JPH01254668A - Electrochemical production of barbituric acid derivative - Google Patents

Electrochemical production of barbituric acid derivative

Info

Publication number
JPH01254668A
JPH01254668A JP7809088A JP7809088A JPH01254668A JP H01254668 A JPH01254668 A JP H01254668A JP 7809088 A JP7809088 A JP 7809088A JP 7809088 A JP7809088 A JP 7809088A JP H01254668 A JPH01254668 A JP H01254668A
Authority
JP
Japan
Prior art keywords
urea
derivative
reaction
raw material
malonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7809088A
Other languages
Japanese (ja)
Other versions
JPH0730045B2 (en
Inventor
Shoichi Nakajima
仲嶋 正一
Katahito Arai
新井 堅仁
Kohei Nozawa
野沢 幸平
Kenichi Kawai
賢一 河合
Shigeaki Takatori
高鳥 薫朗
Akira Ueda
晃 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisai Co Ltd
Original Assignee
Eisai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai Co Ltd filed Critical Eisai Co Ltd
Priority to JP7809088A priority Critical patent/JPH0730045B2/en
Publication of JPH01254668A publication Critical patent/JPH01254668A/en
Publication of JPH0730045B2 publication Critical patent/JPH0730045B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject compound, capable of exhibiting hypnotic, sedative action, etc., and useful as a medicine in good yield under mild conditions, such as ambient temperature, by adding urea or a catalyst thereof to a malonic acid ester derivative and carrying out electrolytic reaction. CONSTITUTION:A malonic acid ester derivative which is a raw material and urea or a derivative thereof, together with an organic solvent (especially dimethylformamide) and a supporting electrolyte, are placed in a cathodic compartment of an electrolytic cell and a current is passed therethrough to carry out electrolytic reaction and afford the aimed compound. The reaction temperature is ambient temperature of about 18-28 deg.C. Tetraethylammonium perchlorate, tetrabutylammonium iodate, etc., are used as the supporting electrolyte. The electrolytic reaction is preferably carried out at 2-10F/mol quantity of passed electricity based on the raw material ester in constant-current density electrolysis at 3-15mA/cm<2> and especially 3-5F/mol quantity of passed electricity based on the raw material ester, in constant-current density electrolysis at 5-10mA/cm<2>.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はバルビッール酸誘導体の電気化学的合成法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for electrochemical synthesis of barbylic acid derivatives.

〔従来の技術〕[Conventional technology]

バルビッール酸誘導体は周知のように、マロン酸と尿素
の縮合により得られるバルビッール酸の誘導体であって
、特にその5位の側鎖が種々の基で置換されたものは催
眠、鎮静等の作用があり、医薬として広く利用されてい
る。
As is well known, barbituric acid derivatives are derivatives of barbituric acid obtained by condensation of malonic acid and urea, and those in which the 5-position side chain is substituted with various groups have hypnotic and sedative effects. It is widely used as a medicine.

従・来、このバルビッール酸誘導体の製造法としては、
アルキルマロン酸エステルと尿素を無水エタノール中、
ナトリウムエトキシドの存在下で煮沸して製造したり(
E、Fischer and A、Dilthey。
Traditionally, the method for producing this barbylic acid derivative is as follows:
Alkyl malonic acid ester and urea in absolute ethanol,
Produced by boiling in the presence of sodium ethoxide (
E., Fischer and A., Dilthey.

」吸9.競5,334 (1904)参照〕、液安中ナ
トリウムアルコラード、水酸化ナトリウム等を用いて室
温下で反応させ製造していた〔下、若松、エル。
” Suction 9. 5, 334 (1904)] and was produced by reacting at room temperature using sodium alcolade in liquid ammonium, sodium hydroxide, etc. [see, Wakamatsu, L. et al.

興、1141 (1957)参照〕。See Ko, 1141 (1957)].

しかし、それらの方法は前者の場合には煮沸下で、又後
者の場合でも液安中というそれぞれ厳しい反応条件下で
行わなければならないという問題点があった。
However, these methods have the problem that the reaction must be carried out under severe reaction conditions, such as under boiling in the former case, and in liquid ammonium in the latter case.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は室温ドという穏やかな反応条件下に、収率よく
バルビッール酸誘導体を製造する新規な方法を提供づる
ことを目的としてなされたものである。
The object of the present invention is to provide a new method for producing barbylic acid derivatives in good yield under mild reaction conditions at room temperature.

(課題を解決するための手段) 本発明者らは上記目的を達成するためU1究を重ねた結
果、各種マロン酸エステルと尿素を電解槽の陰極室に於
いて電極反応させることにより、室温で収率よくバルビ
ッール酸誘導体が得られることを見出し、本発明を完成
した。
(Means for Solving the Problems) As a result of repeated research in order to achieve the above object, the inventors of the present invention discovered that various malonic acid esters and urea were caused to react with each other at room temperature in the cathode chamber of an electrolytic cell. It was discovered that barbylic acid derivatives can be obtained in good yield, and the present invention was completed.

すなわら、本発明はマロン酸エステル誘導体に尿素又は
尿素誘導体を加え、電解反応せしめることを特徴とする
バルビッールM誘導体の電気化学的!4造法を提供する
ものである。
That is, the present invention is an electrochemical method of Barbyl M derivatives, which is characterized by adding urea or a urea derivative to a malonic acid ester derivative and causing an electrolytic reaction. It provides four construction methods.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のパルどツール酸誘導体の電気化学的合成法は次
の反応式に従って進行する。
The electrochemical synthesis method for paldoturic acid derivatives of the present invention proceeds according to the following reaction formula.

I<4 式中R,,R2は直鎖又は分岐鎖アルキル基、アリル基
、フェニル基、ベンジル基、シクロへキセニル基、1−
メチル−1−ブテニル基等よりなる群から選ばれた基を
表わし、R3は低級アルキル基、例えばメチル、エチル
、プロピル基等、又は7リール基、例えばフェニル、ナ
フチル基等を表わし、R4は水素又は直鎖低級アルキル
基もしくはフェニル基を表わす。
I<4 In the formula, R,, R2 is a linear or branched alkyl group, allyl group, phenyl group, benzyl group, cyclohexenyl group, 1-
Represents a group selected from the group consisting of methyl-1-butenyl, etc., R3 represents a lower alkyl group, such as methyl, ethyl, propyl, etc., or a 7-aryl group, such as phenyl, naphthyl, etc., and R4 represents hydrogen. Or it represents a linear lower alkyl group or a phenyl group.

本発明で用いられる原料のマロン酸エステル誘導体とし
ては上記反応式で示したように、直鎖もしくは分岐鎖ア
ルキル基、アリール基、フェニル基、ベンジル基、シク
ロへキセニル基、1−メチル−1−ブテニル基等の置換
基を有するマロン酸エステル誘導体が用いられる。
As shown in the reaction formula above, the raw malonic acid ester derivatives used in the present invention include linear or branched alkyl groups, aryl groups, phenyl groups, benzyl groups, cyclohexenyl groups, 1-methyl-1- A malonic acid ester derivative having a substituent such as a butenyl group is used.

なお、直鎖アルキル基としては、例えばエチル、プロピ
ル、ブチル基等が好ましく、分岐鎖アルキル基としては
1−メチルブチル基、1−メチルブチル基、イソブチル
基、エチル−1−メチルブチル基、イソペンチル基等が
好ましい。
In addition, as the straight chain alkyl group, for example, ethyl, propyl, butyl group, etc. are preferable, and as the branched chain alkyl group, 1-methylbutyl group, 1-methylbutyl group, isobutyl group, ethyl-1-methylbutyl group, isopentyl group, etc. preferable.

又、該マロン酸ニスデル誘導体のエステルを構成する低
級アルキル基(R3)は特にエチル基又はフェニル基等
が好ましい。
Further, the lower alkyl group (R3) constituting the ester of the Nisder malonate derivative is particularly preferably an ethyl group or a phenyl group.

本発明のもう一方の原料である尿素類は尿素それ自体の
他、アルキル尿素、フェニル尿素等の誘導体が用いられ
る。
As the urea which is another raw material of the present invention, in addition to urea itself, derivatives such as alkyl urea and phenyl urea are used.

本発明の製造方法は原料のマロン酸エステル誘導体と尿
素又は尿素誘導体を有機溶媒及び支持電解質とともに電
解槽の陰極室に入れ、通電することにより行われる。
The production method of the present invention is carried out by placing the malonic acid ester derivative and urea or urea derivative as raw materials in a cathode chamber of an electrolytic cell together with an organic solvent and a supporting electrolyte, and applying electricity.

本発明で用いられる有機溶媒は原料のマロン酸エステル
誘導体、尿素又は尿素誘導体、及び支持電解質を溶解す
る非プロトン性の極性溶媒なら、いずれも使用できるが
、特にジメチルホルムアミド(DMF>が好ましい。
The organic solvent used in the present invention can be any aprotic polar solvent that dissolves the raw material malonic acid ester derivative, urea or urea derivative, and supporting electrolyte, but dimethylformamide (DMF) is particularly preferred.

又、支持電解質としては過塩素酸テトラエチルアンモニ
ウム(TEAP) 、沃素酸テトラブチルアンモニウム
(TBAT)等を用いることができる。
Further, as the supporting electrolyte, tetraethylammonium perchlorate (TEAP), tetrabutylammonium iodate (TBAT), etc. can be used.

反応温度は18〜28℃程度のいわゆる室温でよく、こ
れが本発明の特徴の1つになっているが、必要により、
他の適当な温度を選ぶこともできる。
The reaction temperature may be about 18 to 28°C, so-called room temperature, which is one of the characteristics of the present invention, but if necessary,
Other suitable temperatures can also be selected.

原料のマロン酸エステル誘導体と尿素又は尿素誘導体の
量比は臨界的ではないが通常等モル、好ましくは2倍モ
ル以上で行うのがよい。
Although the quantitative ratio of the raw material malonic acid ester derivative to urea or urea derivative is not critical, it is usually equimolar, preferably at least twice the molar amount.

本発明の電解反応条例としては3〜15mA/Cdの定
電流密度電解で原料エステルに対して2〜IOF/mo
lの通電量、好ましくは、5〜10mA/CIiの定電
流密度電解で、通電量3〜5F/molで行なわれる。
The electrolytic reaction regulations of the present invention are 2 to IOF/mo to the raw material ester by constant current density electrolysis of 3 to 15 mA/Cd.
The electrolysis is carried out at a constant current density electrolysis of 1, preferably 5 to 10 mA/CIi, and a current of 3 to 5 F/mol.

本発明で使用する電解槽は従来から用いられている通常
の電解槽、例えばガラスフィルターを隔膜とするト1型
電解セル或いは円筒型電解セル等を設けた電解槽を用い
ることができる。
The electrolytic cell used in the present invention may be an ordinary electrolytic cell conventionally used, for example, an electrolytic cell equipped with a type 1 electrolytic cell or a cylindrical electrolytic cell using a glass filter as a diaphragm.

又、電極も特に制限はないが、両極とも白金電極・bし
くは炭素電極等が好適に使用される。
Further, the electrodes are not particularly limited, but platinum electrodes, carbon electrodes, etc. are preferably used for both electrodes.

反応終了後、目的物であるパルどツールrifl誘導体
は、通常の操作、例えば溶媒除去し、再結晶、クロマト
グラフィー等の組合わせにより分溜1精製することがで
きる。
After completion of the reaction, the target product, the Paldotool rifl derivative, can be purified by fractional distillation by a combination of conventional operations such as solvent removal, recrystallization, chromatography, and the like.

〔実tJf!i例〕[Actually tJf! i example]

以下実施例で本発明を具体的に説明する。 The present invention will be specifically explained below with reference to Examples.

実施例1〜5 電解槽はG−3ガラスフイルター隔壁で陽極室と陰極室
を仕切り、磁気攪拌装置を設け、陽極、陰極ともに白金
電極を用い、外側から23±2℃の水で恒温にしたもの
を用いた。これに陰極液としてジエチルマロン酸ジエチ
ル100mg(0,5mmol)、及び尿素30mg 
(0,5m mol )もしくは80mri (1m 
mol )を0.1旧丁EAPのDMF溶液10−に溶
かして入れ、陽極液として0.18−TEAPのDMF
溶液10rrdlを入れて51IIA/cdの定電流密
度電解をおこなった。通電量はエステルに対して5F/
mol とした。反応終了後、両極液を合わせて中和し
、溶媒は50°Cで減圧留去した。残留物に酢酸エチル
10dを加えるとT[^Pか析出するので、これをろ別
し、ろ液は溶媒を減圧留去した。ここに得られた反応生
成物につきクロロホルム−メタノール(80: 1 )
を展開溶媒としたシリカゲルカラムクロマトグラフィー
により分離精製し、原料エステル13mg(13%)、
バルビタール58m9(71%)を得た(実施例1)。
Examples 1 to 5 The electrolytic cell was divided into an anode chamber and a cathode chamber by a G-3 glass filter partition wall, equipped with a magnetic stirring device, used platinum electrodes for both the anode and cathode, and kept at a constant temperature with water at 23±2°C from the outside. I used something. To this, 100 mg (0.5 mmol) of diethyl diethylmalonate and 30 mg of urea were added as catholyte.
(0.5m mol) or 80mri (1m
mol ) in 0.1 TEAP DMF solution 10-, and 0.18-TEAP DMF as anolyte.
10 rrdl of solution was added and constant current density electrolysis of 51 IIA/cd was performed. The amount of current is 5F/ for ester.
It was set as mol. After the reaction was completed, both polar solutions were combined and neutralized, and the solvent was distilled off under reduced pressure at 50°C. When 10 d of ethyl acetate was added to the residue, T[^P was precipitated, which was filtered off, and the solvent of the filtrate was distilled off under reduced pressure. Chloroform-methanol (80:1) for the reaction product obtained here.
Separated and purified by silica gel column chromatography using as a developing solvent, 13 mg (13%) of raw material ester,
58m9 (71%) of barbital was obtained (Example 1).

なお、比較のため上記反応液を130℃で3R間加熱し
てみたが、反応は進行しなかった。
For comparison, the above reaction solution was heated at 130° C. for 3R, but the reaction did not proceed.

次にジアリルマロンM(実施例2)、エチルフェニルマ
ロン酸(実施例3)、エチル−1−メチルブチルマロン
酸(実施例4)、ベンジルエチルマロン酸(実施例5)
の各ジエチルエステルと尿素についても同様にして電解
反応を行い、それぞれ相当するバルビッール酸誘導体を
得た。結果は表1に示した。なお、得られたバルビッー
ル酸誘導体は夫々常法により化学的に合成した標品と混
融試験、IR,TLCにより同定し、確認した。
Next, diallylmalon M (Example 2), ethyl phenylmalonic acid (Example 3), ethyl-1-methylbutylmalonic acid (Example 4), benzylethylmalonic acid (Example 5)
The electrolytic reaction was carried out in the same manner for each diethyl ester and urea, and the corresponding barbylic acid derivatives were obtained. The results are shown in Table 1. The obtained barbituric acid derivatives were identified and confirmed by mixing test, IR, and TLC with standard products chemically synthesized by conventional methods.

(以下余白〉 実施例6 実施例1と同じ電解槽を用い、ジエチルマロン酸ジエチ
ル100my (0,5m not ) 、フェニル尿
素65rr1g (0,5m 1IIot )を0.1
8−TEAPのDHF溶液10dに溶かして陰極とし、
陽極液としては、0.18−TEAPのDMF溶液10
7!を用い、5mA/cdの定電流密度電解で、通電量
をエステルに対して5F/molとして電解反応を行な
った。なお、比較のためアセトニトリルを溶媒として行
ってみたが収率は3%と低く副産物ら多かった。反応終
了後、両極液を合わせて中和し、溶媒は50℃で減圧留
去した。残留物にクロロホルム10mを加え、析出した
TEAPろ別し、ろ液は溶媒を減圧留去した後、クロロ
ホルムベキ4ノン(15: 1 )を展開溶媒としたシ
リカゲルカラムクロマトグラフィーに付し、さらにクロ
ロホルム−シクロへキリン(20:1)を展開溶媒とす
る中圧液体クロマトグラフィーにより分離精製した。
(Left below) Example 6 Using the same electrolytic cell as in Example 1, 100my (0.5m not ) of diethyl diethylmalonate and 65rr1g (0.5m 1IIot ) of phenyl urea were added at 0.1
8-TEAP was dissolved in 10 d of DHF solution to serve as a cathode,
As the anolyte, a solution of 0.18-TEAP in DMF 10
7! An electrolytic reaction was carried out using constant current density electrolysis at 5 mA/cd, with the amount of current applied to the ester being 5 F/mol. For comparison, acetonitrile was used as a solvent, but the yield was as low as 3% and there were many by-products. After the reaction was completed, both polar solutions were combined and neutralized, and the solvent was distilled off under reduced pressure at 50°C. 10 ml of chloroform was added to the residue, and the precipitated TEAP was filtered off. After distilling off the solvent under reduced pressure, the filtrate was subjected to silica gel column chromatography using chloroform bequinone (15:1) as a developing solvent, and further chloroform - Separation and purification was performed by medium pressure liquid chromatography using cyclohexylline (20:1) as a developing solvent.

結果は表2に示プ。The results are shown in Table 2.

ここで得られたバルビッール酸誘導体はHe l ge
Aspelundらの方法(11,Aspelund、
 0.8ackman、 Acta。
The barbylic acid derivative obtained here is
Aspelund et al.'s method (11, Aspelund,
0.8ackman, Acta.

Acad、Aboensis、 )lath、 et 
Phys、 、 14.19(1944)参照〕により
合成した標品と混融試験、TLC,IRにより同定した
Acad, Aboensis, ) lath, et
Phys, 14.19 (1944)] and was identified by mixing test, TLC, and IR.

(以下余白) 〔発明の効果〕 本発明の最大の効果は医薬品として重要なバルビッール
酸誘導体を新規電解合成法により、室温下という温和な
反応条件下で収率よく製造することを可能にした点にあ
る。
(The following is a blank space) [Effects of the invention] The greatest effect of the present invention is that it has made it possible to produce barbylic acid derivatives, which are important as pharmaceuticals, in good yields under mild reaction conditions at room temperature using a new electrolytic synthesis method. It is in.

Claims (1)

【特許請求の範囲】[Claims] 1、マロン酸エステル誘導体に尿素又は尿素誘導体を加
え、電解反応せしめることを特徴とするバルビツール酸
誘導体の電気化学的製造法。
1. An electrochemical method for producing barbituric acid derivatives, which comprises adding urea or a urea derivative to a malonic acid ester derivative and causing an electrolytic reaction.
JP7809088A 1988-04-01 1988-04-01 Electrochemical production method of barbituric acid derivatives Expired - Lifetime JPH0730045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7809088A JPH0730045B2 (en) 1988-04-01 1988-04-01 Electrochemical production method of barbituric acid derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7809088A JPH0730045B2 (en) 1988-04-01 1988-04-01 Electrochemical production method of barbituric acid derivatives

Publications (2)

Publication Number Publication Date
JPH01254668A true JPH01254668A (en) 1989-10-11
JPH0730045B2 JPH0730045B2 (en) 1995-04-05

Family

ID=13652152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7809088A Expired - Lifetime JPH0730045B2 (en) 1988-04-01 1988-04-01 Electrochemical production method of barbituric acid derivatives

Country Status (1)

Country Link
JP (1) JPH0730045B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105541731A (en) * 2016-02-22 2016-05-04 山东新华制药股份有限公司 Method for preparing 5-ethyl-5-(1-methylbutyl)malonylurea

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110467575B (en) * 2019-09-12 2021-06-22 公安部物证鉴定中心 Synthesis and preparation method of phenobarbital-D5 for court science qualitative and quantitative use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105541731A (en) * 2016-02-22 2016-05-04 山东新华制药股份有限公司 Method for preparing 5-ethyl-5-(1-methylbutyl)malonylurea

Also Published As

Publication number Publication date
JPH0730045B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
US4784734A (en) Azetidinone derivatives and process for the preparation of the same
US4603014A (en) Thiazolinoazetidinone derivatives and process for the preparation of the same
JPH01254668A (en) Electrochemical production of barbituric acid derivative
Guirado et al. First synthesis of 3-aryl-5-dichloromethyl-2-pyrazolines. The electrochemical generation of 2, 2-dichlorovinylacetophenones as a key step
OHMORI et al. Thioalkoxytributyl-and thioalkoxytriphenylphosphonium salts: preparation and application to the synthesis of thiolesters and unsymmetrical sulfides
JPS60243293A (en) Manufacture of m-hydroxybenzyl alcohol
JPS60110887A (en) Manufacture of alpha-alkylated acetic acid derivative
JPS60187689A (en) Nanufacture of 3-exo-methylenecepham derivative
US4703121A (en) Process for the preparation of 5-fluorocytosine
JPS60100536A (en) Preparation of 2-(p-isobutylphenyl)propionic acid
Goba et al. Electrochemical synthesis of 1, 2, 3, 4, 4, 5, 6-substituted 1, 4-dihydropyridines
US4470887A (en) Process for preparing thiazolinoazetidinone derivatives
DE2150267C3 (en) Process for the production of peptides
US3411997A (en) Electrolytic process for preparing nlower acyloxymethyl-n-hydrocabyl lower acylamides and certain derivatives thereof
US3758474A (en) Hyl-7-hydroxy pyrimidines process for the production of-2-aryl-3-imino s triazolo n4,3-ae-5-meprocess for the production of-2-aryl-3-imino s triazolo (4,3-a)-5-met
Guirado et al. Electrochemical reduction of diheteroaryl-1, 2-diketones in the presence of carbonimidoyl dichlorides. First synthesis of 2-arylimino-4, 5-di-2-furyl-1, 3-dioxoles and (E)-1, 2-di-2-furylvinylene bis (N-arylchloroformimidates)
JPS63169395A (en) Electrochemical production of amido compound
JP3804208B2 (en) Method for producing azulene derivatives
JP2589144B2 (en) Method for producing 2-substituted-cyclohexane-1,4-dione
US2322375A (en) Process for preparing therapeutically active substances
SU765276A1 (en) Method of preparing arsonium salts
JPH03271384A (en) Electrochemical production of amido compound
JPS6043340B2 (en) Chlorinated azetidinone derivatives and their production method
IE45046B1 (en) Method of producing 5-fluorouracil derivatives
JPS58216169A (en) 5-fluorouracil derivative and its preparation