JPH01254211A - Substance separator - Google Patents

Substance separator

Info

Publication number
JPH01254211A
JPH01254211A JP8111188A JP8111188A JPH01254211A JP H01254211 A JPH01254211 A JP H01254211A JP 8111188 A JP8111188 A JP 8111188A JP 8111188 A JP8111188 A JP 8111188A JP H01254211 A JPH01254211 A JP H01254211A
Authority
JP
Japan
Prior art keywords
electrodes
conductive polymer
anode
conductive
separation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8111188A
Other languages
Japanese (ja)
Inventor
Takeshi Sasaki
武 佐々木
Akira Otani
彰 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP8111188A priority Critical patent/JPH01254211A/en
Publication of JPH01254211A publication Critical patent/JPH01254211A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form

Abstract

PURPOSE:To obtain a miniaturized deionization equipment by spirally winding a cathode and an anode made of a conductive high molecular layer and interposing a soln. incorporating ions between the electrodes. CONSTITUTION:A substance separator 1 is constituted by interposing a spacer 4 between a cathode 2 and an anode 3 and spirally winding both electrodes 2, 3 and holding them and interposing feed water 10 incorporating ions between both electrodes. The cathode 2 has cation trapping capacity and nickel is used as a conductive supporting material and porous conductive high molecular layers 7 are formed and held to both sides of the supporting material. As the anode, the conductive high molecular layer having anion trapping capacity is utilized. Therefore by such a way, since both electrodes are parallel held and spirally wound and liquid to be treated is allowed to flow between them, pressure drop is made small and deionization can be efficiently performed.

Description

【発明の詳細な説明】 (a)産業上の利用分野 本発明は、荷電物質(イオン)を含む溶液中より電気化
学的に荷電物質を効率良く分離する物質分離装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a substance separation device that efficiently separates charged substances (ions) electrochemically from a solution containing them.

(b)従来の技術 従来、物質を分離する方法として種々の方法が提案され
ている。
(b) Prior Art Conventionally, various methods have been proposed for separating substances.

例えば、荷電物質の分離には、抽出法、イオン交換法、
電気透析法、膜分離法等が採用されており、又、荷電物
質に限らなければ、活性炭やクロマトグラフィ等を泪い
た吸着法や吸収法があり、更に熱拡散法等が挙げられる
For example, to separate charged substances, extraction methods, ion exchange methods,
Electrodialysis methods, membrane separation methods, etc. are employed, and if the method is not limited to charged substances, there are adsorption methods and absorption methods using activated carbon, chromatography, etc., and thermal diffusion methods are also included.

この物質分離には、膜性に代表される圧力差、濃度差や
吸収力の差を利用する吸着、吸収更に抽出、または電位
差を利用する電気透析、特殊な温度差を利用する熱拡散
法等が挙げられる。
This separation of substances includes adsorption, absorption and extraction using pressure differences represented by membranes, differences in concentration and absorption capacity, electrodialysis using potential differences, and thermal diffusion methods using special temperature differences. can be mentioned.

荷電物質の分離方法として、特にイオン交換樹脂を用い
た方法が多用されているが、イオン交換樹脂中での荷電
物質の拡散・移動速度に限界が鳥リ、その処理量を多く
するにはイオン交換樹脂の量を増やす必要があり、その
結果、処理装置の大型化が避けられないのである。特に
、この場合には、再生システムが必要で、全体の装置が
複雑になるだけでなく、繰作も複雑になる。
As a method for separating charged substances, methods using ion exchange resins are often used, but there is a limit to the diffusion and movement speed of charged substances in the ion exchange resin, and in order to increase the throughput, ion exchange resins are often used. It is necessary to increase the amount of exchange resin, and as a result, the processing equipment inevitably becomes larger. In particular, in this case, a regeneration system is required, which not only complicates the overall apparatus but also complicates the operation.

又、この方法では、イオン交換樹脂の再生に多量の酸も
しくはアルカリを必要とするので、再生処理が煩瑣であ
るうえに、この酸やアルカリは一般に毒・劇物でその取
り扱いには相当の注意が必要であり、加えて、イオン交
換樹脂中のイオン置換基が溶液中のイオンを強固に吸着
した場合は、再生が困難となって、イオン交換樹脂のラ
イフサイクルが短くなるなどの問題が生じる。
In addition, this method requires a large amount of acid or alkali to regenerate the ion exchange resin, making the regeneration process cumbersome. In addition, these acids and alkalis are generally poisonous and deleterious substances and must be handled with great care. In addition, if the ionic substituents in the ion exchange resin strongly adsorb ions in the solution, regeneration becomes difficult and problems such as a shortened life cycle of the ion exchange resin occur. .

(c)発明が解決しようとする課題 イオン交換、電気透析等の荷電物質の分離方法において
は、分離面での濃度低下と荷電物質の移動、拡散速度の
限界等から、分離速度を無限に速くできない、また、イ
オン交換は粒状物を充填しており、電気透析は、電圧印
加のため平面状にならざるをえない、このため、処理能
力の増大を図るには、分離面の増加による流れ系の変化
やvcrllの大型化が起こり、再生工程を含めて、シ
ステムの複雑化1Rけることかで慇ないなどの間2があ
る。
(c) Problems to be Solved by the Invention In methods for separating charged substances such as ion exchange and electrodialysis, the separation speed can be infinitely increased due to the concentration drop at the separation surface, the movement of the charged substance, and the limit of the diffusion rate. In addition, ion exchange is packed with particulate matter, and electrodialysis has to be planar due to voltage application. Therefore, in order to increase throughput, it is necessary to increase the flow rate by increasing the separation surface. There are some changes in the system, an increase in the size of the vcrll, and the complexity of the system, including the regeneration process.

本発明は、陰・陽画電極を所定の間隔を隔てで平行に保
持させた状態で当該陰・陽極をラセン状に巻き回、保持
し、その電極間にイオンを含む溶液を介在させつつ、所
定の電圧を印加することにより、装置の小型化を実現し
、しかも有効に脱イオンを行う一方、この後、再生液中
で陰・陽画電極間に印加する電圧の極性を逆啄させて、
それぞれの電極から同時に、効率良(それぞれアニオン
及びカチオンを放出させて、′I!l極を再生しうる物
質分離装置を提供することを目的とするものである。
The present invention involves winding and holding negative and positive image electrodes in parallel with a predetermined interval between the negative and anode electrodes, and interposing a solution containing ions between the electrodes. By applying a voltage of
The object of the present invention is to provide a substance separation device that can simultaneously and efficiently release anions and cations from each electrode and regenerate the 'I!l electrode.

(e) ff題を解決するための手段 本発明者らは、上記問題点を解決すべくti、、?!検
討を重ねた結果、再生工程の簡略化、操作性の簡素化を
図るために、特開昭62−258741号公報、特開昭
62−264876号公報に開示されている電気化学的
脱イオンシステムを利用し、二つの電極間の電位差を利
用して脱イオン、再生を行うことが好ましく、しかも導
電性高分子層を用いてなる画電極を所定の間隔を隔てて
平行に保持させた状態で当該画電極をラセン状に巻き回
、保持し、その電極間にイオンを含む溶液を介在させつ
つ、所定の電位を印加すると、有効に脱イオンが行える
のであり、加えて、装置の小型化が実現されて容積効率
の向上を図ることができ、この後、再生液中で両電極間
に印加する電圧の極性を逆転させると画電極から脱イオ
ンが極めて容易に且つ効率良くなしえて電極を再生しう
ろことを見い出し、本発明を完成するに至ったものであ
る。
(e) Means for solving the ff problem In order to solve the above problems, the inventors have attempted to solve the above problem. ! As a result of repeated studies, in order to simplify the regeneration process and simplify the operability, we developed an electrochemical deionization system disclosed in JP-A-62-258741 and JP-A-62-264876. It is preferable to carry out deionization and regeneration using the potential difference between two electrodes, and moreover, with the picture electrodes made of conductive polymer layers held in parallel with a predetermined distance apart. Deionization can be carried out effectively by winding and holding the picture electrode in a spiral shape and applying a predetermined potential while interposing a solution containing ions between the electrodes.In addition, the device can be made more compact. By reversing the polarity of the voltage applied between both electrodes in the regenerating solution, deionization from the picture electrode can be done extremely easily and efficiently, and the electrode can be regenerated. This discovery led to the completion of the present invention.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の物質分離yIcW1は、陰・陽Ti極間にイオ
ンを含む溶液を介在させ、該両電極間に所定の電位を印
加することにより、陰極側でカチオン捕捉能を、陽極側
でアニオン抽促能を発現する導電性高分子層を用いたも
のである。
The material separation yIcW1 of the present invention is achieved by interposing a solution containing ions between the anode and anode Ti electrodes and applying a predetermined potential between the two electrodes, thereby increasing the cation trapping ability on the cathode side and the anion extraction ability on the anode side. It uses a conductive polymer layer that exhibits stimulatory properties.

本発明に用いられる導電性高分子層としては、導電性の
高分子で形成されたものであれば、特に限定されるもの
ではなく、その具体例としては、ピロール、その窒素、
3位及び/又は4位に置換基を有する誘導体、7ラン、
その3位及び/又は4位に置換基を有する誘導体等の複
素環式化合物単量体や、7ニリン、フェノール、千オフ
エノール、これらの誘導体等の芳香族化合物単量体の電
解酸化重合又は化学酸化重合による高分子等を挙げるこ
とができる。つまりポリピロール、ポリチオフェン、ポ
リアニリン、ポリ7ラン等が挙げら熟る・ 又、他の導電性高分子としてはポリアセチレン、ポリ(
1,6−へブタジイン)、ポリフェニレン、ポリフェニ
レン、ポリパ、ラフエニレン、ポリナフタレン、ポリ(
パラ−フェニレンスルフィド)、ポリ(メタ−7二二レ
ンスルフイト)、ポリ(パラ−7二二レンオキシド)等
が挙げられる。
The conductive polymer layer used in the present invention is not particularly limited as long as it is made of a conductive polymer, and specific examples thereof include pyrrole, its nitrogen,
A derivative having a substituent at the 3rd and/or 4th position, 7ran,
Electrolytic oxidation polymerization or chemistry of heterocyclic compound monomers such as derivatives having substituents at the 3- and/or 4-position, and aromatic compound monomers such as 7-niline, phenol, 1,000-ofenol, and their derivatives. Examples include polymers produced by oxidative polymerization. In other words, examples include polypyrrole, polythiophene, polyaniline, poly7rane, etc. Other conductive polymers include polyacetylene, poly(
1,6-hebutadiyne), polyphenylene, polyphenylene, polypa, rough phenylene, polynaphthalene, poly(
(para-phenylene sulfide), poly(meta-722lene sulfite), poly(para-722lene oxide), and the like.

これらの導電性高分子はその製造方法のいかんを問うも
のではなく、使用が可能である。
These conductive polymers can be used without any particular manufacturing method.

さらに具体的には、還元反応によってカチオン捕捉能を
有する導電性高分子は、例えばカチオン捕捉能を有する
 p型導電性高分子の層が用いられ、この導電性高分子
中を容易には拡散し得ないポリアニオンがドーピングさ
れて形成されたものが挙げられる。
More specifically, a layer of a p-type conductive polymer having a cation-trapping ability is used as a conductive polymer having a cation-trapping ability through a reduction reaction, and the conductive polymer does not easily diffuse through the conductive polymer. Examples include those formed by doping with a polyanion that cannot be obtained.

かかるポリアニオンの具体例としては、例えば、ポリビ
ニル硫酸、ポリビニルスルホン酸、ポリスチレンスルホ
ン酸、スルホン化スチレン−ブタノエン共重合体、ポリ
アリルスルホン酸、ポリメタリルスルホン酸、ポリ−2
−アクリル7ミドー2−メチルプロパンスルホン酸等を
挙げることができる。
Specific examples of such polyanions include polyvinyl sulfuric acid, polyvinyl sulfonic acid, polystyrene sulfonic acid, sulfonated styrene-butanoene copolymer, polyallylsulfonic acid, polymethallylsulfonic acid, poly-2
-acrylic 7mido-2-methylpropanesulfonic acid and the like.

即ち、ポリアニオンがドーピングされた導電性高分子は
、その還元によって、カチオン捕捉能を有する。
That is, a conductive polymer doped with a polyanion has a cation-trapping ability due to its reduction.

一方、酸化反応によって、アニオン捕捉能を有する導電
性高分子は過塩素酸イオン、塩素イオン、ホウ7フ化水
素酸イオン、硫酸イオン、アルキルスルホン酸イオン等
の低分子量アニオンがドーピングされた、それ自体はカ
チオン性の高分子である。かかる導電性高分子も、電気
化学的に可塑的に酸化還元される。換言すれば、酸化還
元機能を有して、レドフクスボリマーとして機能する。
On the other hand, conductive polymers with anion-trapping ability are doped with low-molecular-weight anions such as perchlorate ions, chloride ions, borohydrofluoride ions, sulfate ions, and alkylsulfonate ions through oxidation reactions. It is itself a cationic polymer. Such conductive polymers are also electrochemically redoxed in a plastic manner. In other words, it has a redox function and functions as a redox polymer.

このような導電性高分子は、溶液中にて還元されること
によってアニオンを放出し、自体は中性となり、再酸化
によって、再びアニオンをドーパントとして捕捉する。
When such a conductive polymer is reduced in a solution, it releases anions and becomes neutral, and upon reoxidation, it captures the anions again as a dopant.

即ち、低分子量アニオンがドーピングされているp型厚
電性有機高分子は、アニオンfall促能を有する。
That is, a p-type thick conductive organic polymer doped with a low molecular weight anion has an anion fall promoting ability.

つまり、アニオン捕捉能をもつ導電性高分子はこの導電
性高分子中を容易に拡散し得る低分子量のアニオンがド
ーピングされた導電性高分子を意味シ、かかる低分子ユ
アニオンの具体例として、例えば、上述した塩素イオン
、ホウ7フ化水素酸イオン、エチル硫酸イオン等の無機
及び有機アニオンを挙げることができる。
In other words, a conductive polymer with anion-trapping ability refers to a conductive polymer doped with a low molecular weight anion that can easily diffuse through the conductive polymer. Specific examples of such low molecular weight anions include, for example. , inorganic and organic anions such as the above-mentioned chlorine ion, borohydrofuride ion, and ethyl sulfate ion.

このように、導電性高分子とドーパン)としてのアニオ
ンとの複合物からなる導電性高分子は、既に知られてい
るように、導電性高分子を形成し得る単量体の溶液中に
低分子!アニオン又はポリアニオンを溶解させ、この溶
液中にて上記単量体を酸化重合させることによって得る
ことができる(例えば、J、Chew、Soc、、Ch
ew、Commun、 、1979.635や、特開昭
59−98165号公報)。
In this way, as is already known, a conductive polymer consisting of a composite of a conductive polymer and an anion (as a dopane) can be prepared by forming a conductive polymer in a solution of a monomer capable of forming a conductive polymer. molecule! It can be obtained by dissolving an anion or a polyanion and oxidatively polymerizing the above monomer in this solution (for example, J, Chew, Soc, Ch.
ew, Common, 1979.635, and Japanese Patent Application Laid-Open No. 1988-98165).

この酸化重合の方法は、特に制限されるものではなく、
電解酸化重合、化学酸化重合、光酸化重合の中から適宜
選ばれる。
This oxidative polymerization method is not particularly limited,
It is appropriately selected from electrolytic oxidative polymerization, chemical oxidative polymerization, and photooxidative polymerization.

この場合、アニオン捕捉能をもつp型導電性高分子は、
溶液中のアニオンを多量に捕捉し得るように、導電性高
分子を予め部分的に還元し、導電性高分子に静電的に結
合している低分子量アニオンが一部脱ドーピングされて
いるものであることが好ましい、このとき、一般に、導
電性高分子は、脱ドーピングによって導電性から絶縁性
に移行するので、本発明においては、上記部分脱ドーピ
ング量は、用いる導電性高分子や溶液中の対象とするイ
オンの種類等によって適宜に選ばれるが、通常、導電性
高分子が10−’S/am以上の導電性を有する程度に
留とめることが好ましい。
In this case, the p-type conductive polymer with anion-trapping ability is
In order to capture a large amount of anions in the solution, the conductive polymer is partially reduced in advance, and some of the low molecular weight anions electrostatically bound to the conductive polymer are dedoped. In this case, generally conductive polymers transition from conductivity to insulating properties by dedoping, so in the present invention, the above partial dedoping amount is determined depending on the conductive polymer used and in the solution. Although it is appropriately selected depending on the type of ion to be targeted, it is usually preferable that the conductive polymer has a conductivity of 10-'S/am or more.

この脱ドーピングをするために導電性高分子が還元され
るが、その還元方法としては、何ら制限されるものでは
な(、電解還元又は化学還元のいずれによることもでき
るが、脱ドーピング量を容易に制御し得る電解還元によ
るのが好ましい。
The conductive polymer is reduced in order to perform this dedoping, but the reduction method is not limited in any way (either electrolytic reduction or chemical reduction can be used, but the amount of dedoping can be easily reduced). It is preferable to use electrolytic reduction which can be controlled in a controlled manner.

そして、本発明の物質分離装置は、上記の両極を所定の
間隔を隔てて平行に保持させた状態で当該両極をラセン
状に巻き回、保持した。1.7.に最も大きな特徴を有
する。
Then, in the substance separation device of the present invention, the above-mentioned two poles are wound in a helical shape and held in a state where the two poles are held in parallel with a predetermined interval between them. 1.7. It has the greatest characteristics.

即ち、導電性高分子層を用いてなる画電極を所定の間隔
を隔てて平行に保持させた状態で当該両極をラセン状に
巻き回、保持し、その電極間にイオンを含む溶液を介在
させつつ、所定の電圧を印加することにより、装置の小
型化が実現され、しかも有効に脱イオンが行える一方、
この後、再生液中で両電極間に印加する電圧の極性を逆
転させると画電極から脱イオンが極めて容易に且つ効率
良くなしえて電極を再生しうるのである。
That is, the picture electrodes made of conductive polymer layers are held parallel to each other with a predetermined spacing between them, and the two electrodes are wound and held in a spiral shape, and a solution containing ions is interposed between the electrodes. However, by applying a predetermined voltage, the device can be made smaller and deionization can be performed effectively.
Thereafter, by reversing the polarity of the voltage applied between the two electrodes in the regenerating solution, the picture electrode can be deionized very easily and efficiently, and the electrode can be regenerated.

又、両極をラセン状に巻き回、保持するには、例えば多
孔質中空体に当該両極を巻き回し、この陰・陽極の基r
a部における溶液流出部が多孔質中空体に開口するよう
構成すればよいのである。
In addition, in order to wind and hold both poles in a spiral shape, for example, the poles are wound around a porous hollow body, and the base r of the negative and anode is
What is necessary is to configure the solution outflow part in part a to open into the porous hollow body.

このように両電極を平行に保持し、ラセン状に巻いてい
るため、処理液の流速を上げても圧力損失の増加が抑え
られ、反応面での物質濃度低下も抑えられる。又、これ
ら通常のスパイラル膜モジュールと違って、透過水流路
を必要としないため、構造が簡素化でき、しかもラセン
状にすることにより容積効率が向上しうる。更に、処理
液が陰・Fi電極間当該電極に沿って流れつつ脱イオン
がなされ、極めてその効率が良いのである。
Since both electrodes are held in parallel and wound in a helical shape in this way, an increase in pressure loss is suppressed even when the flow rate of the processing liquid is increased, and a decrease in substance concentration on the reaction surface is also suppressed. Further, unlike these ordinary spiral membrane modules, since a permeate flow path is not required, the structure can be simplified, and the volumetric efficiency can be improved by forming the module in a helical shape. Furthermore, deionization is performed while the processing liquid flows along the electrode between the negative and Fi electrodes, which is extremely efficient.

本発明の物質分離装置において、両電極が導電性支持体
に導電性高分子層を保持させて形成されたものを用いる
ことにより、当ズ電極からのリードが容易になしうる上
、導電性高分子の保持が確実にな′しえ、しかも電極全
体の強度を茗しく向上させることができるのであり、そ
の結果、電極をうセン状に巻き回するのが容易になしえ
るのである。
In the substance separation device of the present invention, by using both electrodes formed by holding a conductive polymer layer on a conductive support, leads from the electrodes can be easily made, and the conductive polymer layer is Molecules can be held securely, and the strength of the entire electrode can be significantly improved. As a result, the electrode can be easily wound in a spiral shape.

上記導電性支持体としては、例えば、白金、金、ステン
レス、ニッケル等の金属、又は酸化インク1ウム、酸化
スズ、ITO等の導電性金R酸化物、或いはカーボン、
グラ7フイト等が挙げられる。
Examples of the conductive support include metals such as platinum, gold, stainless steel, and nickel, or conductive gold R oxides such as ink oxide, tin oxide, and ITO, or carbon,
Examples include Graph 7 Phyto.

本発明の物質分離装置において、導電性高分子層が多孔
質化されたものを用いることにより、その表面積が著し
く広くなり、イオンを含む溶液がらの脱イオンの効率や
電極を逆転させての電極の再生が着しく容易になしうる
のである。
In the material separation device of the present invention, by using a porous conductive polymer layer, its surface area is significantly increased, which improves the efficiency of deionizing a solution containing ions and improves the efficiency of deionizing a solution containing ions by reversing the electrodes. can be regenerated quickly and easily.

このように多孔性電極を形成するには、上記導電性支持
体を多孔化し、この表面に導電性高分子層を保持させれ
ばよく、これによって、表面積の増加、つまり反応面の
゛増加が実現されて脱イオンや再生が一層効率良く達成
しうるのである。
In order to form a porous electrode in this way, it is sufficient to make the conductive support porous and hold a conductive polymer layer on the surface of the conductive support, thereby increasing the surface area, that is, the reaction surface. This allows deionization and regeneration to be achieved more efficiently.

この場合において、多孔度は、用途に応じて任意に選択
しうるが、反応面積の増大と電極の強度等の観点より、
各電極の全面積の10〜80%の範囲とするのが望まし
い。
In this case, the porosity can be arbitrarily selected depending on the application, but from the viewpoint of increasing the reaction area and strength of the electrode,
It is desirable that the area be in the range of 10 to 80% of the total area of each electrode.

本発明において、導電性支持体に導電性高分子を保持さ
せる方法としでは、特に限定されるものではないが、例
えば導電性高分子自身が可溶性であれば、溶解後、塗布
し、多孔化する方法や、不溶性であれば、結着剤等の充
填剤を添加し、成形加工するなどの方法が好適に採用さ
れる。
In the present invention, the method for holding the conductive polymer on the conductive support is not particularly limited, but for example, if the conductive polymer itself is soluble, it may be coated after dissolving to make it porous. If it is insoluble, a method such as adding a filler such as a binder and molding it is preferably adopted.

・本発明の物質分離装置におい□ては、カチオン捕捉能
をもつ導電性高分子層と′アニオン捕捉能を6つ導電性
高分子層を用い、この両電極間にイオンを含む溶液を介
在させつつ当該陰・陽電極を電位負荷yIcr!1を介
して電気的に接続し、これら電極間に電圧を印加して、
溶液中のイオンを電極に可逆的に捕捉放出させ、このよ
うにして、イオンを処理し、また、電極を電気化学的に
再生するものである。
・In the substance separation device of the present invention, a conductive polymer layer with cation trapping ability and 6 conductive polymer layers with anion trapping ability are used, and a solution containing ions is interposed between these two electrodes. While applying a potential load to the negative and positive electrodes, yIcr! 1 and applying a voltage between these electrodes,
The ions in the solution are reversibly captured and released by the electrode, and in this way the ions are processed and the electrode is electrochemically regenerated.

即ち、本発明の物質分離装置によれば、両電極間にイオ
ンを含む溶液を介在させつつ、カチオン捕捉能をもつ導
電性高分子層を陰極とし、アニオン捕捉能をもつ導電性
高分子層を陽極とする電圧を印加しで、このアニオン抽
促能をもつ導電性高分子層を酸化すると共に、上記カチ
オン捕捉能をもつ型導電性高分子層を還元することによ
って、溶液中のアニオンは陽極に捕捉され、他方、溶液
中のカチオンは陰極に捕捉される。
That is, according to the substance separation device of the present invention, a solution containing ions is interposed between both electrodes, a conductive polymer layer having a cation trapping ability is used as a cathode, and a conductive polymer layer having an anion trapping ability is used as a cathode. By applying a voltage that acts as an anode to oxidize this conductive polymer layer with anion extraction ability, and reducing the conductive polymer layer with cation trapping ability, the anions in the solution become an anode. On the other hand, cations in solution are trapped at the cathode.

陰・陽電極間に印加する負荷電圧は、電極上のそれぞれ
の導電性高分子層の酸化還元電位によって適宜に選ばれ
るが、通常はrlLvである。
The load voltage applied between the negative and positive electrodes is appropriately selected depending on the redox potential of each conductive polymer layer on the electrode, but is usually rlLv.

次いで、本発明の物質分離装置において、印加電圧の極
性を逆転させて、アニオン捕捉性の電極を陰極とし、一
方、カチオン捕捉性の電極を陽極として、アニオン捕捉
能をもつ導電性高分子層を還元すると共に、カチオン捕
捉能をもつ導電性高分子層を酸化することによって、そ
れぞれの電極が捕捉していたアニオン及びカチオンがそ
れぞれ溶液中に放出されると共に、このようにして、そ
れぞれの電極が電気化学的に再生される。
Next, in the substance separation device of the present invention, the polarity of the applied voltage is reversed, and the anion-trapping electrode is used as the cathode, while the cation-trapping electrode is used as the anode, so that the conductive polymer layer with anion-trapping ability is formed. By reducing and oxidizing the conductive polymer layer with cation trapping ability, the anions and cations trapped by each electrode are released into the solution, and in this way, each electrode Regenerated electrochemically.

本発明において用いるイオンを含む溶液は、その媒体が
水であっても、有機溶剤であっても、また、これらの混
合物であってもよく、媒体において何ら制限されるもの
ではない。
The medium of the ion-containing solution used in the present invention may be water, an organic solvent, or a mixture thereof, and the medium is not limited in any way.

(e)作用 本発明の物質分離装置は、上記構成を有し、導電性高分
子層を用いてなる陰・陽?4[Iを所定の間隔を隔てて
平行に保持させた状態で当該両極をうセン状に巻き回、
保持し、その電極間にイオンを含む溶液を介在させつつ
、所定の電位を印加するものであり、このため装置の小
型化が実現されて容積効率の向上を図ることができるの
であり、しかも有効1こ脱イオンが行える一力、この後
、再生液中で両電極間に印加する電圧の極性を逆転させ
ると画電極から脱イオンが極めて容易に且つ効率良くな
しえて7に極を再生しうる作用を有するのである。
(e) Function The substance separation device of the present invention has the above-mentioned configuration and uses a conductive polymer layer. 4 [While holding I in parallel with a predetermined interval, wind the two poles in a spiral shape,
This method applies a predetermined potential while interposing a solution containing ions between the electrodes, making it possible to miniaturize the device and improve volumetric efficiency, while also being effective. 1) Deionization can be performed. After that, by reversing the polarity of the voltage applied between the two electrodes in the regenerating solution, deionization from the picture electrode can be done extremely easily and efficiently, and 7. The polarity can be regenerated. It has an effect.

又、このように画電極を平行に保持し、これをラセン状
に巻いてその間に処Fl!液を流すものであるから、処
J!l!液の流速を上げても圧力損失の増加が抑えられ
、また反応面での物′11濃度低下も抑えられるのであ
り、更に、処理液が陰・陽極間を当該電極に沿って流れ
つつ脱イオンがなされるので極めて脱イオン効率が良い
のである。
Also, hold the picture electrodes in parallel in this way, wind them in a helical shape, and apply the Fl! Because it is something that drains liquid, it is a place J! l! Even if the flow rate of the solution is increased, the increase in pressure loss is suppressed, and the decrease in the concentration of substance '11 at the reaction surface is also suppressed.Furthermore, the processing solution is deionized while flowing between the anode and the anode along the electrode. The deionization efficiency is extremely high.

(f)実施例 以下、本発明を実施例に基づき詳細に説明するが、本発
明はこれに限定されるものではない。
(f) Examples Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited thereto.

第1図は本発明の物質分離装置を示す斜視図、第2図は
その○印A部位の拡大断面図を示す。
FIG. 1 is a perspective view showing the substance separation device of the present invention, and FIG. 2 is an enlarged cross-sectional view of the portion marked A.

第1図において、(1)は物質分離装置であり、該物質
分離装置(1)は陰・陽極(2)、(3)と、談両電極
(2)、(3)を所定の間隔(N)を隔てて平行に保持
させるスペーサー(4)更に上記画電極(2)、(3)
を外部電源(図示せず)に電気的に接続するための電位
印加用端子(5a)(5b)からなる。
In FIG. 1, (1) is a material separation device, and the material separation device (1) separates cathode/anode (2), (3) and connecting electrodes (2), (3) at a predetermined interval ( A spacer (4) which separates and holds the image electrodes (2) and (3) in parallel.
It consists of potential application terminals (5a) and (5b) for electrically connecting to an external power source (not shown).

そして、上記画電極(2)、(3)間にスペーサー(4
)を介在させ、これによって、この両極(2)、(3)
を所定の間隔(1)、この場合、51G+6の間隔、を
隔てて平行に保持させた状態で当該画電極(2)、(3
)をラセン状に巻き回、保持し、該画電極(2)、(3
)間にイオンを含む供給水(10)を介在、流通させう
るように構成してなる。
A spacer (4) is provided between the picture electrodes (2) and (3).
), thereby making these two poles (2) and (3)
The picture electrodes (2) and (3
) is wound in a spiral shape and held, and the picture electrodes (2) and (3
) is configured such that supply water (10) containing ions can be interposed and circulated between the two.

この場合、上記陰極(2)は、カチオンfall促能を
有し、ニッケルを導電性支持体(6a)とし、訊支持体
(6a)の両側にポリビニル硫酸をドーピングした0、
2gのポリピロール製の多孔質導電性高分子N(7)を
形成、保持させたものを用い、一方、陽極(3)は、ア
ニオン捕捉能を有し、ニッケルを導電性支持体(6b)
とし、該支持体(61+)の両側に0.2gの還元型ポ
リピロール製の多孔質導電性高分子層(8)を形成、保
持させたものを用いてなる。
In this case, the cathode (2) has a cation fall-promoting ability, has a conductive support (6a) made of nickel, and has polyvinyl sulfate doped on both sides of the support (6a).
A porous conductive polymer N (7) made of 2g of polypyrrole was formed and held thereon, while the anode (3) had an anion trapping ability and nickel was used as a conductive support (6b).
0.2 g of a porous conductive polymer layer (8) made of reduced polypyrrole was formed and held on both sides of the support (61+).

尚、第1図において、(9)は中間部に脱塩水(20)
流入口(図示せず)を備える支持パイプである。
In Figure 1, (9) has demineralized water (20) in the middle.
A support pipe with an inlet (not shown).

この構成により、イオンを含む供給水(10)を物質分
離装置(1)内に供給しつつ、換言すると、陰・陽ff
1(2’I、(3)1ml:[lF水(10)全介在、
流通させつつ当該陰・陽画71極(2)、(3)間に所
定の電位を印加することにより、陰極(2)側でカチオ
ンが捕捉され、一方、陽極(3)側でアニオンが捕捉さ
れる。
With this configuration, while supplying water (10) containing ions into the substance separation device (1), in other words, yin and yang ff
1 (2'I, (3) 1 ml: [IF water (10) total intervention,
By applying a predetermined potential between the negative and positive electrodes 71 (2) and (3) while circulating, cations are captured on the cathode (2) side, while anions are captured on the anode (3) side. Ru.

この場合、上記供給水(10)として3,3X10−”
mol/1の塩化カリウム水溶液55m1を用い、この
供給水(10)を0.22m1〜/c−2の電流密度で
90分間循環しながら通電すると、塩化カリウムの濃度
が2,0XIO−コmoi/1 まで低減した脱塩水(
20)が得られ、脱イオンがなされていることが認めら
れた。
In this case, the above feed water (10) is 3,3X10-"
Using 55 ml of a mol/1 potassium chloride aqueous solution, when this feed water (10) is circulated and energized for 90 minutes at a current density of 0.22 ml to /c-2, the concentration of potassium chloride becomes 2,0XIO-comoi/c-2. Desalinated water reduced to 1 (
20) was obtained, and deionization was confirmed.

また、上記溶液を泪いて、両電極間に所定の逆電圧を印
加し、電流密度0.22wA/c鴎2で90分間循環し
ながら通電すると、塩化カリウムの濃度が3.2X10
−コ纏01/1まで上昇し、再生可能であることが認め
られた。
In addition, when the above solution is poured, a predetermined reverse voltage is applied between both electrodes, and electricity is passed while circulating for 90 minutes at a current density of 0.22 wA/c, the concentration of potassium chloride becomes 3.2 x 10
- It was confirmed that it was possible to reproduce it by increasing the level to 01/1.

(g)発明の効果 本発明の物質分ayl装置において、陰極側でカチオン
捕捉能を、陽極側でアニオン捕促能を発現する導電性高
分子層を用い、陰・陽電極間にイオンを含む溶液を介在
させ、該陰・陽画電極間に所定の電圧を印加することに
より、荷電物質を分離する装置であって、上記陰・陽極
を所定の間隔を隔てて平行に保持させた状態で当譲陰・
陽極をラセン状に巻き回、保持したものは、装置の小型
化が実現されて容積効率の向上を図ることができるので
あり、しかも有効に脱イオンが行える効果を有するので
ある。
(g) Effects of the invention In the substance ayl device of the present invention, a conductive polymer layer that exhibits cation trapping ability on the cathode side and anion trapping ability on the anode side is used, and ions are contained between the negative and anode electrodes. A device that separates charged substances by interposing a solution and applying a predetermined voltage between the negative and positive electrodes. Yuin・
By winding and holding the anode in a helical shape, the device can be made smaller and the volumetric efficiency can be improved, and moreover, it has the effect of effectively deionizing the device.

又、このように画電極を平行に保持し、これをラセン状
に巻いてその間に処Jl液を流すものであるから、処理
液の流速を上げても圧力損失の増加が抑えられ、また反
応面での物質濃度低下も抑えられるのであり、更に、処
理液が両電極間を当該電極に沿って流れつつ脱イオンが
なされるので極めて脱イオン効率が良くなる効果を有す
るのである。
In addition, since the picture electrodes are held in parallel and wound in a spiral shape, and the processing solution is flowed between them, an increase in pressure loss is suppressed even when the flow rate of the processing solution is increased, and the reaction This also suppresses a decrease in substance concentration on the surface, and furthermore, since deionization is performed while the processing liquid flows between the two electrodes and along the electrodes, the deionization efficiency is extremely improved.

更に、これらの結果、荷電物質の分離工程が簡略化でき
再生操作も簡素化でさるため、分離システム全体が省エ
ネルギー、省プロセスとなり、分離コストの低減が図れ
る効果を有するのである。
Furthermore, as a result of these, the separation process of charged substances is simplified and the regeneration operation is also simplified, so the entire separation system becomes energy-saving and process-saving, which has the effect of reducing separation costs.

本発明の物質分離装置において、イオンを捕捉後、該両
電極間に所定の逆電圧を印加することにより、脱イオン
後、再生液中で両電極間に印加する電圧の極性を逆転さ
せろと画電極から脱イオンが極めて容易に且つ効率良く
なしえて電極を再生しうる効果を有するのである。
In the substance separation device of the present invention, by applying a predetermined reverse voltage between the two electrodes after capturing ions, the polarity of the voltage applied between the two electrodes is reversed in the regenerating solution after deionization. This has the effect that the electrode can be deionized very easily and efficiently, allowing the electrode to be regenerated.

本発明の物質分離装置において、陰・陽画電極が導電性
支持体に導電性高分子層を保持させて形成されたものを
用いることにより、当該電極からのリードが容易になし
うる上、導電性高分子の保持が確実になしえ、しかも電
極全体の強度を者しく向上させることができるのであり
、その結果、電極をラセン状に巻き回するのが容易にな
しえ、製造コストの低減を図る効果を有するのである。
In the substance separation device of the present invention, by using negative and positive electrodes formed by holding a conductive polymer layer on a conductive support, leads from the electrodes can be easily made, and the conductive The polymer can be held securely, and the strength of the entire electrode can be significantly improved.As a result, the electrode can be easily wound in a spiral shape, reducing manufacturing costs. It has an effect.

本発明の物M分離装置においで、導電性高分子層が多孔
質化されたものを用いることにより、その表面積が著し
く広くなり、つまり反応面の増加が実現されて、イオン
を含む溶液からの脱イオンの効率や電極を逆転させての
電極の再生が着しく容易になしうる効果を有するのであ
る。
In the substance M separation device of the present invention, by using a porous conductive polymer layer, the surface area is significantly increased, that is, the reaction surface is increased, and a solution containing ions is removed. This has the effect of improving deionization efficiency and regenerating the electrode by reversing the electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第illは本発明の物質分離装置を示す斜視図、FA2
図はその○印A部位の拡大断面図である。 (1)・・・物質分jflIgltr!!、(2)・1
131、(3)・[、(4)・・・スペーサー、(6m
)=(6b)・・・導電性支持体、(7)、(8’)・
・・多孔質導電性高分子層、(9)・・・支持パイプ、
(10)・・・供給水、(20)・・・脱塩水、(1)
・・・間隔。
No. ill is a perspective view showing the substance separation device of the present invention, FA2
The figure is an enlarged cross-sectional view of the part marked A. (1)...Matter jflIgltr! ! , (2)・1
131, (3)・[, (4)...Spacer, (6m
) = (6b)... conductive support, (7), (8').
... Porous conductive polymer layer, (9) ... Support pipe,
(10)...Supplied water, (20)...Demineralized water, (1)
···interval.

Claims (4)

【特許請求の範囲】[Claims] (1)陰極側でカチオン捕捉能を、陽極側でアニオン捕
捉能を発現する導電性高分子層を用い、陰・陽電極間に
イオンを含む溶液を介在させ、該陰・陽電極間に所定の
電圧を印加することにより、荷電物質を分離する装置で
あって、上記陰・陽極を所定の間隔を隔てて平行に保持
させた状態で当該陰・陽極をラセン状に巻き回、保持し
たことを特徴とする物質分離装置。
(1) Using a conductive polymer layer that exhibits cation-trapping ability on the cathode side and anion-trapping ability on the anode side, a solution containing ions is interposed between the negative and anode electrodes, and a predetermined amount of A device for separating charged substances by applying a voltage of A substance separation device featuring:
(2)イオンを捕捉後、該両電極間に所定の逆電圧を印
加することで、両電極を再生することを特徴とする請求
項1記載の物質分離装置。
(2) The substance separation device according to claim 1, wherein after capturing the ions, both electrodes are regenerated by applying a predetermined reverse voltage between the two electrodes.
(3)陰・陽電極が導電性支持体に導電性高分子層を保
持させて形成されている請求項1又は2記載の物質分離
装置。
(3) The substance separation device according to claim 1 or 2, wherein the negative and positive electrodes are formed by holding a conductive polymer layer on a conductive support.
(4)導電性高分子層が多孔質化されている請求項1な
いし3のいずれかに記載の物質分離装置。
(4) The substance separation device according to any one of claims 1 to 3, wherein the conductive polymer layer is porous.
JP8111188A 1988-03-31 1988-03-31 Substance separator Pending JPH01254211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8111188A JPH01254211A (en) 1988-03-31 1988-03-31 Substance separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8111188A JPH01254211A (en) 1988-03-31 1988-03-31 Substance separator

Publications (1)

Publication Number Publication Date
JPH01254211A true JPH01254211A (en) 1989-10-11

Family

ID=13737268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8111188A Pending JPH01254211A (en) 1988-03-31 1988-03-31 Substance separator

Country Status (1)

Country Link
JP (1) JPH01254211A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092805A (en) * 2009-10-27 2011-05-12 Panasonic Electric Works Co Ltd Filter, water treatment apparatus using the same, and method for controlling the water treatment apparatus
CN103990390A (en) * 2014-06-09 2014-08-20 景德镇陶瓷学院 Ionic conductivity macromolecule-based separation membrane element and membrane separation component thereof
CN104209015A (en) * 2014-07-30 2014-12-17 昆明理工大学 Electric-filtering membrane, preparation method and application thereof
JPWO2020235111A1 (en) * 2019-05-23 2020-11-26

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092805A (en) * 2009-10-27 2011-05-12 Panasonic Electric Works Co Ltd Filter, water treatment apparatus using the same, and method for controlling the water treatment apparatus
CN103990390A (en) * 2014-06-09 2014-08-20 景德镇陶瓷学院 Ionic conductivity macromolecule-based separation membrane element and membrane separation component thereof
CN104209015A (en) * 2014-07-30 2014-12-17 昆明理工大学 Electric-filtering membrane, preparation method and application thereof
JPWO2020235111A1 (en) * 2019-05-23 2020-11-26
WO2020235111A1 (en) * 2019-05-23 2020-11-26 株式会社寿通商 Filter unit and separation device and separation method for fluid

Similar Documents

Publication Publication Date Title
Shin et al. A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective
Tang et al. Ion separations with membranes
JP5667577B2 (en) Ion exchange device and method for regenerating the ion exchange material
FI108685B (en) Electrochemical apparatus for emitting electrical current using air electrode
US9233860B2 (en) Supercapacitor and method for making the same
He et al. Monovalent cations permselective membranes with zwitterionic side chains
KR101513446B1 (en) Ion exchange membrane used for flow-electrode capacitive deionization device and flow-electrode capacitive deionization device including the same
Zeng et al. Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries
Yan et al. Balancing osmotic pressure of electrolytes for nanoporous membrane vanadium redox flow battery with a draw solute
KR20150044922A (en) Redox flow cell comprising high molecular weight compounds as redox pair and semipermeable membrane for storage of electrical energy
WO2003003483A2 (en) Redox cell with non-selective permionic separator
JP2004526278A (en) Proton selective conducting membrane
KR20180118712A (en) Composite membrane for flow battery
EP3877341A1 (en) Electrochemical module comprising a flexible membrane-electrode assembly
Zhang et al. Helical configuration channels boost performance in anion exchange membranes
Sharma et al. Ion selective redox active anion exchange membrane: improved performance of vanadium redox flow battery
JPH01254211A (en) Substance separator
Lee et al. Alkaline naphthoquinone‐based redox flow batteries with a crosslinked sulfonated polyphenylsulfone membrane
CN107546038A (en) A kind of concentration difference capacitor
JPH01254210A (en) Substance separator
Lu et al. Advanced Membranes Boost the Industrialization of Flow Battery
Chieng Membrane processes and membrane modification for redox flow battery applications
US20230077400A1 (en) Resin wafer technologies with solution processable ionomers
Li et al. Electrochemical membrane materials and modules
Sata Properties of ion exchange membranes combined with conducting polymers anisotropically—I. emf generation by redox reactions across composite membrane