 A JP H01255774A
Authority
JP
Japan
Prior art keywords
fluid passage
pressure
control
signal
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8191988A
Other languages
Japanese (ja)
Inventor
Masatoshi Yamada
正俊 山田
Masanobu Kimura
正信 木村
Satoru Matsushima
悟 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP8191988A priority Critical patent/JPH01255774A/en
Publication of JPH01255774A publication Critical patent/JPH01255774A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Driven Valves (AREA)

Abstract

PURPOSE:To enable fluid supply in high pressure and high flow rate as raising responsibility by operating a control valve with signal fluid pressure controlling by an electric acturator. CONSTITUTION:An orifice 5 is provided in a signal fluid passage 2, an outlet of this passage 2 is made in a nozzle hole 4 and a pressure fetching port 6 is provided between the orifice 5 and the nozzle hole 4. The nozzle hole 4 is opened and closed with a working piece 7 of an electric actuator 8. Again, a control valve 12 operating in opening and closing on movement of a valve body 14 due to pressure in a pressure chamber 16 is provided in a control fluid passage 9. Because the pressure chamber 16 is communicated to the pressure fetching port 6, pressure in the pressure chamber 16 is raised when the nozzle hole 4 is closed by the working piece 7 of the electric actuator 8 with electric signal, and thereby the control valve 12 is opened.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、電気信号によって流体を制御する電気流体変
換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an electrofluidic conversion device that controls fluid by electrical signals.

〈従来の技術〉 本発明者は、電気信号によって流体の圧力を制御する電
気流体変換装置を発明した。
<Prior Art> The present inventor has invented an electro-fluid converter that controls the pressure of a fluid using an electrical signal.

この電気流体変換装置は、特開昭62−37502号公
報に開示されているように、流体通路の途中に絞りを設
け、流体通路の出口を噴口に形成して、流体通路の絞り
と噴°口の間に圧力取出口を設け、電気信号に応じて作
動片が移動する電気アクチュエータを、その作動片が流
体通路の噴口を横断して開閉する位置に設け、電気アク
チュエータの作動片の移動によって流体通路の噴口を開
閉して流体通路の圧力取出口の圧力を制御する構成にし
ている。
As disclosed in Japanese Patent Application Laid-Open No. 62-37502, this electro-hydraulic converter has a throttle provided in the middle of a fluid passage, and an outlet of the fluid passage formed as a nozzle. A pressure outlet is provided between the ports, and an electric actuator whose actuating piece moves in response to an electric signal is provided at a position where the actuating piece crosses the spout of the fluid passage to open and close. The configuration is such that the pressure at the pressure outlet of the fluid passage is controlled by opening and closing the spout of the fluid passage.

〈発明が解決しようとする課題〉 ところが、上記の従来の電気流体変換装置においては、
電気アクチュエータの作動片によって制御する流体通路
の流量を多くすると、電気アクチュエータに電気信号が
入力してから流体通路の圧力取出「1の圧力が制御され
るまでの時間が長くなって、応答性が悪くなる。
<Problem to be solved by the invention> However, in the above-mentioned conventional electro-hydraulic converter,
When the flow rate of the fluid passage controlled by the actuating piece of the electric actuator is increased, the time from when an electric signal is input to the electric actuator until the pressure taken out from the fluid passage (1) is controlled becomes longer, resulting in a decrease in responsiveness. Deteriorate.

応答性を悪くしないためには、流体通路の噴口から噴出
させる流体の流量従って流体通路に供給する流体の圧力
に上限がある。また、流体通路の圧力取出「】の圧力は
、流体通路に供給する流体の圧力以下に限定される。
In order not to deteriorate responsiveness, there is an upper limit to the flow rate of the fluid ejected from the nozzle of the fluid passage, and therefore to the pressure of the fluid supplied to the fluid passage. Further, the pressure at the pressure outlet of the fluid passage is limited to a pressure equal to or lower than the pressure of the fluid supplied to the fluid passage.

従って、流体通路の圧力取出口の圧力は、可変範囲が狭
く、電気信号によって制御される流体圧力の範囲は狭い
Therefore, the variable range of the pressure at the pressure outlet of the fluid passage is narrow, and the range of fluid pressure controlled by the electrical signal is narrow.

本発明の目的は、上記のような従来の課題を解決するこ
とである。
An object of the present invention is to solve the conventional problems as described above.

く課題を解決するための手段〉 本発明は、従来の電気流体変換装置において、流体通路
の圧力取出口の圧力によって開閉操作される制御弁を設
け、この制御弁によって流体を開閉制御するものである
Means for Solving the Problems> The present invention provides a conventional electro-fluid converter with a control valve that is opened and closed by the pressure at the pressure outlet of the fluid passage, and controls the opening and closing of the fluid by this control valve. be.

即ち、本発明は、信号用流体通路の入口と出口の間に絞
りを設け、信号用流体通路の出口を噴口に形成して、信
号用流体通路の絞りと噴口の間に圧力取出口を設け。
That is, the present invention provides a constriction between the inlet and the outlet of the signal fluid passage, forms the outlet of the signal fluid passage as a spout, and provides a pressure outlet between the constriction of the signal fluid passage and the spout. .

電気信号に応じて作動片が移動する電気アクチュエータ
を、その作動片が信号用流体通路の噴口を横断して開閉
する位置に設け、 電気アクチュエータの作動片の移動によって信号用流体
通路の噴口を開閉して信号用流体通路の圧力取出口の圧
力を制御する構成にし、制御用流体通路に、圧力室の圧
力によって弁体が移動して開閉操作する制御弁を設け、
制御弁の圧力室に信号用流体通路の圧力取出口を接続し
て、信号用流体通路の圧力取出口の圧力によって制御弁
を開閉操作して制御用流体通路の流体を制御する構成に
したことを特徴とする電気流体変換装置である。
An electric actuator whose actuating piece moves in response to an electric signal is provided at a position where the actuating piece crosses the spout of the signal fluid passage to open and close it, and the movement of the actuating piece of the electric actuator opens and closes the spout of the signal fluid passage. to control the pressure at the pressure outlet of the signal fluid passage, and the control fluid passage is provided with a control valve whose valve body is moved to open and close by the pressure of the pressure chamber,
The pressure outlet of the signal fluid passage is connected to the pressure chamber of the control valve, and the pressure of the pressure outlet of the signal fluid passage is used to open and close the control valve to control the fluid in the control fluid passage. This is an electrofluidic transducer characterized by:

く作 用〉 本発明の電気流体変換装aにおいては、電気アクチュエ
ータに電気信号が入力すると、電気アクチュエータの作
動片が移動し、信号用流体通路の噴口が閉鎖又は開放し
、信号用流体通路の圧力取出口の圧力が上昇又は下降し
て制御用流体通路のVl g#弁の圧力室の圧力が上昇
又は下降し、’aha用流体通路の制御弁の弁体が移動
して制御用流体通路の制御弁が開放又は閉鎖し、制御用
流体通路の流体が制御される。
Function> In the electro-fluid converter a of the present invention, when an electric signal is input to the electric actuator, the actuating piece of the electric actuator moves, the nozzle of the signal fluid passage closes or opens, and the signal fluid passage is closed or opened. The pressure at the pressure outlet increases or decreases, and the pressure in the pressure chamber of the Vl g# valve in the control fluid passage increases or decreases, and the valve body of the control valve in the 'aha fluid passage moves, causing the control fluid passage to The control valve opens or closes to control the fluid in the control fluid passage.

〈発明の効果〉 本発明の電気流体変換装置においては、電気アクチュエ
ータの作動片の移動によって圧力取出口の圧力が変化す
る信号用流体通路の外に、信号用流体通路の圧力取出口
の圧力によって制御弁が作動する制御用流体通路を設け
ているので、応答性を高めるために、信号用流体通路の
噴口から噴出させる流体の流量を低く設定しても、制御
用流体通路に供給する流体の圧力ないし流量を高く設定
することができる。
<Effects of the Invention> In the electro-fluid converter of the present invention, in addition to the signal fluid passage in which the pressure at the pressure outlet changes with the movement of the operating piece of the electric actuator, there is a Since a control fluid passage is provided in which the control valve operates, even if the flow rate of the fluid ejected from the nozzle of the signal fluid passage is set low to improve responsiveness, the flow rate of the fluid supplied to the control fluid passage is low. The pressure or flow rate can be set high.

従って、制御用流体通路の流体の圧力ないし波賃は、可
変範囲が広く、電気信号によって制御される制御用流体
通路の流体の圧力ないし流量の範囲は広い。
Therefore, the pressure or flow rate of the fluid in the control fluid passage can be varied over a wide range, and the range of the pressure or flow rate of the fluid in the control fluid passage controlled by the electric signal is wide.

く第1実施例(第1図参照)〉 本例の電気流体変換装置は、第1図に示すように、基体
1に信号用流体通路2を設け、信号用流体通路2の入口
3と出口4の間に絞り5を設け、信号用流体通路2の出
口4を噴口に形成し、信号用流体通路2の絞り5と噴口
4の間に圧力板、出口6を設けている。
First Embodiment (See Figure 1)> As shown in Figure 1, the electro-hydraulic converter of this example has a signal fluid passage 2 provided in a base 1, and an inlet 3 and an outlet of the signal fluid passage 2. 4, an outlet 4 of the signal fluid passage 2 is formed into a spout, and a pressure plate and an outlet 6 are provided between the throttle 5 of the signal fluid passage 2 and the spout 4.

基体lには、電気信号に応じて作動片7が前後動する電
気アクチュエータ8を固定し、第1図に示すように、電
気アクチュエータ8を、その前側に突出した作動片7が
信号用流体通路2の噴口4を横断して開閉操作する位置
に配置している。
An electric actuator 8 whose actuating piece 7 moves back and forth in response to an electric signal is fixed to the base l, and as shown in FIG. It is arranged at a position where it crosses the nozzle 4 of No. 2 and is operated to open and close.

電気アクチュエータ8の作動片7の前後動によって信号
用流体通路2の噴口4を開閉操作して信号用流体通路2
の圧力取出口6の圧力を制御する構成にしている。
The signal fluid passage 2 is opened and closed by opening and closing the nozzle 4 of the signal fluid passage 2 by moving the operating piece 7 of the electric actuator 8 back and forth.
The configuration is such that the pressure at the pressure outlet 6 is controlled.

基体lには、第1図に示すように、制御用波体通路9を
設け、制御用流体通路9の入口10と出口11の間にJ
l g#弁12を設けている。
As shown in FIG. 1, the base l is provided with a control wave passage 9, and a J
A lg# valve 12 is provided.

制御弁12は、第1図に示すように、制御用流体通路9
を横断する弁室13にスプール形の弁体14を摺嵌し、
弁室13の一方の端部に螺旋ばね15を挿嵌して、螺旋
ばね15によって弁体14を弁室13の他方の端部側に
押動する構成にし、また、弁室13の他方の端部を圧力
室16に形成して、圧力室16の圧力によって弁体14
を螺旋ばね15に抗して弁室13の一方の端部側に押動
する構成にしている。
The control valve 12 has a control fluid passage 9 as shown in FIG.
A spool-shaped valve body 14 is slid into the valve chamber 13 that crosses the
A spiral spring 15 is inserted into one end of the valve chamber 13 so that the spiral spring 15 pushes the valve element 14 toward the other end of the valve chamber 13. The end portion is formed into a pressure chamber 16, and the pressure of the pressure chamber 16 causes the valve body 14 to be
is configured to be pushed toward one end of the valve chamber 13 against the helical spring 15.

制御弁12の弁室13の螺旋ばね15側の端面には、第
1図に示すように、大気に開放した排出路17を接続し
、制御弁12の弁体14が圧力室16側に移動すると、
弁体14によって制御用流体通路9の弁室13横断部分
が閉鎖して、制御用流体通路9の出口11が制御用流体
通路9の入口10から遮断して排出路17に連通し、ま
た、制御弁12の弁体14が螺旋ばね15側に移動する
と、制御用流体通路9の弁室13横断部分が開放して、
排出路17が弁体14によって閉鎖し、制御用流体通路
9の出口11が排出路17から遮断して制御用流体通路
9の入口10に連通する構成にしている。
As shown in FIG. 1, a discharge passage 17 open to the atmosphere is connected to the end surface of the valve chamber 13 of the control valve 12 on the side of the helical spring 15, and the valve body 14 of the control valve 12 is moved to the pressure chamber 16 side. Then,
A portion of the control fluid passage 9 that crosses the valve chamber 13 is closed by the valve element 14, so that the outlet 11 of the control fluid passage 9 is blocked from the inlet 10 of the control fluid passage 9 and communicated with the discharge passage 17. When the valve body 14 of the control valve 12 moves toward the helical spring 15, the portion of the control fluid passage 9 that crosses the valve chamber 13 opens.
The discharge passage 17 is closed by the valve body 14, and the outlet 11 of the control fluid passage 9 is cut off from the discharge passage 17 and communicated with the inlet 10 of the control fluid passage 9.

制御弁12の圧力室16には、第1図に示すように、信
号用流体通路2の圧力取出口6を接続して、信号用流体
通路2の圧力取出口6の圧力によって、制御弁12を開
閉操作して制御用流体通路9の流体を制御する構成にし
ている。
The pressure chamber 16 of the control valve 12 is connected to the pressure outlet 6 of the signal fluid passage 2, as shown in FIG. The structure is such that the fluid in the control fluid passage 9 is controlled by opening and closing the opening and closing operations.

本例の電気流体変換装置を使用する場合は、信号用流体
通路2の入口3に信号用流体供給源を接続し、また、制
御用流体通路9の入口lOに制御用流体供給源を接続し
、更に、制御用流体通路9の出口11に制御対象を接続
する。
When using the electro-fluid converter of this example, a signal fluid supply source is connected to the inlet 3 of the signal fluid passage 2, and a control fluid supply source is connected to the inlet lO of the control fluid passage 9. Furthermore, a controlled object is connected to the outlet 11 of the control fluid passage 9.

電気アクチュエータ8に電気信号が入力していないとき
には、第1図に示すように、電気アクチュエータ8の作
動片7が後退して信号用流体通路2の噴口4が開放し、
信号用流体通路2の圧力取出口6の圧力が低くなってい
る。
When no electric signal is input to the electric actuator 8, as shown in FIG. 1, the actuating piece 7 of the electric actuator 8 retreats and the nozzle 4 of the signal fluid passage 2 opens.
The pressure at the pressure outlet 6 of the signal fluid passage 2 is low.

従って、制御弁12の圧力室16の圧力が低くて、制御
弁12の弁体14が螺旋ばね15によって圧力室16側
に移動していて、制御用流体通路9の出口11が制御用
流体通路9の入口10から遮断して排出路17に連通し
、制御対象に、大気が連通し、制御用流体が供給されな
い。
Therefore, the pressure in the pressure chamber 16 of the control valve 12 is low, the valve body 14 of the control valve 12 is moved toward the pressure chamber 16 by the helical spring 15, and the outlet 11 of the control fluid passage 9 is closed to the control fluid passage. 9 is blocked from the inlet 10 and communicated with the discharge passage 17, the controlled object is communicated with the atmosphere and no control fluid is supplied.

その後、電気アクチュエータ8に電気信号が入力すると
、電気アクチュエータ8の作動片7が前進して信号用流
体通路2の噴口4に覆い被さり、信号用流体通路2の噴
口4の噴出抵抗が増大し、信号用流体通路2の圧力取出
口6の圧力が高くなる。
After that, when an electric signal is input to the electric actuator 8, the operating piece 7 of the electric actuator 8 moves forward and covers the nozzle 4 of the signal fluid passage 2, and the ejection resistance of the nozzle 4 of the signal fluid passage 2 increases. The pressure at the pressure outlet 6 of the signal fluid passage 2 increases.

すると、制御弁12の圧力室16の圧力が高くなって、
制御弁12の弁体14が螺旋ばね15に抗して螺旋ばね
15側に移動し、制御用流体通路9の出口11が排出路
17から遮断して制御用流体通路9の入口10に連通し
、制御対象に制御用流体が供給される。
Then, the pressure in the pressure chamber 16 of the control valve 12 increases,
The valve body 14 of the control valve 12 moves toward the helical spring 15 against the helical spring 15, and the outlet 11 of the control fluid passage 9 is blocked from the discharge passage 17 and communicated with the inlet 10 of the control fluid passage 9. , a control fluid is supplied to the controlled object.

即ち、電気アクチュエータ8に入力する電気信号に応じ
て、制御用流体通路9の出口11から流出する制御用流
体、従って、制御対象に供給される制御用流体が制御さ
れる。
That is, in accordance with the electric signal input to the electric actuator 8, the control fluid flowing out from the outlet 11 of the control fluid passage 9, and therefore the control fluid supplied to the controlled object, is controlled.

本例の電気流体変換装置においては、応答性を高めるた
めに、信号用流体通路2の噴口4から噴出させる信号用
流体の流量従って信号用流体通路2の入口3に供給する
信号用流体の圧力ないし流量を低く設定しても、制御用
流体通路9に供給する制御用流体の圧力ないし流量を高
く設定することができる。
In the electro-fluid converter of this example, in order to improve responsiveness, the flow rate of the signal fluid ejected from the spout 4 of the signal fluid passage 2, and the pressure of the signal fluid supplied to the inlet 3 of the signal fluid passage 2. Even if the flow rate is set low, the pressure or flow rate of the control fluid supplied to the control fluid passage 9 can be set high.

従って、制御用流体通路9の制御用流体の圧力ないし流
量は、可変範囲が広く、電気アクチュエータ8に入力す
る電気信号によって制御される制御用流体通路9の制御
用流体の圧力ないし流量の範囲は広い。
Therefore, the pressure or flow rate of the control fluid in the control fluid passage 9 has a wide variable range, and the range of the pressure or flow rate of the control fluid in the control fluid passage 9 that is controlled by the electric signal input to the electric actuator 8 is wide.

く第2実施例(第2図と第3図参照)〉本例の電気流体
変換装置は、前例のそれと比較すると、第2図に示すよ
うに、制御用流体通路9を開閉操作する制御弁21が異
なる。
Second Embodiment (See Figures 2 and 3)> Compared to the previous example, the electro-hydraulic converter of this example has a control valve that opens and closes the control fluid passage 9, as shown in Figure 2. 21 is different.

制御弁21は、第2図に示すように、基体lに2段径の
弁室22を設け、弁室22に2段径の弁体23を摺嵌し
、弁室22の小径端を制御用流体通路9に連通して、弁
体23の小径端を制御用流体通路9に突出し、弁室22
の大径端部に螺旋ばね24を挿嵌すると共に、弁室22
の大径端部を信号用流体通路2の圧力取出06に連通し
て圧力室25に形成している。
As shown in FIG. 2, the control valve 21 has a valve chamber 22 with a two-stage diameter in a base l, a valve body 23 with a two-stage diameter that is slidably fitted into the valve chamber 22, and controls the small diameter end of the valve chamber 22. The small diameter end of the valve body 23 projects into the control fluid passage 9, and the valve chamber 22
The spiral spring 24 is inserted into the large diameter end of the valve chamber 22.
The large diameter end portion of the signal fluid passage 2 is connected to the pressure outlet 06 of the signal fluid passage 2 to form a pressure chamber 25 .

信号用流体通路2の圧力取出口6の圧力が高くなると、
圧力室25の圧力が高くなって、圧力室25の圧力と螺
旋ばね24の弾性力によって弁体23を弁室22の小径
端側に押動して、弁体23の小径端によって制御用流体
通路9を閉鎖し、また、信号用流体通路2の圧力取出0
6の圧力が低くなると、圧力室25の圧力が低くなって
、制御用流体通路9の圧力によって弁体23を弁室22
の大径端部に押動して、制御用流体通路9を開放する構
成にしている。
When the pressure at the pressure outlet 6 of the signal fluid passage 2 increases,
The pressure in the pressure chamber 25 increases, and the pressure in the pressure chamber 25 and the elastic force of the helical spring 24 push the valve body 23 toward the small diameter end of the valve chamber 22, and the small diameter end of the valve body 23 releases the control fluid. The passage 9 is closed and the pressure of the signal fluid passage 2 is taken out 0.
6 becomes lower, the pressure in the pressure chamber 25 becomes lower, and the pressure in the control fluid passage 9 moves the valve body 23 into the valve chamber 22.
The control fluid passage 9 is opened by being pushed toward the large diameter end of the control fluid passage 9.

その他の点は、前例におけるのと同様であるので、第2
図に前例におけるのと同一の符号を付して説明を省略す
る。
The other points are the same as in the previous example, so the second
The same reference numerals as in the previous example are given to the figures, and the explanation will be omitted.

本例の電気流体変換装置を用いて内燃機関の吸気弁を開
閉操作する場合について説明する。
A case will be described in which the electro-hydraulic converter of this example is used to open and close an intake valve of an internal combustion engine.

内燃機関の吸気弁開閉機構は、第3図に示すように、シ
リンダへラド31内の吸気孔32に吸気弁33を装置し
、吸気弁33の弁軸34の端をシリンダへラド31の外
に突出して、弁軸34の突出端に嵌着した受皿35とシ
リンダへラド31の間に螺旋ばね36を嵌め込み、螺旋
ばね36によって吸気弁33を閉鎖する構成にしている
As shown in FIG. 3, the intake valve opening/closing mechanism for an internal combustion engine includes an intake valve 33 installed in an intake hole 32 in a cylinder rod 31, and an end of a valve shaft 34 of the intake valve 33 connected to the cylinder outside of the rod 31. A helical spring 36 is fitted between the cylinder head 31 and a saucer 35 that protrudes from the valve shaft 34 and is fitted onto the protruding end of the valve shaft 34, so that the intake valve 33 is closed by the helical spring 36.

シリンダへラド31に突設した基体37の面には、第3
図に示すように、圧力孔38を穿設し、圧力孔38にプ
ランジャ39を摺嵌して、プランジャ39の先端を弁軸
34の突出端に当接し、圧力孔38の基端に流体供給路
40を接続して、流体供給路40から圧力孔38に流体
が供給されると、プランジャ39が螺旋ばね36に抗し
て前進して吸気弁33が開放する構成にしている。
On the surface of the base 37 protruding from the cylinder Rad 31, a third
As shown in the figure, a pressure hole 38 is bored, a plunger 39 is slid into the pressure hole 38, and the tip of the plunger 39 is brought into contact with the protruding end of the valve shaft 34 to supply fluid to the base end of the pressure hole 38. When the passage 40 is connected and fluid is supplied from the fluid supply passage 40 to the pressure hole 38, the plunger 39 moves forward against the helical spring 36 and the intake valve 33 opens.

圧力孔38の周面には、第3図に示すように、流体排出
路41を接続し、流体供給路40と流体排出路41の間
に、流量制御弁42を介在した迂回路43を接続してい
る。
As shown in FIG. 3, a fluid discharge passage 41 is connected to the circumferential surface of the pressure hole 38, and a detour passage 43 with a flow control valve 42 interposed is connected between the fluid supply passage 40 and the fluid discharge passage 41. are doing.

吸気弁開閉機構の流体供給路40には、第3図に示すよ
うに、本例の第1TL気流体変換装fiAの制御用流体
通路9の出口11を接続し、第1電気流体変換装置Aの
制御用流体通路9の入口10に制御用流体供給源aを接
続し、第1電気流体変換装22Aの信号用流体通路2の
入口3に信号用流体供給源すを接続している。
As shown in FIG. 3, the outlet 11 of the control fluid passage 9 of the first TL air-fluid converter fiA of this example is connected to the fluid supply path 40 of the intake valve opening/closing mechanism, and the first electro-fluid converter A A control fluid supply source a is connected to the inlet 10 of the control fluid passage 9, and a signal fluid supply source a is connected to the inlet 3 of the signal fluid passage 2 of the first electro-fluid converter 22A.

吸気弁開閉機構の流体排出路41には、第3図に示すよ
うに、本例の第2TL気流体変換装2FBの制御用流体
通路9の入口10を接続し、第2Tfl気流体変換装置
Bの信号用流体通路2の入口3に信号用流体供給源すを
接続している。
As shown in FIG. 3, the fluid discharge passage 41 of the intake valve opening/closing mechanism is connected to the inlet 10 of the control fluid passage 9 of the second TL gas-fluid converter 2FB of this example, and the second Tfl gas-fluid converter B A signal fluid supply source is connected to the inlet 3 of the signal fluid passage 2.

そして、吸気弁開閉機構の吸気弁33が閉鎖している状
態で、第1.第2電気流体変換装置A。
Then, with the intake valve 33 of the intake valve opening/closing mechanism closed, the first. Second electrofluidic converter A.

Bの電気アクチュエータ8にそれぞれ電気信号を入力し
、第1.第2電気流体変換装21A、Hの制御弁21を
それぞれ閉鎖して、第1.第2電気流体変換装置A 、
Hの制御用流体通路9をそれぞれ遮断する。
Electric signals are input to the electric actuators 8 of the first and second electric actuators 8, respectively. The control valves 21 of the second electro-hydraulic converters 21A and 21H are respectively closed, and the control valves 21 of the second electro-hydraulic converters 21A and 21H are closed. second electro-hydraulic converter A,
The control fluid passages 9 of H are each shut off.

このような始動状態で、第1電気流体変換装こ゛  A
の電気アクチュエータ8に入力する電気信号を遮断する
In such a starting state, the first electro-hydraulic converter A
The electric signal input to the electric actuator 8 is cut off.

すると、第1Ttf、気流体変換装置Aの制御弁21が
開放し、第1電気流体変換装置Aの制御用流体通路9が
開通して、制御用流体供給源aの制御用流体が第1Tr
L気流体変換装こAの制御用流体通路9と吸気弁開閉機
構の流体供給路40を経て圧力孔38に流入し、プラン
ジャ39が螺旋ばね36に抗して前進を開始して吸気弁
33が開放作動を開始する。
Then, at the first Ttf, the control valve 21 of the gas-fluid converter A opens, the control fluid passage 9 of the first electro-fluid converter A opens, and the control fluid of the control fluid supply source a flows into the first Tr.
It flows into the pressure hole 38 through the control fluid passage 9 of the L air-fluid converter A and the fluid supply passage 40 of the intake valve opening/closing mechanism, and the plunger 39 starts moving forward against the helical spring 36 to close the intake valve 33. starts the opening operation.

吸気弁33が開放作動を開始した後、第171t%流体
変換装2ffiAの電気アクチュエータ8に電気信号を
入力する。
After the intake valve 33 starts opening, an electric signal is input to the electric actuator 8 of the 171 t% fluid conversion device 2ffiA.

すると、第1′FL気流体変換装fiAの制御弁21が
閉鎖して、第1電気流体変換装置71Aの制御用流体通
路9が遮断し、プランジャ39の前進が停止して、吸気
弁33がその時の開放量で開放状態になる。
Then, the control valve 21 of the first FL air-fluid converter fiA closes, the control fluid passage 9 of the first electro-fluid converter 71A is cut off, the plunger 39 stops moving forward, and the intake valve 33 closes. The opening amount at that time becomes the open state.

その後、第2電気流体変換装置Bの電気アクチュエータ
8に入力する″tT!、気信号を遮断する。
Thereafter, the "tT!" air signal input to the electric actuator 8 of the second electro-hydraulic converter B is cut off.

すると、第2電気流体変換装g!iBの制御弁21が開
放して、第27ff気流体変換装置Bの制御用流体通路
9が開通し、プランジャ39が螺旋ばね36によって後
退を開始して、吸気弁33が閉鎖動作を開始し、圧力孔
38の制御用流体が流体排出路41と第2電気流体変換
装置Bの制御用流体通路9を経て排出される。
Then, the second electro-hydraulic converter g! The control valve 21 of iB opens, the control fluid passage 9 of the 27th ff air-fluid converter B opens, the plunger 39 starts to retreat by the helical spring 36, and the intake valve 33 starts a closing operation, The control fluid in the pressure hole 38 is discharged via the fluid discharge path 41 and the control fluid path 9 of the second electro-hydraulic converter B.

吸気弁33の閉鎖動作が終了間近になって、後退中のプ
ランジャ39が圧力孔38周面の流体排出路41開口端
を閉鎖すると、圧力孔38の制御用流体が流量制御弁4
2付きの迂回路43を経て第2電気流体変換装置Bの制
御用流体通路9に流出し、吸気弁33の閉鎖速度が流量
制御弁42に予め設定した遅い速度になって、吸気弁3
3が静かに閉鎖する。
When the closing operation of the intake valve 33 is nearing completion and the retreating plunger 39 closes the open end of the fluid discharge path 41 on the circumferential surface of the pressure hole 38, the control fluid in the pressure hole 38 flows into the flow rate control valve 4.
It flows out into the control fluid passage 9 of the second electro-hydraulic converter B through the detour path 43 with 2, and the closing speed of the intake valve 33 becomes a slow speed preset to the flow rate control valve 42, and the intake valve 3
3 closes quietly.

この内燃機関の吸気弁開閉機構においては、制御用流体
供給源aから第1電気流体変換装置Aの制御用流体通路
9に供給する制御用流体、即ち、圧力孔38に流入して
プランジャ39を押動する1TJIW用流体の圧力と流
量を高く設定して、吸気弁33を高速で開放することが
できる。
In this intake valve opening/closing mechanism for an internal combustion engine, the control fluid supplied from the control fluid supply source a to the control fluid passage 9 of the first electro-hydraulic converter A, that is, flows into the pressure hole 38 and pushes the plunger 39. By setting the pressure and flow rate of the 1TJIW fluid to be pushed high, the intake valve 33 can be opened at high speed.

く第3実施例(第4図乃至第6図参照)〉本例の電気流
体変換装置は、第1実施例のそれと比較すると、第4図
に示すように、信号用流体通路2の噴口4を開閉操作す
る電気アクチュエータ51が異なる。
Third Embodiment (Refer to FIGS. 4 to 6)> Compared to the first embodiment, the electro-hydraulic converter of this embodiment has a large diameter of the nozzle 4 of the signal fluid passage 2, as shown in FIG. The electric actuator 51 for opening and closing is different.

電気アクチュエータ51は、第4図と第5図に示すよう
に、電圧の印加により伸張又は収縮するセラミックの長
方形の圧電板52と、湾曲して復元する金属の長方形の
弾性板53を重合して接合した重合梁の圧電素子であり
、電気信号を入力する圧電素子51の基端を基体lに固
定し、電気信号の入力によって撓む圧電素子51の先端
即ち作動片7が信号用流体通路2の噴口4を横断して開
閉操作する位置に配置している。
As shown in FIGS. 4 and 5, the electric actuator 51 is composed of a ceramic rectangular piezoelectric plate 52 that expands or contracts when a voltage is applied, and a metal rectangular elastic plate 53 that bends and restores its original shape. The base end of the piezoelectric element 51, which is a piezoelectric element made of joined overlapping beams and inputs an electric signal, is fixed to the base l, and the tip of the piezoelectric element 51, that is, the actuating piece 7, which is bent by the input of an electric signal, is connected to the signal fluid passage 2. It is placed at a position where it can be opened and closed across the nozzle 4.

また、本例の電気流体変換装置は、第4図に示すように
、信号用流体通路2の入口3と制御用流体通路9の入口
10を共通にしている。
Further, in the electro-hydraulic converter of this example, as shown in FIG. 4, the inlet 3 of the signal fluid passage 2 and the inlet 10 of the control fluid passage 9 are shared.

本例の電気流体変換装置においては、信号用流体通路2
と制御用流体通路9の共通の入口3,10に供給する流
体の圧力ないし流量を高く設定して、信号用流体通路2
の絞り5と噴口4の抵抗を高く設定すると、信号用流体
通路2の噴口4から噴出する信号用流体の流量が少なく
なって、応答性が高くなり、また、制御用流体通路9に
供給される制御用流体の圧力ないし流量が高くなって、
制御用流体の制御範囲が広くなる。
In the electro-fluid converter of this example, the signal fluid passage 2
The pressure or flow rate of the fluid supplied to the common inlets 3 and 10 of the control fluid passage 9 is set high, and the signal fluid passage 2 is
When the resistance of the throttle 5 and the nozzle 4 is set high, the flow rate of the signal fluid ejected from the nozzle 4 of the signal fluid passage 2 decreases, increasing responsiveness, and the flow rate of the signal fluid ejected from the nozzle 4 of the signal fluid passage 2 increases. The pressure or flow rate of the control fluid increases,
The control range of the control fluid becomes wider.

その他の点は、第1実施例におけるのと同様であるので
、第4図に第1実施例におけるのと同一の符号を付して
説明を省略する。
The other points are the same as in the first embodiment, so the same reference numerals as in the first embodiment are given to FIG. 4, and the explanation will be omitted.

本例の電気流体変換装置を用いて内燃機関の燃料噴射弁
を開閉操作する場合について説明する。
A case will be described in which the electro-hydraulic converter of this example is used to open and close a fuel injection valve of an internal combustion engine.

燃料噴射弁は、第6図に示すように、弁筒55に大径の
燃料通路56と小径の軸孔57を連通して設け、軸孔5
7の先端を弁筒55の先端に開口して、弁筒55の先端
に円錐面状の弁座58を形成している。
As shown in FIG. 6, the fuel injection valve has a large-diameter fuel passage 56 and a small-diameter shaft hole 57 in communication with each other in a valve cylinder 55.
7 is opened at the tip of the valve cylinder 55, and a conical valve seat 58 is formed at the tip of the valve cylinder 55.

軸孔57には、第6図に示すように、2段径の弁軸59
を挿入して弁軸59の大径部を摺嵌し、弁軸59の小径
部の先端に連設した円錐体状の弁体60を弁座58に嵌
合し、弁軸59の大径部の基端を燃料通路56に突出し
、弁軸59の大径部周面の切欠部61を経て燃料通路5
6を軸孔57に連通している。
As shown in FIG. 6, the shaft hole 57 has a two-stage diameter valve shaft 59.
The large diameter portion of the valve stem 59 is inserted into the large diameter portion of the valve stem 59, and the conical valve body 60 connected to the tip of the small diameter portion of the valve stem 59 is fitted into the valve seat 58. The proximal end of the valve shaft 59 protrudes into the fuel passage 56 and enters the fuel passage 5 through the notch 61 on the circumferential surface of the large diameter part of the valve shaft 59.
6 is communicated with the shaft hole 57.

弁軸59の大径部の基端に取り付けた受皿62と燃料通
路56の先端面の間には、第6図に示すように、螺旋ば
ね63を嵌め込み、螺旋ばね63によって弁体60を弁
座58に圧接して、軸孔57の先端開口を閉鎖している
As shown in FIG. 6, a helical spring 63 is fitted between the saucer 62 attached to the proximal end of the large diameter portion of the valve shaft 59 and the distal end surface of the fuel passage 56, and the helical spring 63 causes the valve body 60 to open. The tip opening of the shaft hole 57 is closed by pressing against the seat 58.

燃料通路56に燃料が供給されると、燃料通路56の燃
料が弁軸59の大径部周面の切欠部61を経て軸孔57
に流入し、燃料の圧力によって弁軸59が螺旋ばね63
に抗して前進し、弁体6゜が弁座58から離れて、軸孔
57の先端開口が開放し、軸孔57の開放した先端開口
から燃料が噴射される構成にしている。
When fuel is supplied to the fuel passage 56, the fuel in the fuel passage 56 passes through the notch 61 on the circumferential surface of the large diameter part of the valve shaft 59 and enters the shaft hole 57.
The pressure of the fuel causes the valve shaft 59 to release the helical spring 63.
The valve body 6 degrees moves forward against the valve seat 58, and the tip opening of the shaft hole 57 opens, and fuel is injected from the open tip opening of the shaft hole 57.

燃料噴射弁の燃料通路56には、第6図に示すように、
本例の電気流体変換装置の制御用流体通路9の出口11
を接続し、本例の電気流体変換装置の信号用流体通路2
と制御用流体通路9の共通の入口3.lOに燃料供給源
Cを接続している。
In the fuel passage 56 of the fuel injection valve, as shown in FIG.
Outlet 11 of the control fluid passage 9 of the electro-hydraulic converter of this example
and connect the signal fluid passage 2 of the electro-hydraulic converter of this example.
and a common inlet of the control fluid passage 9 3. A fuel supply source C is connected to lO.

本例の電気流体変換装置の電気アクチュエータ即ち圧電
素子51に電気信号が入力すると、圧電未子51先端の
作動片7が撓んで信号用流体通路2の噴口4に覆い被さ
り、制御弁12が開放し、M制御用流体通路9が開通し
て、燃料供給源Cの燃料が制御用流体通路9を経て燃料
噴射弁の燃料通路56に供給され、軸孔57の先端開口
が開放して、軸孔57の先端開口から燃料が噴射される
When an electric signal is input to the electric actuator, that is, the piezoelectric element 51 of the electro-fluid converter of this example, the actuating piece 7 at the tip of the piezoelectric element 51 bends and covers the nozzle 4 of the signal fluid passage 2, and the control valve 12 is opened. Then, the M control fluid passage 9 opens, fuel from the fuel supply source C is supplied to the fuel passage 56 of the fuel injection valve via the control fluid passage 9, and the tip opening of the shaft hole 57 opens, and the shaft Fuel is injected from the opening at the tip of the hole 57.

圧′i1!素子51に入力する電気信号が遮断されると
1作動片7が復元して、信号用流体通路2の噴口4が開
放し、制御弁12が閉鎖して、制御用流体通路9が遮断
し、燃料供給源Cの燃料が燃料噴射弁の燃料通路56に
供給されず、軸孔57の先端開口が閉鎖し、燃料の噴射
が停止する。
Pressure'i1! When the electric signal input to the element 51 is cut off, the first operating piece 7 is restored, the nozzle 4 of the signal fluid passage 2 is opened, the control valve 12 is closed, and the control fluid passage 9 is shut off. Fuel from the fuel supply source C is not supplied to the fuel passage 56 of the fuel injection valve, the opening at the tip of the shaft hole 57 is closed, and fuel injection is stopped.

この燃料噴射弁においては、燃料を高い応答性で高い圧
力で噴射することができる。
This fuel injection valve can inject fuel with high responsiveness and high pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の第1実施例の電気流体変換装この断
面図である。 第2図は、第2実施例の″:rt、気流体変換装置の断
面図である。 第3図は、回倒の電気流体変換装置を用いた内燃機関の
吸気弁開閉機構の断面図である。 第4図は、第3実施例の電気流体変換装置の断面図であ
る。 第5図は、回倒の電気流体変換装置の電気アクチュエー
タの斜視図である。 第6図は、回倒の電気流体変換装置を用いた内燃機関の
燃料噴射弁の断面図である。 2:信号用流体通路  3:入 ロ 4:出ロ、噴口    5:絞 リ 6:圧力取出口    7:作動片 8:電気アクチュエータ 9:制御用流体通路 12:制御弁 14:弁 体     16:圧力室 2に制御弁     23:弁 体 25:圧力室 51:電気アクチュエータ、圧TrL素子特許出願人 
株式会社豊田中央研究所 代  理  人   弁理士  水  野   桂第1
図 オZ図 オ6図
FIG. 1 is a sectional view of an electro-hydraulic converter according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of an air-fluid converter according to the second embodiment. FIG. Fig. 4 is a cross-sectional view of the electro-hydraulic transducer of the third embodiment. Fig. 5 is a perspective view of the electric actuator of the electro-hydraulic transducer of the rotating type. 2 is a sectional view of a fuel injection valve for an internal combustion engine using the electro-hydraulic converter. 2: Signal fluid passage 3: Inlet 4: Outlet, nozzle 5: Throttle 6: Pressure outlet 7: Actuation piece 8 : Electric actuator 9: Control fluid passage 12: Control valve 14: Valve body 16: Control valve in pressure chamber 2 23: Valve body 25: Pressure chamber 51: Electric actuator, pressure TrL element patent applicant
Toyota Central Research Institute Co., Ltd. Patent Attorney Katsura Mizuno No. 1
Diagram OZ Diagram O6 Diagram

Claims (1)

【特許請求の範囲】  信号用流体通路の入口と出口の間に絞りを設け、信号
用流体通路の出口を噴口に形成して、信号用流体通路の
絞りと噴口の間に圧力取出口を設け、 電気信号に応じて作動片が移動する電気アクチュエータ
を、その作動片が信号用流体通路の噴口を横断して開閉
する位置に設け、 電気アクチュエータの作動片の移動によって信号用流体
通路の噴口を開閉して信号用流体通路の圧力取出口の圧
力を制御する構成にし、 制御用流体通路に、圧力室の圧力によって弁体が移動し
て開閉操作する制御弁を設け、 制御弁の圧力室に信号用流体通路の圧力取出口を接続し
て、信号用流体通路の圧力取出口の圧力によって制御弁
を開閉操作して制御用流体通路の流体を制御する構成に
したことを特徴とする電気流体変換装置。
[Claims] A throttle is provided between the inlet and the outlet of the signal fluid passage, the outlet of the signal fluid passage is formed as a spout, and a pressure outlet is provided between the throttle of the signal fluid passage and the spout. , an electric actuator whose actuating piece moves in response to an electric signal is provided at a position where the actuating piece crosses the nozzle of the signal fluid passage to open and close, and the movement of the actuating piece of the electric actuator opens the nozzle of the signal fluid passage. The control fluid passage is configured to open and close to control the pressure at the pressure outlet of the signal fluid passage, and the control fluid passage is provided with a control valve whose valve body moves to open and close according to the pressure in the pressure chamber. An electric fluid characterized in that the pressure outlet of the signal fluid passage is connected and the control valve is opened and closed by the pressure of the pressure outlet of the signal fluid passage to control the fluid in the control fluid passage. conversion device.
JP8191988A 1988-04-01 1988-04-01 Electric fluid converting device Pending JPH01255774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8191988A JPH01255774A (en) 1988-04-01 1988-04-01 Electric fluid converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8191988A JPH01255774A (en) 1988-04-01 1988-04-01 Electric fluid converting device

Publications (1)

Publication Number Publication Date
JPH01255774A true JPH01255774A (en) 1989-10-12

Family

ID=13759863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8191988A Pending JPH01255774A (en) 1988-04-01 1988-04-01 Electric fluid converting device

Country Status (1)

Country Link
JP (1) JPH01255774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081753A1 (en) * 2000-04-20 2001-11-01 Bosch Automotive Systems Corporation High-pressure fuel feed pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081753A1 (en) * 2000-04-20 2001-11-01 Bosch Automotive Systems Corporation High-pressure fuel feed pump

Similar Documents

Publication Publication Date Title
JP4358776B2 (en) Servo valve for controlling the fuel injector of an internal combustion engine
CA1040182A (en) Electromagnetic two-way valve
ITRM940729A1 (en) &#34;FUEL INJECTOR NOZZLE FOR INTERNAL COMBUSTION ENGINE&#34;
JP2001505976A (en) Fuel injection device for internal combustion engines
JP2005517858A (en) Fuel injection valve for internal combustion engine
EP0994248A3 (en) Fuel injector with rate shaping control through piezoelectric nozzle lift
CA2211072A1 (en) Combustion appliance valve assembly
DE58900113D1 (en) ELECTROHYDRAULIC OR PNEUMATIC ACTUATOR.
JPS59165858A (en) Electromagnetic control injection system for diesel engine
JPH02221673A (en) Fuel injection device
JPS63143361A (en) Controlling method for injector valve
US6202670B1 (en) Piezoelectric actuated poppet value to modulate pilot pressures and control main valve activation
JPH01255774A (en) Electric fluid converting device
CZ20013211A3 (en) Fuel injection nozzle
JP2003120464A (en) Valve for controlling liquid
JP3764608B2 (en) Combustion gas control device for rocket engine
JP2004503710A (en) Fuel injection device used for internal combustion engine
EP1233152B1 (en) Electrohydraulic device for operating the valves of a combustion engine
US6736331B2 (en) Valve for controlling fluids
WO2001059289A3 (en) Fuel injection valve
JPH0542296Y2 (en)
JP2003521616A (en) Injection nozzle
JPH0224961Y2 (en)
JP2005520966A (en) Fuel injection device with 3-port 3-position valve
JP3891866B2 (en) Fuel injection valve