JPH01254365A - Partially reinforced metal material - Google Patents

Partially reinforced metal material

Info

Publication number
JPH01254365A
JPH01254365A JP8346788A JP8346788A JPH01254365A JP H01254365 A JPH01254365 A JP H01254365A JP 8346788 A JP8346788 A JP 8346788A JP 8346788 A JP8346788 A JP 8346788A JP H01254365 A JPH01254365 A JP H01254365A
Authority
JP
Japan
Prior art keywords
metal
frm
zinc
cast
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8346788A
Other languages
Japanese (ja)
Inventor
Hideo Maeda
秀雄 前田
Kimiyoshi Fujimoto
藤本 公義
Kenichi Nishio
西尾 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP8346788A priority Critical patent/JPH01254365A/en
Publication of JPH01254365A publication Critical patent/JPH01254365A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To improve the joining power of a cast-in metal and fiber reinforcing metal composite material by casting in the fiber reinforcing metal composite material through the zinc alloy contg. a copper or an Al at specified rate respectively. CONSTITUTION:In case of casting-in fiber reinforcing metal composite material (FRM) 2 and cast-in metal, the zinc alloy contg. 0.1-10wt.% copper or that contg. 1-5% Al is coated on the surface of the FRM 2 by a galvanizing method, etc., to execute cast-in. The metal of a Li, Na, etc., is added at the rate of 0.01-5% in the zinc alloy, if necessary. This zinc alloy is difficult to be oxidized its viscosity at melting time is large and its temp. zone is wide, hence it is easily alloyed with the matrix metal of the FRM 2 and cast-in metal main body. The joining power of the FRM 2 and cast-in metal main body 1 is thus improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は繊維強化金属複合材料(以下FRMと称する)
を鋳ぐるみ金属で鋳ぐるんでなる部分強化金属材料に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fiber reinforced metal composite material (hereinafter referred to as FRM).
This relates to a partially reinforced metal material made of a cast metal.

(従来の技術および発明が解決しようとする課題〕アル
ミニウムまたはアルミニウム合金を繊維・ウィスカで強
化したFR旧よ、機械的特性、特に高温・低温での機械
的特性に優れ、多くの産業分野に利用されうる有用な金
属材料である。しかしながら強化繊維・ウィスカが高価
であり、さらに強化繊維とマトリックス金属との複合化
工程に多大な費用がかかり高価な材料であるため、FR
Mは従来の金属材料にとって替わるに至っていない現状
である。
(Problems to be solved by conventional technology and invention) FR, which is made by reinforcing aluminum or aluminum alloy with fibers and whiskers, has excellent mechanical properties, especially at high and low temperatures, and is used in many industrial fields. However, reinforcing fibers and whiskers are expensive, and the process of compositing the reinforcing fibers and the matrix metal is costly, making it an expensive material.
Currently, M has not reached the point where it can replace conventional metal materials.

こうした事情に鑑み、高価なFRMを必要な部分に鋳ぐ
るみ金属で鋳ぐるみ存効に配置させることによって、低
価でFRMの特性を最大に発揮できる部分強化金属材料
についての研究がなされている。
In view of these circumstances, research is being conducted on partially reinforced metal materials that can maximize the characteristics of FRM at low cost by placing the expensive FRM in necessary parts with cast metal.

部分強化金属材料の製造での最大のポイントは、FRM
のマトリックス金属の表面酸化皮膜を除去す〜る点にあ
る。酸化皮膜がFIIMと鋳ぐるみ金属との界面に存在
すると、溶着せず部分強化金属材料としての性能は発揮
できない。こうした課題を解決する製造方法の一つとし
て、特開昭62−107854号公報に記載される如く
、FIIMの表面にアルミニウムはんだの熔融めっき液
に超音波振動を与えてめっきし、アルミニウム合金を鋳
ぐるむことか提案されている。しかし、この製造方法で
はマトリックス金属の表面酸化皮膜を一部しか破壊する
ことができず、一部分において接合は実現されているが
、未接合部分の存在によりa械的性能の優れた部分強化
複合材料を製造するのが難しい。
The most important point in manufacturing partially reinforced metal materials is FRM.
The main point is to remove the surface oxide film of the matrix metal. If an oxide film exists at the interface between the FIIM and the cast metal, no welding will occur and the performance as a partially reinforced metal material cannot be exhibited. As one of the manufacturing methods to solve these problems, as described in Japanese Patent Application Laid-open No. 107854/1982, the surface of FIIM is plated by applying ultrasonic vibrations to an aluminum solder melt plating solution, and an aluminum alloy is then cast. It has been suggested that the group work together. However, this manufacturing method can only partially destroy the surface oxide film of the matrix metal, and although bonding has been achieved in some parts, the presence of unbonded parts makes it possible to create a partially reinforced composite material with excellent mechanical performance. is difficult to manufacture.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、FRHのマトリックス金属の表面酸化皮
膜をまず破壊し、破壊した表面部分よりマトリックス金
属と合金化する金属を被覆し、該被覆金属が鋳ぐるみ金
属と容易に/8着する必要がある点について鋭意検討し
た結果、被覆金属に亜鉛合金を用いることによりFRM
および鋳ぐるみ金属の機械的性質が向上することを見い
出し、本発明を完成するに至った。
The present inventors first destroy the surface oxide film of the matrix metal of FRH, coat the destroyed surface with a metal that will alloy with the matrix metal, and the coated metal needs to easily adhere to the casting metal. As a result of intensive study on certain points, we found that by using zinc alloy for the coating metal, FRM
The inventors also discovered that the mechanical properties of cast metals are improved, leading to the completion of the present invention.

すなわち本発明はFRFIおよび該FRMの表面に形成
された銅0.1〜10重量%を含む亜鉛の合金の層およ
び該合金層を介して前記FRMと接合した鋳ぐるみ金属
とからなる部分強化金属材料を提供するものである。
That is, the present invention provides a partially reinforced metal comprising a FRFI, a zinc alloy layer containing 0.1 to 10% by weight of copper formed on the surface of the FRM, and a cast metal joined to the FRM via the alloy layer. It provides materials.

また本発明はFRMおよび39 FRMの表面に形成さ
れたアルミニウム1〜5重量%、銅0.1〜10ffi
1%を含む亜鉛の合金の層および該合金層を介して前記
FRMと接合した鋳ぐるみ金属とからなる部分強化金属
材料を提供するものである。
Further, the present invention is characterized in that 1 to 5% by weight of aluminum and 0.1 to 10ffi of copper are formed on the surface of FRM and 39 FRM.
The present invention provides a partially reinforced metal material comprising a layer of an alloy containing 1% zinc and a cast metal joined to the FRM via the alloy layer.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で用いるFRHの繊維としては無機繊維、金属繊
維、無機ウィスカ、金属ウィスカ等が含まれ、長繊維あ
るいは短繊維であってもよい。またFRHのマトリック
ス金属としては強固な表面酸化皮膜を形成し、FRHの
表面に形成する亜鉛合金、すなわち■銅0.1〜10重
量%を含む亜鉛の合金あるいは■アルミニウム1〜5重
世%、m O,1〜10重世%を含む亜鉛の合金(以下
■、■とも亜鉛ロウ材と称する)と合金化しやすい金属
が挙げられる。たとえばアルミニウム、マグネシウム、
チタンおよびこれらの合金等が適用できる。
FRH fibers used in the present invention include inorganic fibers, metal fibers, inorganic whiskers, metal whiskers, etc., and may be long fibers or short fibers. In addition, the matrix metal of FRH is a zinc alloy that forms a strong surface oxide film and is formed on the surface of FRH, i.e., ■ an alloy of zinc containing 0.1 to 10% by weight of copper, or ■ 1 to 5% aluminum, Examples include metals that are easily alloyed with zinc alloys containing 1 to 10% m O (hereinafter both ① and ② are referred to as zinc brazing materials). For example, aluminum, magnesium,
Titanium and alloys thereof can be used.

FRH中の繊維体積含有率は鋳ぐるみ金属と接合上何ら
制約はないが、部分強化金属材料の設計上の要請により
決定される。
Although there are no restrictions on the fiber volume content in the FRH for joining with the cast metal, it is determined by the design requirements of the partially reinforced metal material.

本発明の亜鉛ロウ材は■溶融温度が低い■溶融時にロウ
材自身が酸化されにくい■溶融時の粘度が大きく、その
温度領域が広いという性質を有するため、FRHのマト
リックス金属および鋳ぐるみ金属と容易に合金化し易く
、また、その合金の機械的性質が優れているものである
The zinc brazing material of the present invention has the following characteristics: ■ It has a low melting temperature. ■ It is difficult to oxidize the brazing material itself when melting. ■ It has a high viscosity when melted and has a wide temperature range. Therefore, it is compatible with the matrix metal and cast metal of FRH. It is easy to alloy, and the mechanical properties of the alloy are excellent.

亜鉛ロウ材の合金組成は前記のとおり銅0.1〜10重
量%、残部が亜鉛の合金あるいはアルミニウム1〜5重
量%、銅0.1〜10重量%、残部が亜鉛の合金であり
、より好ましくは銅2〜5重景%、残部が亜鉛の合金あ
るいはアルミニウム4〜5重量%、銅2〜5重景%、残
部が亜鉛の合金である。
As mentioned above, the alloy composition of the zinc brazing material is an alloy of 0.1 to 10% by weight of copper, the balance being zinc, or an alloy of 1 to 5% by weight of aluminum, 0.1 to 10% by weight of copper, and the balance being zinc, and more. Preferably, it is an alloy of 2 to 5 weight percent copper, the balance being zinc, or an alloy of 4 to 5 weight percent aluminum, 2 to 5 weight percent copper, the balance being zinc.

本発明の亜鉛ロウ材の組成範囲をはずれるとFRMと鋳
ぐるみ金属との界面での接着強度が充分に得られない。
If the composition of the zinc brazing material of the present invention is out of the range, sufficient adhesive strength at the interface between the FRM and the cast metal cannot be obtained.

FRMの表面は亜鉛ロウ材を被覆する前に常法の手段に
より清浄する0例えば、ワイヤブラシによる研摩、ブラ
スト処理、化学的処理等適宜選ぶことができる。
The surface of the FRM is cleaned by a conventional method before being coated with the zinc brazing material. For example, polishing with a wire brush, blasting, chemical treatment, etc. can be selected as appropriate.

また本発明はFIIMの強化繊維とマトリックス金属−
亜鉛ロウ材合金との界面での接着強度を向上させるため
に、亜鉛ロウ材にリチウム、ナトリウム、カリウム、セ
シウム、ベリリウム、マグネシウム、カルシウム、スト
ロンチウム、バリウムおよびラジウムから選ばれた一種
または二種以上の金属を含有することができる。この接
着強度向上の機構は亜鉛ロウ材がマトリックス金属中に
浸入していく際、その部分が液相となり、亜鉛ロウ材中
のリチウム、ナトリウム、カリウム、セシウム、ベリリ
ウム、マグネシウム、カルシウム、ストロンチウム、バ
リウムおよびラジウムから選ばれた一種または二種以上
の金属が繊維近傍に晶出することによる。
Further, the present invention provides FIIM reinforcing fibers and matrix metal.
In order to improve the adhesive strength at the interface with the zinc brazing alloy, one or more selected from lithium, sodium, potassium, cesium, beryllium, magnesium, calcium, strontium, barium, and radium is added to the zinc brazing alloy. It can contain metals. The mechanism of this improvement in adhesive strength is that when the zinc brazing material penetrates into the matrix metal, that part becomes a liquid phase, and the lithium, sodium, potassium, cesium, beryllium, magnesium, calcium, strontium, barium in the zinc brazing material This is because one or more metals selected from radium and radium crystallize near the fibers.

リチウム、ナトリウム、カリウム、セシウム、ベIJ 
+Jウム、マグネシウム、カルシウム、ストロンチウム
、バリウムおよびラジウムから選ばれた一種または二種
以上の金属の亜鉛ロウ材への評加量は0.01〜5重量
%であり、より好ましくは0.1〜1重量%である。添
加量が0.01重量%未満では全繊維の近傍に晶出する
には量的に不足しており、5重量%を超えるとマトリッ
クス金属の機械的性質をかえって低下させる。
Lithium, sodium, potassium, cesium, BeIJ
The amount of one or more metals selected from +Jium, magnesium, calcium, strontium, barium, and radium added to the zinc brazing material is 0.01 to 5% by weight, more preferably 0.1 to 5% by weight. It is 1% by weight. If the amount added is less than 0.01% by weight, the amount is insufficient for crystallization in the vicinity of all the fibers, and if it exceeds 5% by weight, the mechanical properties of the matrix metal will be deteriorated.

本発明の亜鉛ロウ材の被覆方法としては次の方法がある
。(1)熔融めっき法:溶融金属浴中に被めっき体を所
要時間浸漬したのち取り出し、溶融金属を凝固させて被
覆する。(2)溶射めっき法:金属を溶融し空気あるい
はガスによって被めっき体表面に溶射する。(3)真空
蒸着法:真空中で金属を加熱蒸発させ、被めっき体表面
に凝固させる(4)スパッタリング法:減圧容器中でグ
ロー放電を起こさせ、陰極のスパッタリング現象を利用
して、表面を被覆する。(5)化学気相めっき法:加熱
されている被めっき体の表面に、化合物の気相を送り、
物体表面における反応によって被覆する。(6)合わせ
圧延法:2種以上の金属・合金を張合わせ圧延する。(
7)拡散接合法:被覆金属と被めっき体を各々の融点以
下の温度で加圧し圧着する。
The method of coating the zinc brazing material of the present invention includes the following method. (1) Melt-dip plating method: The object to be plated is immersed in a molten metal bath for a required period of time, then taken out, and the molten metal is solidified and coated. (2) Thermal spray plating method: Metal is melted and sprayed onto the surface of the object to be plated using air or gas. (3) Vacuum deposition method: The metal is heated to evaporate in vacuum and solidified on the surface of the object to be plated. (4) Sputtering method: A glow discharge is caused in a vacuum container and the surface is coated using the sputtering phenomenon of the cathode. Cover. (5) Chemical vapor phase plating: A vapor phase of a compound is sent onto the surface of the heated object to be plated.
Coating by reaction on the surface of an object. (6) Rolling method: Two or more metals/alloys are rolled together. (
7) Diffusion bonding method: The coated metal and the object to be plated are pressurized and crimped at a temperature below their respective melting points.

いずれの手法も用いることができるが、(2)〜(7)
の方法では亜鉛ロウ材の被覆後、亜鉛ロウ材が溶融する
温度(380〜420″C)で数分間熱処理する必要が
あるため、操作の容易性、コスト面から(1)の溶融め
っき法が最も好ましい。
Any method can be used, but (2) to (7)
In method (1), hot-dip plating method is preferred from the viewpoint of ease of operation and cost, because after coating with zinc brazing material, it is necessary to heat-treat for several minutes at the temperature at which the zinc brazing material melts (380 to 420"C). Most preferred.

FIIMの表面に形成する亜鉛ロウ材の厚さは被覆条件
により決定されるものであるが、本発明の部   ゛分
強化金属材料を得るうえでは亜鉛ロウ材の層が少しでも
存在すれば効果を発現することができる。
The thickness of the zinc brazing material formed on the surface of the FIIM is determined by the coating conditions, but in order to obtain the partially reinforced metal material of the present invention, the presence of even a small layer of zinc brazing material will be effective. can be expressed.

亜鉛ロウ材を被覆したFRMを鋳ぐるみ金属で鋳ぐるむ
方法は既存の技術を利用することができる。
Existing techniques can be used for casting the FRM coated with zinc brazing material with casting metal.

たとえば重力鋳造、低圧鋳造、遠心鋳造、精密鋳造、高
圧凝固鋳造、ダイカスト鋳造等いずれの方法でもよい。
For example, any method such as gravity casting, low pressure casting, centrifugal casting, precision casting, high pressure solidification casting, die casting, etc. may be used.

鋳ぐるみ金属はFIIMのマトリックス金属と同様に亜
鉛ロウ材と合金化しやすい金属であればよく、たとえば
アルミニウム、マグネシウム、チクンおよびこれらの合
金等が適用できる。
The cast metal may be any metal as long as it is easily alloyed with the zinc brazing material like the FIIM matrix metal, and examples thereof include aluminum, magnesium, chikun, and alloys thereof.

〔発明の効果〕〔Effect of the invention〕

以上、詳述したように本発明はFRMの表面に亜鉛ロウ
材を設けて所望の部位に配設したFRMを鋳ぐるみ金属
で鋳ぐるむことによりFRMと鋳ぐるみ金属が充分に接
合してなる部分強化金属材料を提供できるようになった
ため多くの産業分野における機械部品、構造部材に適用
することが可能となりFRMの用途拡大に寄与できるも
のである。
As described in detail above, the present invention provides zinc brazing material on the surface of the FRM and casts the FRM disposed at desired locations with a cast metal, thereby sufficiently bonding the FRM and the cast metal. Since it has become possible to provide a partially reinforced metal material, it can be applied to mechanical parts and structural members in many industrial fields, and can contribute to expanding the use of FRM.

〔実施例] 以下本発明を実施例によりさらに詳しく説明するが、本
発明はこれらによって限定されるものではない。
[Examples] The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited thereto.

実施例1.比較例1.2 アルミナ繊維(住友化学工業■製A1.O,含を量85
重量%、SiO□含有量15重量%、平均繊維径14μ
m、引張強度180kg/mu” 、引張弾性率235
00kg/IIIII2)を強化材としへl−0,5重
量%Ba合金をマトリックスとしたFRM (繊維体積
含有率:Vf=50容量%)容量面に亜鉛ロウ材(Zn
−4,5重量%Al−4,7重量%Cu合金)を熔融め
っき法で被覆した。被覆はワイヤーブラシで表面を研摩
したFRMを380°Cに保持した溶融亜鉛ロウ材中に
30秒間浸漬し行なった。この亜鉛ロウ材を被覆したF
RHの被覆状態をEPM^で観察したところ、FRHの
マトリックス金属と亜鉛ロウ材によって形成した合金の
層は約300μm、表面の亜鉛ロウ材の厚さは50μm
であった。
Example 1. Comparative Example 1.2 Alumina fiber (A1.O manufactured by Sumitomo Chemical Co., Ltd., content 85
Weight%, SiO□ content 15% by weight, average fiber diameter 14μ
m, tensile strength 180 kg/mu”, tensile modulus 235
FRM (fiber volume content: Vf = 50 volume %) with 1-0.5 wt% Ba alloy as a reinforcing material (fiber volume content: Vf = 50 volume %) with zinc brazing material (Zn
-4.5% by weight Al-4.7% by weight Cu alloy) was coated by melt plating. The coating was carried out by immersing the FRM whose surface had been polished with a wire brush in molten zinc brazing material maintained at 380°C for 30 seconds. F coated with this zinc brazing material
When observing the RH coating state using EPM^, the alloy layer formed by the FRH matrix metal and zinc brazing material was approximately 300 μm thick, and the thickness of the zinc brazing material on the surface was 50 μm.
Met.

比較例として上記FRMの表面に同様な手法で、亜鉛お
よび5重量%アルミニウムー残部亜鉛合金を被覆した。
As a comparative example, the surface of the FRM described above was coated with zinc and a 5 wt % aluminum-balance zinc alloy in the same manner.

亜鉛の溶融温度は420°C25ff!量%アルミニウ
ムー残部亜鉛合金の溶融温度は400″Cとした。これ
らの被覆状態は、FRMと亜鉛および亜鉛合金によって
形成した合金の層は一部に存在しており、その部分の深
さは、亜鉛で約10μm、5重量%アルミニウムー残部
亜鉛合金で10〜50μmであったが、多くの部分で未
溶着であり、FRMの表面に亜鉛又は亜鉛合金が被覆さ
れているだけの状態であった。
The melting temperature of zinc is 420°C25ff! The melting temperature of the mass% aluminum-balance zinc alloy was 400"C.The coating state of these coatings was such that an alloy layer formed by FRM, zinc, and zinc alloy existed in some parts, and the depth of that part was The thickness was approximately 10 μm for zinc and 10 to 50 μm for 5 wt% aluminum-balance zinc alloy, but many parts were not welded and the surface of the FRM was simply coated with zinc or zinc alloy. Ta.

これら3種類の亜鉛および亜鉛合金、亜鉛ロウ材を被覆
したFRMをそれぞれ黒鉛鋳型の中に室温にて配置し、
700°CのAC4Dで鋳ぐるんだ。凝固後、FRMと
鋳ぐるみ金属との接合強さを測定するため長さ100m
mX幅10mmx厚さ5mmで接合界面がその長さ方向
で中央になる引張試験片を作製した。引張試験は島津製
作所製オートグラフD%S−500Tで行なった。その
測定結果を下表に示す。
These three types of zinc, zinc alloy, and FRM coated with zinc brazing material were each placed in a graphite mold at room temperature,
Cast in AC4D at 700°C. After solidification, a length of 100 m was measured to measure the bonding strength between the FRM and the cast metal.
A tensile test piece was prepared with a width of 10 mm and a thickness of 5 mm, with the bonding interface at the center in the length direction. The tensile test was conducted using Autograph D%S-500T manufactured by Shimadzu Corporation. The measurement results are shown in the table below.

◎良好、八一部分のみ接合、×悪い 実施例2 実施例1で示したアルミナ繊維を強化材としAl−5重
量%Cu−0,5重量%Ba合金をマトリックスとした
FRM (Vf−50容量%)を80m1IIX 15
InIn X 5 m(繊維方向は80陥の方向)の形
状に2本切りだし、1本はそのままで、もう1本には、
亜鉛ロウ材(Zn−4,5重量%Cu合金)を実施例1
と同じ条件で溶融めっき法により被覆した。  FRM
と亜鉛ロウ材の合金層の深さは200μmであった。こ
れらのFllMを一部に組み込んだ第1図に示すコネク
ティングロッドを高圧凝固鋳造法で成形した。
◎Good, only 81 parts joined, ×Bad Example 2 FRM (Vf-50 volume% ) 80m1IIX 15
Two pieces of InIn were cut into a shape of 5 m (fiber direction is 80-fold direction), one was left as is, and the other was
Example 1 Zinc brazing material (Zn-4,5% by weight Cu alloy)
It was coated by hot-dip plating under the same conditions as . F.R.M.
The depth of the alloy layer of the and zinc brazing material was 200 μm. A connecting rod shown in FIG. 1 in which these FLIMs were partially incorporated was molded by high-pressure solidification casting.

第1図は本発明の一具体例のコネクティグロンドを示す
概略図であり、1は鋳ぐるみ金属のACIAアルミニウ
ム合金、2はFIIMである。成形条件は溶湯温度85
0°C1溶湯鍛造圧力500kg/c+aで行なった。
FIG. 1 is a schematic diagram showing a connecting grommet according to a specific example of the present invention, in which numeral 1 is ACIA aluminum alloy as a cast metal, and numeral 2 is FIIM. Molding conditions are molten metal temperature 85
The forging was carried out at 0°C1 molten metal forging pressure of 500 kg/c+a.

成形したコネクティングロッドを観察すると亜鉛ロウ材
を被覆しなかったコネクティングロッドはFRMと鋳ぐ
るみ金属であるACIAとの界面で剥れていた。これは
、凝固時の熱収縮の差による熱応力に耐えるだけの接合
強度をもっていないために発生したものと思われる。一
方、亜鉛ロウ材を被覆して鋳ぐるんだコネクティングロ
ッドは界面で強く接合しており、剥れは観察されなかっ
た。
When the formed connecting rod was observed, it was found that the connecting rod that was not coated with zinc brazing material was peeled off at the interface between the FRM and the cast metal ACIA. This seems to have occurred because the bonding strength was not strong enough to withstand the thermal stress caused by the difference in thermal contraction during solidification. On the other hand, the connecting rod coated and cast with zinc brazing material was strongly bonded at the interface, and no peeling was observed.

実施例3 実施例1で示したアルミナ繊維を強化材とし、Al−0
,5重量%Ba合金をマトリックスとしたFRM CV
f−35容量%)で290mg+X100 MX O,
4mm (繊維は平織クロス)のシート状のものを製作
した。該FRMの両面に亜鉛ロウ材(Zu−4重量%A
1−5重量%Cu−0,3重量%88合金)を実施例1
と同じ溶融めつき法で被覆したのち、400°Cに加熱
してダイカスト金型の外周に沿って配置した。  FR
FIと亜鉛ロウ材の合金層の深さは100μmであった
Example 3 Using the alumina fiber shown in Example 1 as a reinforcing material, Al-0
, FRM CV with 5 wt% Ba alloy as matrix
f-35 volume%) 290mg+X100 MX O,
A 4 mm sheet (fiber is plain weave cloth) was produced. Zinc brazing material (Zu-4wt%A) was applied to both sides of the FRM.
Example 1
After coating using the same melt plating method as above, it was heated to 400°C and placed along the outer periphery of a die-casting mold. F.R.
The depth of the alloy layer of FI and zinc brazing material was 100 μm.

次いでこのFRMを鋳ぐるみ金属ADC12でダイカス
ト機により鋳ぐるんだ。ダイカスト条件は、溶湯温度6
80°C1鋳造圧力1000kg/cJで第2図に示す
パイプを成形した。第2図は本発明の一具体例ノバイブ
を示す斜視図である。このパイプは内圧容器として使用
されるもので第2図の4がFRMで3が鋳ぐるみ金属本
体でADC12アルミニウム合金である。
Next, this FRM was cast using a die casting machine using a casting metal ADC12. Die casting conditions are molten metal temperature 6
The pipe shown in Fig. 2 was molded at 80°C and a casting pressure of 1000 kg/cJ. FIG. 2 is a perspective view showing a Novive, a specific example of the present invention. This pipe is used as an internal pressure vessel, and 4 in FIG. 2 is FRM, and 3 is a cast metal body made of ADC12 aluminum alloy.

このパイプにおいても亜鉛ロウ材の効果により、FRM
と鋳ぐるみ金属との界面は強く接着しており、剥れは観
察されなかった。
In this pipe as well, due to the effect of zinc brazing material, FRM
The interface between the material and the cast metal was strongly bonded, and no peeling was observed.

実施例4 アルミナ短繊維(IC1C1社製サルイル1.O,含有
量96重量%、5ift含有!含有量4、平均繊維長1
〜5cm、平均繊維径3ttm、引張強度150kg/
IIIII:、引張弾性率30000 kg/閾t)と
ACIAで構成されるFRM(Vf−15容量%)を外
径100mmX内径90順×高さ100mの形状にし、
そのFIIMの表面に亜鉛ロウ材(Zn−4,5重量%
Al−4,7重量%Cu−1重量%Sr合金)を実施例
1と同じ溶融めっき法で被覆した。被覆方法は実施例1
と同様で被覆FRHの表面にはEPMA観察で亜鉛ロウ
材とACIAの合金層は300μmの深さまで、亜鉛ロ
ウ材は40μmの厚さで被覆されていた。
Example 4 Alumina staple fiber (Saluil 1.O manufactured by IC1C1, content 96% by weight, 5 ift content! content 4, average fiber length 1
~5cm, average fiber diameter 3ttm, tensile strength 150kg/
III: A FRM (Vf-15 volume %) composed of ACIA with a tensile modulus of 30,000 kg/threshold t) is shaped into an outer diameter of 100 mm x inner diameter of 90 mm x height of 100 m,
Zinc brazing material (Zn-4.5% by weight) was applied to the surface of the FIIM.
Al-4, 7% by weight Cu-1% by weight Sr alloy) was coated by the same hot-dip plating method as in Example 1. The coating method is Example 1
Similarly, EPMA observation revealed that the surface of the coated FRH was coated with an alloy layer of zinc brazing material and ACIA to a depth of 300 μm, and a zinc brazing material with a thickness of 40 μm.

該FRMを実施例3と同様のダイカスト条件により鋳ぐ
るみ金属ADC12で鋳ぐるんだ、溶湯温度は680°
C1鋳造圧力は900kg/c+aで第2図に示すパイ
プを作製した。
The FRM was cast in a cast metal ADC12 under the same die-casting conditions as in Example 3, and the molten metal temperature was 680°.
The C1 casting pressure was 900 kg/c+a, and the pipe shown in FIG. 2 was produced.

このパイプを観察してもFRMと 鋳ぐるみ金属との界
面は強く接合しており、剥れは観察されなかった。
When observing this pipe, the interface between the FRM and the cast metal was strongly bonded, and no peeling was observed.

実施例5 実施例4で示したアルミナ短繊維とマグネシウム合金M
C5で構成されるFRM(Vf=15容量%)容量径1
00mm X内径90mm X高さ100mmの形状に
し、そのFRMの表面に亜鉛ロウ材(Zn−5重量%C
u−1重量%Mg合金)を実施例1と同し溶融めっき法
で被覆した。FRMと亜鉛ロウ材の合金層の深さは10
0μmであった・ 該FRMを実施例3と同様のダイカスト条件により鋳ぐ
るみ金属ADC12で鋳ぐるみ第2図に示すパイプを作
製した。
Example 5 Alumina short fibers and magnesium alloy M shown in Example 4
FRM composed of C5 (Vf=15 volume%) capacity diameter 1
00mm x inner diameter 90mm x height 100mm, and zinc brazing material (Zn-5wt%C) was applied to the surface of the FRM.
U-1% by weight Mg alloy) was coated using the same hot-dip plating method as in Example 1. The depth of the alloy layer of FRM and zinc brazing material is 10
The FRM was die-cast under the same conditions as in Example 3 using a cast metal ADC12 to produce a pipe shown in FIG. 2.

このパイプを観察してもFRMと鋳ぐるみ金属との界面
は強く接合しており、剥れは観察されなかった 実施例6 炭化ケイ素ウィスカ(タテホ化学工業■製SCd直径0
.05〜0.2 am、長さ10〜40μm、引張強度
2100kg / tm ” 、引張弾性率49000
kg/mm” )と6061合金で構成されるFRM 
(Vf = 20容量%)を実施例4と同様に外径10
0m×内径90ffIffl×高さ100胴の形状とし
、その両面に亜鉛ロウ材(Zn−4重量%A1−2.5
重■%Cu−0,5重量%Ha合金)を実施例1と同じ
溶融めっき法で被覆した。 FRMと亜鉛ロウ材の合金
層の深さは400μmであった。
Even when this pipe was observed, the interface between the FRM and the cast metal was strongly bonded, and no peeling was observed.
.. 05~0.2 am, length 10~40μm, tensile strength 2100kg/tm'', tensile modulus 49000
kg/mm”) and FRM composed of 6061 alloy.
(Vf = 20% by volume) with an outer diameter of 10 as in Example 4.
The shape is 0 m x inner diameter 90 ffl x height 100 m, and zinc brazing material (Zn-4 wt% A1-2.5
% Cu-0.5% Ha alloy) was coated by the same hot-dip plating method as in Example 1. The depth of the alloy layer of FRM and zinc brazing material was 400 μm.

実施例3と同様のダイカスト条件によりFRMを鋳ぐる
み金属ADC−12で鋳ぐるみ、第2図に示すパイプを
作製した。
Under the same die-casting conditions as in Example 3, FRM was cast with cast metal ADC-12 to produce the pipe shown in FIG. 2.

このパイプを観察してもFRMと鋳ぐるみ金属との界面
は強く接合しており、IIIれは観察されなかった。
When this pipe was observed, the interface between the FRM and the cast metal was strongly bonded, and no cracking was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一興体例のコネクティングロッドを示
す概略図であり、第2図は本発明の一興体例のパイプを
示す斜視図である。 1・・・鋳ぐるみ金属本体 2・・・Fl?M 3・・・鋳ぐるみ金属本体 4・・・FR門
FIG. 1 is a schematic diagram showing a connecting rod as an example of a single unit according to the present invention, and FIG. 2 is a perspective view showing a pipe as an example of a single unit according to the present invention. 1... Cast metal body 2... Fl? M 3... Cast metal body 4... FR gate

Claims (3)

【特許請求の範囲】[Claims] (1)繊維強化金属複合材料および該繊維強化金属複合
材料の表面に形成された銅0.1〜10重量%を含む亜
鉛の合金の層および該合金層を介して前記繊維強化複合
材料と接合した鋳ぐるみ金属とからなる部分強化金属材
(1) A fiber-reinforced metal composite material, a zinc alloy layer containing 0.1 to 10% by weight of copper formed on the surface of the fiber-reinforced metal composite material, and bonded to the fiber-reinforced composite material through the alloy layer. Partially reinforced metal material consisting of cast metal
(2)該亜鉛の合金がアルミニウム1〜5重量%含有し
たものである特許請求の範囲第1項記載の部分強化金属
材料
(2) The partially reinforced metal material according to claim 1, wherein the zinc alloy contains 1 to 5% by weight of aluminum.
(3)該亜鉛の合金がリチウム、ナトリウム、カリウム
、セシウム、ベリリウム、マグネシウム、カルシウム、
ストロンチウム、バリウムおよびラジウムから選ばれた
一種または二種以上の金属を0.01〜5重量%含有し
たものである特許請求の範囲第1または2項記載の部分
強化金属材料
(3) The zinc alloy is lithium, sodium, potassium, cesium, beryllium, magnesium, calcium,
The partially reinforced metal material according to claim 1 or 2, which contains 0.01 to 5% by weight of one or more metals selected from strontium, barium, and radium.
JP8346788A 1988-04-04 1988-04-04 Partially reinforced metal material Pending JPH01254365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8346788A JPH01254365A (en) 1988-04-04 1988-04-04 Partially reinforced metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8346788A JPH01254365A (en) 1988-04-04 1988-04-04 Partially reinforced metal material

Publications (1)

Publication Number Publication Date
JPH01254365A true JPH01254365A (en) 1989-10-11

Family

ID=13803273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8346788A Pending JPH01254365A (en) 1988-04-04 1988-04-04 Partially reinforced metal material

Country Status (1)

Country Link
JP (1) JPH01254365A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5295528A (en) * 1991-05-17 1994-03-22 The United States Of America As Represented By The Secretary Of The Navy Centrifugal casting of reinforced articles
US5337803A (en) * 1991-05-17 1994-08-16 The United States Of America As Represented By The Secretary Of The Navy Method of centrifugally casting reinforced composite articles
JP2005145012A (en) * 2003-11-19 2005-06-09 Honda Motor Co Ltd Manufacturing method for metallic member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5295528A (en) * 1991-05-17 1994-03-22 The United States Of America As Represented By The Secretary Of The Navy Centrifugal casting of reinforced articles
US5337803A (en) * 1991-05-17 1994-08-16 The United States Of America As Represented By The Secretary Of The Navy Method of centrifugally casting reinforced composite articles
US6082436A (en) * 1991-05-17 2000-07-04 The United States Of America As Represented By The Secretary Of The Navy Method of centrifugally casting reinforced composite articles
JP2005145012A (en) * 2003-11-19 2005-06-09 Honda Motor Co Ltd Manufacturing method for metallic member

Similar Documents

Publication Publication Date Title
MXPA01011258A (en) Brazing sheet product and method of its manufacture.
EP0238433A2 (en) Titanium-copper-nickel braze filler metal
JP2003526519A (en) Brazing sheet product and method of manufacturing an assembly using the brazing sheet product
KR20030015391A (en) Nickel-plated brazing sheet product
US4643241A (en) Method of preparing composite aluminum material
JPH0587581B2 (en)
US4831707A (en) Method of preparing metal matrix composite materials using metallo-organic solutions for fiber pre-treatment
JPH01254365A (en) Partially reinforced metal material
JP7210259B2 (en) Aluminum bonded body, manufacturing method thereof, and brazing sheet used for aluminum bonded body
Miyase et al. Compatibility of chromium carbide coated graphite fibres with metallic matrices
JPS60194039A (en) Fiber-reinforced aluminum alloy composite material and its production
US2911708A (en) Babbitt-bronze-aluminum bonding process
EP0498719A1 (en) Insert for composite casting
JP2006509635A (en) Brazed sheet product having a clad layer and a coating layer of an iron alloy and method for producing the same
JPS62173065A (en) Production of composite aluminum member
US2550709A (en) Method of coating ferrous metals with magnesium and magnesiumbase alloys
JP2563065B2 (en) Copper alloy lining method
JP3078411B2 (en) Method for manufacturing composite aluminum member
JPH0674193B2 (en) Method for metallizing graphite and member using this method
KR102410808B1 (en) Surface modifying method for galvanized steel sheet and surface modified galvanized steel sheet by thereof
JPH0199775A (en) Base treatment method in melt joining
JP5566155B2 (en) Al alloy cast product and manufacturing method thereof
JP2909511B2 (en) Aluminum composite
JPS5839758A (en) Manufacture of carbonaceous material-metal composite material
JPS6160255A (en) Production of composite aluminum-lead material