JPH0125482B2 - - Google Patents

Info

Publication number
JPH0125482B2
JPH0125482B2 JP60039410A JP3941085A JPH0125482B2 JP H0125482 B2 JPH0125482 B2 JP H0125482B2 JP 60039410 A JP60039410 A JP 60039410A JP 3941085 A JP3941085 A JP 3941085A JP H0125482 B2 JPH0125482 B2 JP H0125482B2
Authority
JP
Japan
Prior art keywords
polymerization
copolymer
conversion rate
monomer
polymerization conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60039410A
Other languages
Japanese (ja)
Other versions
JPS61197613A (en
Inventor
Akira Nakada
Naoki Yamamoto
Makoto Uchida
Yutaka Toyooka
Kazuo Kishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP3941085A priority Critical patent/JPS61197613A/en
Publication of JPS61197613A publication Critical patent/JPS61197613A/en
Publication of JPH0125482B2 publication Critical patent/JPH0125482B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は耐熱性共重合体の製造方法、特にα−
アルキル置換芳香族ビニル単量体とシアン化ビニ
ル単量体を必須成分とする耐熱性共重合体の製造
方法に関する。 (従来の技術) 耐衝撃性に優れた熱可塑性樹脂として、今日
ABS樹脂、ハイインパクトポリスチレン、AAS
樹脂、AES樹脂等で代表されるゴム変性熱可塑
性樹脂が広く使用されている。 しかしながら、高い熱変形温度を必要とする分
野では、これらの樹脂は耐熱性に欠けているた
め、比較的高温下での使用に制限があつた。特に
ABS樹脂の耐熱性を改良する方法が種々提案さ
れており、例えばα−メチルスチレンとアクリロ
ニトリルからなる共重合体をブレンドすることに
より優れた耐熱性を有する樹脂組成物とすること
が特公昭35−18194号公報、特公昭57−603733号
公報、特公昭58−23810号報等に述べられている。 (発明が解決しようとする問題点) しかしながら、ABS樹脂の耐熱性を向上させ
る目的で、それにブレンドするα−アルキル置換
芳香族ビニルとシアン化ビニルとの共重合体を製
造する場合、単量体混合物中のα−アルキル置換
芳香族ビニル単量体の量を増すと従来技術では最
終到達重合転化率が低くなる傾向にあり、そのた
めに得られる共重合体中に未反応の単量体が残存
することとなる。しかも未反応の単量体が存在す
る場合には得られる共重合体の耐熱性を低下させ
るため残存単量体を除去する必要があつた。 この多量の残存単量体を除去するためには得ら
れた共重合を押出機によりペレツト化する際に、
スクリユー回転数の低下、高真空ベントの使用あ
るいはシリンダー温度の上昇等の手段が一般的に
講じられる。しかしながら、かかる方法は生産性
の低下や生産コストの上昇をもたらす。またシリ
ンダー温度の過度の上昇はかかる共重合体の熱分
解を生じ、逆に残存単量体をより増加させること
になり、結果的に耐熱性の低下を招くことにな
る。さらにかかる共重合体をABS樹脂等にブレ
ンドして押出成形する場合にシリンダー温度の過
度の上昇はゴム成分の劣化をきたし、良好な耐衝
撃性を有する樹脂が得られにくいという欠点を有
する。 (問題点を解決するための手段) 本発明者らは上述した如き現状に鑑み鋭意検討
した結果、少なくともα−アルキル置換芳香族ビ
ニル単量体およびシアン化ビニル単量体を乳化重
合して共重合体を製造するに際して、重合転化率
が少なくとも30%になるまで重合系内のPHを特定
範囲に保つことにより上述した如き問題点を解決
し得ることを見出し本発明に到達した。 本発明の要旨とするところは、α−アルキル置
換芳香族ビニル単量体70〜90重量%およびシアン
化ビニル単量体30〜10重量%よりなる単量体混合
物を乳化重合して共重合体を製造するに際して、
該単量体混合物の重合転化率が少なくとも30%に
なる迄重合系内のPHを、塩基性化合物の連続的も
しくは断続的な添加により、9.5〜11.5の範囲に
保つて重合することを特徴とする耐熱性共重合体
の製造方法である。 本発明を実施するに際して用いるα−アルキル
置換芳香族ビニル単量体としては、例えばα−メ
チルスチレン、α−エチルスチレンあるいはハロ
ゲンもしくはアルキル核置換基を有するα−メチ
ルスチレン等が挙げられ、これらは単独でまたは
2種以上混合して用いられるが、好ましくはα−
メチルスチレンである。 α−アルキル置換芳香族ビニル単量体の使用量
は全単量体中70重量%以上用いるのが好ましく、
70重量%未満では得られる共重合体の耐熱性が低
下する傾向にある。また90重量%を超えて用いて
も高重合転化率での共重合体を得ることが難しく
なる傾向にある。 またシアン化ビニル単量体としては、例えばア
クリロニトリル、メタクリロニトリル、エタクリ
ロニトリル等が挙げられ、これらは単独でまたは
2種以上混合して用いられるが、好ましくはアク
リロニトリルである。 シアン化ビニル単量体の使用量は全単量体中10
重量%以上用いるのが好ましく、10重量%未満で
は最終到達重合転化率が低下する傾向にある。ま
た40重量%を超えて用いると得られる共重合体が
加熱により着色しやすくなり、また物理的性質の
低下を招きやすい傾向にある。 さらに本発明においては上記α−アルキル置換
芳香族ビニル単量体とシアン化ビニル単量体の外
にこれらと共重合可能な他のビニル単量体を共重
合することもできる。これらと共重合可能な他の
ビニル単量体としては、例えばN−フエニルマレ
イミド、マレイミド等のマレイミド系単量体、ア
クリル酸、メタクリル酸、アクリル酸エステル、
メタクリル酸エステル等のアクリル酸系単量体、
ならびにフマロニトリル、アセナフチレン等が挙
げられ、これらを単独または2種以上混合して用
いることができる。これら共重合可能な他のビニ
ル単量体は任意成分であるが、その使用量は全単
量体中20重量%程度迄が好ましい。 本発明において最も重要なことは乳化重合に際
して重合転化率が少なくとも30%になる迄重合系
内のPHを9.5〜11.5の範囲に保つて重合すること
である。即ち重合開始に先立ち乳化剤、重合開始
助剤等の単量体以外の先仕込み成分を十分溶解し
た時点で重合系内のPHを9.5〜11.5の範囲となる
ように塩基性化合物を添加してPHを調整する。し
かる後単量体を仕込み重合を開始する。重合の進
行に従つて重合系内のPHが低下してくるが、重合
転化率が少なくとも30%になる迄重合系内のPHを
9.5〜11.5の範囲に保つようさらに塩基性化合物
を添加することが重要なことである。なお塩基性
化合物の添加方法は特に制限はなく、連続的にも
しくは断続的に添加してよい。 重合転化率が30%未満の状態で重合系内のPHが
9.5未満では重合開始剤の分解速度の低下を招き
重合速度の低下、最終到達重合転化率の低下を生
ずる傾向にある。また重合転化率が30%未満の状
態で重合系内のPHが11.5を超えると重合開始助剤
等の急速な分解を招き円滑な重合の進行が阻害さ
れ最終到達重合転化率の低下を生ずる傾向にある
のでそれぞれ好ましくない。 本発明の実施に際しては上記重合系内のPHを調
整する目的で添加される塩基性化合物は通常PHの
調整に用いられるものが使用することができ、好
ましいものとしては水酸化ナトリウム、水酸化カ
リウム、等が挙げられる。 乳化重合は通常の方法によつて実施することが
できる。即ち通常公知のアニオン系乳化剤、重合
開始剤、重合開始助剤、重合度調節剤を適宜使用
することができ、それらの種類および添加量によ
いては特に制限はない。また重合終了後、常法に
より凝固し、目的の共重合体粉を得る。 以上のような方法によつて得られた共重合体は
高重合転化率で、しかも残存単量体が極めて少な
く、且つ耐熱性に極めて優れるものであり単独で
使用することも可能であるが、他の重合体とブレ
ンドして使用してもよい。ブレンドする相手の重
合体は、使用目的に応じて適宜選択することがで
きるが、ABS樹脂やAAS樹脂、AES樹脂のよう
なゴム成分を含有するゴム変性グラフト共重合体
とブレンドすることにより耐熱性に優れた耐衝撃
性熱可塑性樹脂組成物が得られる。 (実施例) 以下実施例により本発明を具体的に説明する。
なお、各実施例および参考例中「部」とあるのは
「重量部」を表わす。また各種測定法は下記によ
つた。 PHの測定: 下記指示薬を紙に含浸させた試験紙を用い
て比色法により測定した。 PH測定範囲 フエノールレツド 6.8〜 8.4 チモールブルー 8.0〜 9.6 フエノールフタレイン・チモノールフタレイン
混合 9.6〜10.0 ナイルブルー 10.0〜11.0 アリザリンエローR 10.2〜12.0 トロペオリンO 11.0〜13.0 重合途中の重合転化率: 重合途中に採取したラテツクスをイソプロパ
ノールで凝固し固形分より算出した。 最終到達重合転化率: ガスクロマトグラフイー法により残存する単
量体の量を定量して算出した。 ペレツト中の残存単量体量: 重合して得られた共重合体粉を押出成形して
得たペレツトをジメチルホルムアミドに溶解し
た後ガスクロマトグラフイー法により残存する
単量体の量を定量して算出した。 ビカツト軟化温度: JISK−7206 B法(荷重5Kg)により測定し
た。 ノツチ付アイゾツド衝撃強度: JISK−6871により測定した。 実施例 1 容量5の撹拌機付き反応器に次の物質を仕込
んだ。 水 200 部 ラウリン酸カリウム 2.5 部 デキストローズ 0.5 部 硫酸第一鉄(FeSO4・7H2O) 0.005部 ピロ燐酸ナトリウム 0.1 部 上記物質を仕込んだ時点でのPH10.0であつた。
これに水酸化カリウム0.01部を添加したところ系
のPHは10.8迄上昇した。 次に窒素気流中で60℃に加熱撹拌した後、α−
メチルスチレン80部およびアクリロニトリル4部
を仕込み、十分乳化させた後クメンヒドロペルオ
キシド0.5部を添加し、続いてアクリロニトリル
16部を連続的に2時間滴下した。このアクリロニ
トリルを滴下中以下の通り重合転化率および重合
系のPHを適時測定し水酸化カリウムを添加しPH調
整した。 即ち重合転化率10%の時重合系のPHが9.5%に
なつたので水酸化カリウム0.01部を水0.5部に溶
解して添加したところ重合系のPHは1.04迄上昇し
た。 重合転化率18%の時重合系のPHが9.6となつた
ので水酸化カリウム0.01部を水0.5部に溶解して
添加したところ重合系のPHは10.4迄上昇した。重
合転化率27%の時重合系のPHが9.5部となつたの
で水酸化カリウム0.01部を水0.5部に溶解して添
加したところ重合系のPHは10.3迄上昇した。重合
転化率30%の時の重合系のPHは10.0であつた。 アクリロニトリルの滴下終了後、さらに60℃で
1時間撹拌を続けた後、重合を終了した。重合終
了時の最終到達重合転化率は97%であつた。 生成した共重合体ラテツクスを1%硫酸マグネ
シウム水溶液で凝固し、洗浄、乾燥して白色粉末
状の共重合体を得た。 この白色粉末状の共重合体を25m/m押出機に
よりシリンダー温度230℃、ベント圧40mmHg(絶
対圧)で押出してペレツト化した。ペレツト中の
残存単量体量を測定したところα−メチルスチレ
ン0.03%、アクリロニトリル0%であつた。 上記ペレツトをスクリユー式射出成形機(シリ
ンダー温度230℃、金型温度60℃)により射出成
形してビカツト軟化温度測定試験片を作成した。
ビカツト軟化温度は134℃であつた。 実施例 2 PHの調整方法を下記の方法とする以外は実施例
1と同じ条件で重合、凝固、ペレツト化および成
形を行つた。重合開始前の系のPHは10.0であつ
た。 PHの調整方法は水酸化カリウム0.04部を水1部
に溶解して重合開始の時点から30分間にわたり連
続滴下した。重合転化率10%および20%での重合
系のPHはそれぞれ10.3、10.2であつた。また水酸
化カリウム水溶液滴下終了時の重合転化率は33
%、重合系のPHは10.2であつた。重合終了時の最
終到達重合転化率は8%であつた。またペレツト
中の残存単量体量を測定したところα−メチルス
チレン0.03%、アクリロニトリル0%であつた。
さらにビカツト軟化温度は134℃であつた。 比較例 1 水酸化カリウムによる重合開始前および重合途
中のPH調整を行わなかつた以外は実施例1と同じ
条件で重合、凝固、ペレツト化および成形を行つ
た。この場合では重合開始前の系のPHは10.0であ
つた。また重合転化率10%での重合系のPHは9.2、
重合転化率20%での重合系のPHは8.8、重合転化
率30%での重合系のPHは8.4であつた。 最終到達重合転化率は83%、ペレツト中の残存
単量体量を測定したところα−メチルスチレン
0.9%、アクリロニトリル0.2%、ビカツト軟化温
度は121℃であつた。 実施例 3〜8 実施例1または2の条件下で乳化剤の種類、単
量体の仕込み組成量を変更する以外は実施例1ま
たは2と同じ条件で重合、凝固、ペレツト化およ
び成形を行つた。なおPH調整方法が逐次添加のも
のは実施例1と同じ要領で、また連続添加のもの
は実施例2と同じ要領で行つた。これらの結果を
表1に示す。 比較例 2〜6 実施例1の条件の内乳化剤の種類および単量体
の仕込み組成量を変更して重合を行つた。但し重
合開始前の系のPHを水酸化カリウム水溶液を用い
て表2に示すように調整し、重合中の系のPH調整
は行わなかつた。 これらの結果を表2に示す。
(Industrial Application Field) The present invention relates to a method for producing a heat-resistant copolymer, especially α-
The present invention relates to a method for producing a heat-resistant copolymer containing an alkyl-substituted aromatic vinyl monomer and a vinyl cyanide monomer as essential components. (Conventional technology) Today, as a thermoplastic resin with excellent impact resistance,
ABS resin, high impact polystyrene, AAS
Rubber-modified thermoplastic resins such as resins and AES resins are widely used. However, in fields that require high heat distortion temperatures, these resins lack heat resistance, which limits their use at relatively high temperatures. especially
Various methods have been proposed to improve the heat resistance of ABS resins. For example, it has been proposed that a resin composition with excellent heat resistance be obtained by blending a copolymer consisting of α-methylstyrene and acrylonitrile. This is described in Japanese Patent Publication No. 18194, Japanese Patent Publication No. 57-603733, Japanese Patent Publication No. 58-23810, etc. (Problems to be Solved by the Invention) However, in order to improve the heat resistance of ABS resin, when producing a copolymer of α-alkyl substituted aromatic vinyl and vinyl cyanide to be blended with it, monomer In conventional techniques, when the amount of α-alkyl-substituted aromatic vinyl monomer in the mixture is increased, the final polymerization conversion rate tends to decrease, resulting in unreacted monomers remaining in the resulting copolymer. I will do it. Moreover, when unreacted monomers are present, it is necessary to remove the remaining monomers since this lowers the heat resistance of the resulting copolymer. In order to remove this large amount of residual monomer, when the resulting copolymer is pelletized using an extruder,
Measures such as lowering the screw rotation speed, using a high vacuum vent, or increasing the cylinder temperature are generally taken. However, such methods result in decreased productivity and increased production costs. Moreover, an excessive increase in cylinder temperature causes thermal decomposition of the copolymer, and conversely increases the amount of residual monomer, resulting in a decrease in heat resistance. Furthermore, when such a copolymer is blended with an ABS resin or the like and extrusion molded, an excessive increase in cylinder temperature causes deterioration of the rubber component, making it difficult to obtain a resin with good impact resistance. (Means for Solving the Problems) As a result of intensive studies in view of the current situation as described above, the inventors of the present invention have devised a co-product by emulsion polymerizing at least an α-alkyl-substituted aromatic vinyl monomer and a vinyl cyanide monomer. The inventors have discovered that the above-mentioned problems can be solved by maintaining the pH within the polymerization system within a specific range until the polymerization conversion rate reaches at least 30% when producing a polymer, and have thus arrived at the present invention. The gist of the present invention is to emulsion polymerize a monomer mixture consisting of 70 to 90% by weight of an α-alkyl substituted aromatic vinyl monomer and 30 to 10% by weight of a vinyl cyanide monomer to produce a copolymer. When manufacturing the
Polymerization is carried out while maintaining the pH in the polymerization system in the range of 9.5 to 11.5 by continuous or intermittent addition of a basic compound until the polymerization conversion rate of the monomer mixture reaches at least 30%. This is a method for producing a heat-resistant copolymer. Examples of the α-alkyl-substituted aromatic vinyl monomer used in carrying out the present invention include α-methylstyrene, α-ethylstyrene, and α-methylstyrene having a halogen or alkyl nuclear substituent. It can be used alone or in a mixture of two or more, but preferably α-
It is methylstyrene. The amount of α-alkyl substituted aromatic vinyl monomer used is preferably 70% by weight or more based on the total monomers,
If it is less than 70% by weight, the heat resistance of the resulting copolymer tends to decrease. Moreover, even if it is used in an amount exceeding 90% by weight, it tends to become difficult to obtain a copolymer with a high polymerization conversion rate. Examples of vinyl cyanide monomers include acrylonitrile, methacrylonitrile, and ethacrylonitrile, which may be used alone or in combination of two or more, with acrylonitrile being preferred. The amount of vinyl cyanide monomer used is 10 out of the total monomers.
It is preferable to use at least 10% by weight, and if it is less than 10% by weight, the final polymerization conversion rate tends to decrease. Furthermore, if it is used in an amount exceeding 40% by weight, the resulting copolymer tends to be colored by heating, and its physical properties tend to deteriorate. Furthermore, in the present invention, in addition to the above-mentioned α-alkyl substituted aromatic vinyl monomer and vinyl cyanide monomer, other vinyl monomers that can be copolymerized with these may also be copolymerized. Other vinyl monomers that can be copolymerized with these include, for example, maleimide monomers such as N-phenylmaleimide and maleimide, acrylic acid, methacrylic acid, acrylic esters,
Acrylic acid monomers such as methacrylic esters,
Also, fumaronitrile, acenaphthylene, etc. can be mentioned, and these can be used alone or in a mixture of two or more kinds. These other copolymerizable vinyl monomers are optional components, but the amount used is preferably up to about 20% by weight based on the total monomers. The most important thing in the present invention is to maintain the pH within the polymerization system in the range of 9.5 to 11.5 until the polymerization conversion rate reaches at least 30% during emulsion polymerization. That is, prior to the start of polymerization, when the pre-prepared components other than monomers such as emulsifiers and polymerization initiation aids are sufficiently dissolved, a basic compound is added to adjust the pH of the polymerization system to a range of 9.5 to 11.5. Adjust. After that, monomers are charged and polymerization is started. As the polymerization progresses, the PH in the polymerization system will decrease, but the PH in the polymerization system should be kept low until the polymerization conversion rate is at least 30%.
It is important to further add a basic compound to maintain the range of 9.5 to 11.5. The method of adding the basic compound is not particularly limited and may be added continuously or intermittently. When the polymerization conversion rate is less than 30%, the PH in the polymerization system is
If it is less than 9.5, the decomposition rate of the polymerization initiator tends to decrease, resulting in a decrease in the polymerization rate and a decrease in the final polymerization conversion rate. In addition, if the PH in the polymerization system exceeds 11.5 when the polymerization conversion rate is less than 30%, the polymerization initiation aid etc. will rapidly decompose, inhibiting the smooth progress of polymerization, and tending to cause a decrease in the final polymerization conversion rate. Each of these is unfavorable. When carrying out the present invention, as the basic compound added for the purpose of adjusting the PH in the polymerization system, those normally used for adjusting the PH can be used, and preferred ones are sodium hydroxide and potassium hydroxide. , etc. Emulsion polymerization can be carried out by conventional methods. That is, commonly known anionic emulsifiers, polymerization initiators, polymerization initiation aids, and polymerization degree regulators can be used as appropriate, and there are no particular limitations on their types and amounts added. After the polymerization is completed, the copolymer is coagulated by a conventional method to obtain the desired copolymer powder. The copolymer obtained by the above method has a high polymerization conversion rate, has very little residual monomer, and has excellent heat resistance, and can be used alone. It may also be used in blends with other polymers. The polymer to be blended can be selected as appropriate depending on the purpose of use, but heat resistance can be improved by blending with a rubber-modified graft copolymer containing a rubber component such as ABS resin, AAS resin, or AES resin. A thermoplastic resin composition with excellent impact resistance is obtained. (Example) The present invention will be specifically described below with reference to Examples.
In addition, "part" in each example and reference example represents "part by weight." The various measurement methods were as follows. Measurement of PH: Measurement was carried out by a colorimetric method using test paper impregnated with the following indicator. PH measurement range Phenol Red 6.8 ~ 8.4 Thymol Blue 8.0 ~ 9.6 Mixed phenolphthalein and thymonol phthalein 9.6 ~ 10.0 Nile Blue 10.0 ~ 11.0 Alizarin Yellow R 10.2 ~ 12.0 Tropeolin O 11.0 ~ 13.0 Polymerization conversion rate during polymerization: Polymerization The latex collected during the test was coagulated with isopropanol, and the solid content was calculated. Final polymerization conversion rate: Calculated by quantifying the amount of remaining monomer by gas chromatography. Amount of residual monomer in pellets: After dissolving the pellets obtained by extrusion molding the copolymer powder obtained by polymerization in dimethylformamide, the amount of remaining monomer was determined by gas chromatography. Calculated. Vikatsu softening temperature: Measured by JISK-7206 method B (load: 5 kg). Notched Izod impact strength: Measured according to JISK-6871. Example 1 A 5 capacity stirred reactor was charged with the following materials. Water 200 parts Potassium laurate 2.5 parts Dextrose 0.5 part Ferrous sulfate (FeSO 4.7H 2 O) 0.005 part Sodium pyrophosphate 0.1 part The pH was 10.0 at the time the above substances were charged.
When 0.01 part of potassium hydroxide was added to this, the pH of the system rose to 10.8. Next, after heating and stirring at 60℃ in a nitrogen stream, α-
After 80 parts of methylstyrene and 4 parts of acrylonitrile were charged and thoroughly emulsified, 0.5 part of cumene hydroperoxide was added, and then acrylonitrile was added.
16 parts were continuously added dropwise for 2 hours. During the dropwise addition of this acrylonitrile, the polymerization conversion rate and pH of the polymerization system were measured at appropriate times as described below, and potassium hydroxide was added to adjust the pH. That is, when the polymerization conversion rate was 10%, the PH of the polymerization system reached 9.5%, so when 0.01 part of potassium hydroxide dissolved in 0.5 part of water was added, the PH of the polymerization system rose to 1.04. When the polymerization conversion rate was 18%, the PH of the polymerization system was 9.6, so 0.01 part of potassium hydroxide dissolved in 0.5 part of water was added, and the PH of the polymerization system rose to 10.4. When the polymerization conversion rate was 27%, the PH of the polymerization system was 9.5 parts, so when 0.01 part of potassium hydroxide dissolved in 0.5 part of water was added, the PH of the polymerization system rose to 10.3. The pH of the polymerization system was 10.0 when the polymerization conversion rate was 30%. After the dropwise addition of acrylonitrile was completed, stirring was further continued at 60°C for 1 hour, and then the polymerization was completed. The final polymerization conversion rate at the end of polymerization was 97%. The produced copolymer latex was coagulated with a 1% aqueous magnesium sulfate solution, washed and dried to obtain a white powdery copolymer. This white powdery copolymer was extruded into pellets using a 25 m/m extruder at a cylinder temperature of 230°C and a vent pressure of 40 mmHg (absolute pressure). The residual monomer content in the pellet was measured and found to be 0.03% α-methylstyrene and 0% acrylonitrile. The above pellets were injection molded using a screw-type injection molding machine (cylinder temperature: 230°C, mold temperature: 60°C) to prepare test pieces for measuring the softening temperature of Vikatsu.
The Vikatsu softening temperature was 134°C. Example 2 Polymerization, coagulation, pelletization, and molding were carried out under the same conditions as in Example 1 except that the pH was adjusted as described below. The pH of the system before the start of polymerization was 10.0. The pH was adjusted by dissolving 0.04 part of potassium hydroxide in 1 part of water and continuously dropping the solution over 30 minutes from the start of polymerization. The PH of the polymerization system at a polymerization conversion rate of 10% and 20% was 10.3 and 10.2, respectively. In addition, the polymerization conversion rate at the end of dropping the potassium hydroxide aqueous solution was 33
%, and the pH of the polymerization system was 10.2. The final polymerization conversion rate at the end of the polymerization was 8%. Further, the amount of residual monomers in the pellet was measured and found to be 0.03% of α-methylstyrene and 0% of acrylonitrile.
Furthermore, the Vikatsu softening temperature was 134°C. Comparative Example 1 Polymerization, coagulation, pelletization, and molding were carried out under the same conditions as in Example 1, except that the pH was not adjusted using potassium hydroxide before and during the polymerization. In this case, the pH of the system before the start of polymerization was 10.0. In addition, the pH of the polymerization system at a polymerization conversion rate of 10% is 9.2,
The PH of the polymerization system at a polymerization conversion rate of 20% was 8.8, and the PH of the polymerization system at a polymerization conversion rate of 30% was 8.4. The final polymerization conversion rate was 83%, and the amount of residual monomer in the pellets was determined to be α-methylstyrene.
0.9%, acrylonitrile 0.2%, Vikatsu softening temperature was 121°C. Examples 3 to 8 Polymerization, coagulation, pelletization, and molding were carried out under the same conditions as in Example 1 or 2, except that the type of emulsifier and the amount of monomer charged were changed. . The pH adjustment method for sequential addition was the same as in Example 1, and for the continuous addition, the same method as in Example 2 was used. These results are shown in Table 1. Comparative Examples 2 to 6 Polymerization was carried out under the conditions of Example 1 by changing the type of emulsifier and the amount of monomer charged. However, the PH of the system before the start of polymerization was adjusted as shown in Table 2 using an aqueous potassium hydroxide solution, and the PH of the system during polymerization was not adjusted. These results are shown in Table 2.

【表】【table】

【表】【table】

【表】 参考例 ジエン系ゴム変性グラフト共重合体の製造 容量25の撹拌機付き反応器に次の物質を仕込
んだ。 水 140 部 デキストローズ 0.3 部 硫酸第一鉄(FeSO4・7H2O) 0.005部 ピロ燐酸ナトリウム 0.2 部 ポリブタジエンラテツクス 120 部 (固形分50%、平均粒子径0.3μm) 上記物質を窒素気流中60℃で加熱撹拌した後、
スチレン28部、アクリロニトリル12部およびクメ
ンヒドロペルオキシド0.3部と共に連続的に2時
間滴下した。滴下終了後60℃でさらに1時間撹拌
した後重合を終了した。得られたグラフト共重合
体ラテツクスに抗酸化剤としてブチル化ヒドロキ
シトルエン2部を加え5%硫酸水溶液で凝固し、
洗浄、乾燥して白色粉末状のグラフト共重合体を
得た。 得られたジエン系ゴム変性グラフト共重合体と
前記実施例1〜4および比較例1〜3で得られた
共重合体を表3に示した重量比で混合し、さらに
これらに夫々フオスフアイト系安定剤0.1部を配
合し、ヘンシエルミキサーで3000r.p.m.5分間混
合した後、シリンダー温度230℃で押出し、ペレ
ツト化し試料1〜7を得た。これら各ペレツト試
料をスクリユー式射出成形機(シリンダー温度
230℃、金型温度60℃)により射出成形してノツ
チ打アイゾツド衝撃測定試験片およびビカツト軟
化温度測定試験片を作成しノツチ付アイゾツド衝
撃強度およびビカツト軟化温度を測定した。これ
らの結果を表3に示した。 表3の結果から本発明の方法により得られる共
重合体をジエン系ゴム変性グラフト共重合体にブ
レンドすることにより優れた耐熱性を有する成形
品が得られることがわかる。
[Table] Reference Example Production of diene-based rubber-modified graft copolymer The following materials were charged into a reactor with a capacity of 25 and equipped with a stirrer. Water 140 parts Dextrose 0.3 parts Ferrous sulfate (FeSO 4.7H 2 O) 0.005 parts Sodium pyrophosphate 0.2 parts Polybutadiene latex 120 parts (Solid content 50%, average particle size 0.3 μm) The above substances were mixed in a nitrogen stream for 60 minutes. After heating and stirring at °C,
28 parts of styrene, 12 parts of acrylonitrile and 0.3 parts of cumene hydroperoxide were continuously added dropwise for 2 hours. After the dropwise addition was completed, the mixture was stirred at 60° C. for an additional hour, and then the polymerization was completed. Two parts of butylated hydroxytoluene was added as an antioxidant to the obtained graft copolymer latex, and the mixture was coagulated with a 5% aqueous sulfuric acid solution.
After washing and drying, a white powdery graft copolymer was obtained. The obtained diene-based rubber-modified graft copolymer and the copolymers obtained in Examples 1 to 4 and Comparative Examples 1 to 3 were mixed at the weight ratio shown in Table 3, and each of these was added with a phosphorescent stabilizer. After mixing with a Henschel mixer at 3000 rpm for 5 minutes, extrusion was carried out at a cylinder temperature of 230 DEG C. to pelletize samples 1 to 7. Each of these pellet samples was put into a screw-type injection molding machine (cylinder temperature
(230°C, mold temperature 60°C) to prepare notched Izod impact measurement test pieces and Vikat softening temperature measurement test pieces, and the notched Izod impact strength and Vikat softening temperature were measured. These results are shown in Table 3. The results in Table 3 show that a molded article having excellent heat resistance can be obtained by blending the copolymer obtained by the method of the present invention with the diene rubber-modified graft copolymer.

【表】 (発明の効果) 本発明はα−アルキル置換芳香族ビニル共重合
体を製造するにあたり、重合転化率が少なくとも
30%になる迄重合系内のPHを特定範囲に保つこと
により耐熱性に優れる共重合体を高重合転化率で
製造することができる優れた効果を有する。
[Table] (Effects of the invention) In producing an α-alkyl-substituted aromatic vinyl copolymer, the present invention achieves a polymerization conversion rate of at least
By keeping the PH in the polymerization system within a specific range until the pH reaches 30%, it has the excellent effect of producing a copolymer with excellent heat resistance at a high polymerization conversion rate.

Claims (1)

【特許請求の範囲】[Claims] 1 α−アルキル置換芳香族ビニル単量体70〜90
重量%およびシアン化ビニル単量体30〜10重量%
よりなる単量体混合物を乳化重合して共重合体を
製造するに際して、該単量体混合物の重合転化率
が少なくとも30%になる迄重合系内のPHを塩基性
化合物の連続的もしくは断続的な添加により、
9.5〜11.5の範囲に保つて重合することを特徴と
する耐熱性共重合体の製造方法。
1 α-alkyl substituted aromatic vinyl monomer 70-90
wt% and vinyl cyanide monomer 30-10wt%
When producing a copolymer by emulsion polymerization of a monomer mixture consisting of: By adding
A method for producing a heat-resistant copolymer, characterized in that polymerization is carried out while maintaining the molecular weight within the range of 9.5 to 11.5.
JP3941085A 1985-02-28 1985-02-28 Production of heat-resistant copolymer Granted JPS61197613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3941085A JPS61197613A (en) 1985-02-28 1985-02-28 Production of heat-resistant copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3941085A JPS61197613A (en) 1985-02-28 1985-02-28 Production of heat-resistant copolymer

Publications (2)

Publication Number Publication Date
JPS61197613A JPS61197613A (en) 1986-09-01
JPH0125482B2 true JPH0125482B2 (en) 1989-05-18

Family

ID=12552220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3941085A Granted JPS61197613A (en) 1985-02-28 1985-02-28 Production of heat-resistant copolymer

Country Status (1)

Country Link
JP (1) JPS61197613A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239635A (en) * 1975-08-25 1977-03-28 Continental Oil Co Method of liquiddphase methylation of orthoocresol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239635A (en) * 1975-08-25 1977-03-28 Continental Oil Co Method of liquiddphase methylation of orthoocresol

Also Published As

Publication number Publication date
JPS61197613A (en) 1986-09-01

Similar Documents

Publication Publication Date Title
EP1778737B1 (en) Method for preparing rubber-reinforced thermoplastic resin, and rubber-reinforced themoplastic resin composition using the same
AU606645B2 (en) Rubber-reinforced monovinylidene aromatic polymer resins and a method for their preparation
US4981906A (en) Heat and impact resistant thermoplastic resin composition
US4427832A (en) Thermoplastic resin compositions
KR20020026571A (en) Resin composition improved in powder characteristics and process for the production thereof
US4361684A (en) Process for preparing copolymers comprising α-alkyl styrene and unsaturated nitrile
US4690974A (en) Method for producing rubber modified thermoplastic resins
KR101515674B1 (en) ABS Graft Resin Having Superior Heat Resistance And Method For Preparing The Same
US4992510A (en) Method for producing rubber modified thermoplastic resins
JPH0125482B2 (en)
JPS643887B2 (en)
JPS59184243A (en) Thermoplastic resin composition
US3641209A (en) Emulsion polymerization employing azoacyl catalysts
KR100455101B1 (en) Method of Preparing SAN-Grafted Copolymer Resin with Excellent Appearance and Whiteness
KR100187551B1 (en) The preparation of thermoplastic resin composition having high impact strength
US5057574A (en) Process for producing an α-alkyl-substituted aromatic vinyl copolymer and a thermoplastic resin composition comprising the copolymer
US3997628A (en) Thermally stable high nitrile resins and method for producing the same
JPS636106B2 (en)
KR100205059B1 (en) A process for preparing heat-resistant thermoplastic in compositions
US4112021A (en) Process for producing thermoplastic resin
JPS6039699B2 (en) thermoplastic resin composition
KR100353758B1 (en) Manufacturing method of impact resistant resin composition
WO2002051894A1 (en) Method of preparing the new grafted copolymer having high rubber contents and high performance
JPS58120623A (en) Preparation of thermoplastic resin
JPS61155439A (en) Tehrmoplastic resin composition