JPH01253693A - Fuel assembly - Google Patents

Fuel assembly

Info

Publication number
JPH01253693A
JPH01253693A JP63078080A JP7808088A JPH01253693A JP H01253693 A JPH01253693 A JP H01253693A JP 63078080 A JP63078080 A JP 63078080A JP 7808088 A JP7808088 A JP 7808088A JP H01253693 A JPH01253693 A JP H01253693A
Authority
JP
Japan
Prior art keywords
fuel
enrichment
fuel rods
rods
fuel assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63078080A
Other languages
Japanese (ja)
Inventor
Ryohei Ando
安藤 良平
Kiyoshi Ueda
精 植田
Ritsuo Yoshioka
律夫 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP63078080A priority Critical patent/JPH01253693A/en
Priority to DE3901504A priority patent/DE3901504A1/en
Priority to US07/299,238 priority patent/US5009840A/en
Priority to SE8900222A priority patent/SE505363C2/en
Publication of JPH01253693A publication Critical patent/JPH01253693A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To increase a control rod value at a cold temperature, by decreasing a fissile material enrichment of fuel rods mainly facing water gaps at the side where control rods are not inserted, rather than a fissile material enrichment of the other region in a reactor core. CONSTITUTION:An average enrichment of the first layer fuel rods 6, 7, 8, 9, 10, 11, 12, 13 and 14 which face water gaps of the subject fuel assembly, is less than an average enrichment of whole fuel rods, however, in the first layer fuel rods, an average enrichment of fuel rods 6, 7, 8 and 9 which are locate at the side where fuel rods are inserted, is set to be greater than an average enrichment of fuel rods 10, 11, 12 and 14 which are located at the side where fuel rods are not inserted. When a case in which a enrichment distribution in a fuel assembly is set, is considered to be a reference, control rod values at a cold temperature in the cases 1 and 2, are intended to be increased than the reference one.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、沸騰水型原子炉用燃料集合体に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a fuel assembly for a boiling water nuclear reactor.

(従来の技術) 近年、燃料サイクルコス1−の低減化を図るため、燃料
集合体取出時燃焼度を高めることか要望されている。燃
料集合体取出時燃ML度任高めるためには、燃料集合体
の平均濃縮度を高める必要があるが、濃縮度が高くなる
と中性子スベク1−ルの硬化により出力運転時論温時反
応度差が大きくなるとともに制御棒価値も低下するので
、改削基準を満足する炉停止余裕の確保がむずかしくな
る。
(Prior Art) In recent years, in order to reduce the fuel cycle cost 1-, there has been a demand for increasing the burnup at the time of fuel assembly removal. In order to increase the fuel ML at the time of fuel assembly removal, it is necessary to increase the average enrichment of the fuel assembly, but as the enrichment increases, the temperature-temperature reactivity difference during output operation increases due to hardening of the neutron spectrum. As the value of the control rods increases, the value of the control rods also decreases, making it difficult to secure reactor shutdown margin that satisfies the refurbishment standards.

第3図(a)は、従来の燃料集合体の代表的な例を示す
もので、図中の番δ・1〜9はそれぞれ濃縮度の異なる
ウランロンドを表している。各燃料棒の濃縮度を第3図
(b)に示しである。また、符号Wはウォータロッドを
表している。実際に装荷される燃料集合体では、燃料棒
数本にバーナプルポイズンとしてガドリニアが添加され
ているが、バーナプルポイズンは、本発明には直接関係
しないので、以下の説明ではバーナプルポイズンは省略
する。
FIG. 3(a) shows a typical example of a conventional fuel assembly, and the numbers δ·1 to 9 in the figure represent uranium ronds with different enrichment degrees. The enrichment of each fuel rod is shown in FIG. 3(b). Further, the symbol W represents a water rod. In the fuel assembly that is actually loaded, gadolinia is added to several fuel rods as burner pull poison, but since burner pull poison is not directly related to the present invention, burner pull poison will be omitted in the following explanation. do.

上記燃料集合体では、水ギャップに面した燃料棒は水ギ
ャップに面しない燃料棒より出力か出やすいことを考慮
して、水ギヤノブに隣接する燃料棒の平均濃縮度は、2
.6重量%と全燃料棒の平均濃縮度3.0重量%に比べ
、やや小さく設定されている。
In the above fuel assembly, considering that the fuel rods facing the water gap produce more output than the fuel rods not facing the water gap, the average enrichment of the fuel rods adjacent to the water gear knob is 2.
.. This is set to be 6% by weight, which is slightly smaller than the average enrichment of all fuel rods, which is 3.0% by weight.

(発明が解決しようとする課題) 」1記従来の燃料集合体では、燃料化合体内に出力分布
の平担化螢図るために、燃料集合体中央部にウォータロ
ッドを配すとともに水ギャップに隣接した第1層燃料棒
濃縮度をやや低くしている。
(Problems to be Solved by the Invention) 1. In conventional fuel assemblies, in order to even out the power distribution within the fuel assembly, a water rod is placed in the center of the fuel assembly, and a water rod is placed adjacent to the water gap. The enrichment of the first layer fuel rods is slightly lower.

原子炉運転時には、臨界固有値1.0に保たれているの
で、原子炉停止時の未臨界度を大きくして炉停止余裕の
確保を容易にするという観点からは、出力運転時論温時
反応度差(−冷温時無限増倍率一出力運転時無限増倍率
)を小さくすることは有効であり、このために第1層燃
料棒濃縮度を低くするのは、効果的である。この点を利
用した発明は例えば特公昭62−/19946号として
提案されている。
During reactor operation, the critical eigenvalue is maintained at 1.0, so from the perspective of increasing the degree of subcriticality at reactor shutdown and making it easier to secure reactor shutdown margin, the temperature response during power operation is It is effective to reduce the temperature difference (-infinite multiplication factor at cold temperature - infinite multiplication factor at output operation), and for this purpose it is effective to reduce the enrichment of the first layer fuel rods. An invention utilizing this point has been proposed, for example, in Japanese Patent Publication No. 62-19946.

しかしながら、原子炉停止は制御棒を挿入することによ
って行われるので、炉停止の未臨界度を大きくするため
には冷温時の制御棒価値を高めることも重要であるが、
−」二記公報には、この点が考慮されていない不備があ
る。
However, since reactor shutdown is performed by inserting control rods, it is important to increase the value of control rods at cold temperatures in order to increase the subcriticality of reactor shutdown.
-'' Publication No. 2 has a flaw in that this point is not taken into consideration.

本発明は、かかる状況を考慮してなされたもので、従来
の燃料集合体と同一平均濃縮度を用いて出力運転時論温
時反応度差な小さくするた(っでなく、冷温時制御棒価
値は大きくなる燃料集合体を提供することを1」的とす
るものである。
The present invention was made in consideration of such a situation, and is intended to reduce the difference in reactivity at temperature during output operation by using the same average enrichment as the conventional fuel assembly (not to reduce the difference in reactivity at temperature at cold temperature) Its purpose is to provide fuel assemblies of increasing value.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段および作用)上記1」的を
達成するために、本発明は多数の燃料棒を規則的に配置
して構成してなる燃料集合体において、制御棒未挿入側
水ギヤングに面した燃料棒を中心に核分裂性物質の数密
度を他の領域における燃料棒の核分裂性物質の数密度よ
り小さくしたことを特徴としたものである。
(Means and Effects for Solving the Problems) In order to achieve the above object 1, the present invention provides a fuel assembly in which a large number of fuel rods are regularly arranged. The feature is that the number density of fissile material centered on the fuel rod facing the gigang is smaller than the number density of fissile material in the fuel rods in other areas.

したがって、本発明の燃料集合体は制御棒未挿入側水ギ
ヤツブに面した燃料棒を中心に核分裂性物質の数密度を
他の領域における燃料棒の核分裂性物質の数密度より小
さくしているので、制御棒に対面する燃料棒での相対出
力が大きくなり、制御棒価値を高めるとともに水ギャッ
プに隣接する燃料棒平均の相対出力が小さくなり、出力
運転時論温時反応度差を小さくすることにより、炉停止
余裕か増大する。
Therefore, in the fuel assembly of the present invention, the number density of fissile material centered on the fuel rods facing the water gear on the side where no control rods are inserted is made smaller than the number density of fissile material in the fuel rods in other areas. , the relative output of the fuel rod facing the control rod increases, increasing the value of the control rod, and the average relative output of the fuel rods adjacent to the water gap decreases, reducing the temperature-dependent reactivity difference during output operation. This increases the reactor shutdown margin.

(実施例) 本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.

第1図(a)は本発明の一実施例の平面図である。FIG. 1(a) is a plan view of one embodiment of the present invention.

図中番号1〜14はそれぞれ濃縮度の異なるウランロッ
トを表わしており、各燃料棒の濃縮度は第1図(b)に
表している。この第1図(b)の各燃料棒の濃縮度から
分るように水ギャップに隣接する第1−層燃料棒(6,
7,8,9,10,]、1.12.13゜14)の平均
濃縮度は全燃料棒平均濃縮度より小さいが、第1層燃料
棒のうち、制御棒が挿入される側の燃料棒(6,7,8
,9,)の平均濃縮度は、制御棒が挿入されない側の燃
料棒(10,11,1,2゜14)の平均濃縮度より大
きく設定されている。
Numbers 1 to 14 in the figure represent uranium lots with different enrichments, and the enrichment of each fuel rod is shown in FIG. 1(b). As can be seen from the enrichment of each fuel rod in FIG. 1(b), the first layer fuel rods (6, 6,
7, 8, 9, 10,], 1.12.13゜14) is smaller than the average enrichment of all fuel rods, but among the first layer fuel rods, the fuel on the side where the control rod is inserted Stick (6, 7, 8
, 9, ) is set to be larger than the average enrichment of the fuel rods (10, 11, 1, 2° 14) on the side where no control rod is inserted.

次に、本実施例の効果の大きさを示すために、第3図(
a)で同図(b)に示すように燃料集合体内濃縮度分布
を設定した場合をリファレンスとし、燃料集合体平均濃
縮度一定のままで、第1層燃料棒のうち、制御棒が挿入
される側の燃料棒の濃縮度はリファレンスと同程度以下
、制御棒が挿入されない側の燃料棒の濃縮度は、リファ
レンスより小とした第1図(b)のケース1〜4の燃料
棒体内濃縮度分布を設定し、冷温時制御棒価値、出力運
転断冷Kit時反応度差を比較した。また、参考のため
、特公昭62−49946号公報のものを実施した第4
図(a)で、同図(b)の燃料集合体内濃縮度分布(ケ
ース1〜4)を設定した場合とも比較した。
Next, in order to show the magnitude of the effect of this example, Figure 3 (
Using the case where the enrichment distribution within the fuel assembly is set as shown in (b) of the same figure in a) as a reference, the control rod is inserted among the first layer fuel rods while the average enrichment of the fuel assembly remains constant. The enrichment in the fuel rod on the side where the control rod is inserted is the same or lower than the reference, and the enrichment in the fuel rod on the side where the control rod is not inserted is smaller than the reference. The temperature distribution was set, and the control rod value at cold temperature and the difference in reactivity during power operation and cooling kit were compared. Also, for reference, we have also included the fourth version of
In Figure (a), a comparison was also made with the case where the enrichment distribution within the fuel assembly (cases 1 to 4) of Figure (b) was set.

(第1図(b)、第4図(b)に示した同一ケース間で
は、第1層燃料棒平均濃縮度、第1層以外の燃料濃縮度
分布は同一とする)。
(In the same cases shown in FIG. 1(b) and FIG. 4(b), the average enrichment of the fuel rods in the first layer and the fuel enrichment distribution in layers other than the first layer are the same).

第5図は、冷温時制御棒価値の比較を示している。これ
から、」−配本発明の実施例では実線のように、ケース
]、2てはリファレンスより冷温時制御棒価値の増加が
図られている。ケース3,4では、リファレンスよりや
や減少しているが、これはケース番号とともに制御棒に
対面する燃料棒の濃縮度かリファレンスに比べ、かなり
小さく(ケース3で60%、ケース4で約40%)設定
されているためである。それに対し、特公昭62−49
946号のものでは点線のように、リファレンスに比ベ
ケース番号が増すにつれて単調に減少している。
Figure 5 shows a comparison of cold control rod values. From this, in the embodiment of the present invention, as shown by the solid line, in case 2, the value of the control rod in cold and hot conditions is increased compared to the reference. Cases 3 and 4 are slightly reduced compared to the reference, but this is due to the case number and the enrichment of the fuel rods facing the control rods, which is considerably smaller than the reference (60% in case 3 and about 40% in case 4). ) is set. On the other hand,
In No. 946, the case number decreases monotonically as the reference case number increases, as shown by the dotted line.

第6図は出力運転時に冷温時反応度差の比較を示してい
る。本実施例、従来例(特公昭62−49946号)と
もリファレンスより、小さくなっており、炉停止余裕増
大の観点から2つの実施例とも有効なことを示している
。しかしながら、実線は点線より系統的に小さく、冷温
時制御棒価値についてだけでなく、出力運転時論温時反
応度差についても本実施例の方が従来例(特公昭62−
49946号)よりすぐれていることがわかる。
FIG. 6 shows a comparison of the reactivity difference at cold temperature during power operation. Both this example and the conventional example (Japanese Patent Publication No. 62-49946) are smaller than the reference, indicating that both examples are effective from the viewpoint of increasing reactor shutdown margin. However, the solid line is systematically smaller than the dotted line, and the present example is better than the conventional example (Special Publications Publication No. 1983-1986
No. 49946).

第7図は出力運転時冷温停止時反応度差の比較である。FIG. 7 is a comparison of the reactivity difference during power operation and cold shutdown.

この量におけるリファレンスからの増大量が、炉停止余
裕増大につながると考えられる。
It is thought that the increase in this amount from the reference leads to an increase in reactor shutdown margin.

従って、本発明、従来例(特公昭62−4994G号)
とも炉停止余裕の増大を図るために有効な方法を捉示し
ていることがわかるが、本発明の方が従来例(特公昭6
2−49946号)より有効性が高いこともわかる。
Therefore, the present invention, the conventional example (Japanese Patent Publication No. 62-4994G)
It can be seen that both methods capture an effective method for increasing reactor shutdown margin, but the present invention is better than the conventional example
2-49946)).

燃料集合体のカップリングは、燃料集合体間に存在する
水ギャップを通して行われるが、本発明に示した方法は
、制御棒周辺の相対出力はなるへく低下させずに水ギヤ
ツプ周辺の相対出力を低下させることによって冷温時で
の燃料集合体間の分離の度合いを大きくして、炉停止余
裕の増大を図っている。同様に考えに基づ〈発明は、例
えば特願昭62−72990号に見られる。特願昭62
−72990号では、燃料集合体の軸方向に燃料のない
小部分を設けて、冷温時に燃料のない空隙部の上下の燃
料間のカップリンクを小さくしようとしているが、本発
明は、燃料集合体間の水平方向に同様の考えを適用した
ものと言える。
Coupling of fuel assemblies is performed through a water gap that exists between fuel assemblies, and the method shown in the present invention reduces the relative power around the water gap without significantly reducing the relative power around the control rods. By reducing this, the degree of separation between fuel assemblies at cold temperatures is increased, thereby increasing the margin for reactor shutdown. An invention based on the same idea can be found, for example, in Japanese Patent Application No. 72990/1983. Special request 1986
In No. 72990, a small portion without fuel is provided in the axial direction of the fuel assembly to reduce the cup link between the fuels above and below the gap where there is no fuel at cold temperatures, but the present invention It can be said that the same idea is applied to the horizontal direction in between.

第8図は冷温停止時の炉心平均軸方向分布を示すか、出
力分布は炉心」二部に非常に大きく片寄っている。従っ
て、本発明は原子炉運転中に炉停止余裕が最も厳しくな
る時点に炉心平均軸方向出力ビーキングが出しると考え
られる炉心高さを少なくとも含む一部分例えば第8図の
AまたはBで実施すれば十分な効果が得られる。
Figure 8 shows the core average axial distribution during cold shutdown, and the power distribution is extremely biased toward the second part of the core. Therefore, if the present invention is implemented at a portion including at least the core height at which the core average axial power peaking is considered to occur at the point when the reactor shutdown margin becomes the most severe during reactor operation, for example, at A or B in FIG. A sufficient effect can be obtained.

なお、プル1〜ニウ1.239.241の富化度につい
て実施してもウランロンドの場合と同様な効果が得られ
る。
Note that the same effect as in the case of uranium rond can be obtained even if it is carried out for the enrichment levels of Plu 1 to Ni 1.239.241.

第2図は本発明の他の実施例の平面図であり、斜線をほ
どこした燃料棒りは燃料棒内のスタックデンシティ (
stack densj、ty)の小さい燃料棒(中空
燃料棒)とした例を示している。
FIG. 2 is a plan view of another embodiment of the present invention, in which the hatched fuel rods indicate the stack density (
An example of a fuel rod (hollow fuel rod) with a small stack density, ty) is shown.

本実施例の効果を説明するために、第3図(a)で同図
(b)の燃料集合体内濃縮度分布を設定した場合をリフ
ァレンスとし、第2図で斜線をほどこした燃料棒をL、
すなわち、制御棒未挿入側水ギャップに面した燃料を中
心に燃料棒内に穴をあけて中空とし、そこにAR20,
もしくはZrO2等の中性子反応断面積の小さい化学的
に安定な物質をつめ、他の領域にある燃料棒より核分裂
性物質の数密度を小さくしている。そして中空の度合い
をパラメータとした時の冷温時制御棒価値、出力運転時
論温時反応度差、出力運転時冷温停止時反応度差の変化
を第9図〜第11図に示す。
In order to explain the effect of this embodiment, the case where the enrichment distribution within the fuel assembly of FIG. 3(a) is set as shown in FIG. 3(b) is used as a reference, and the shaded fuel rods in FIG. ,
That is, a hole is made in the fuel rod centering on the fuel facing the water gap on the side where the control rod is not inserted, making it hollow, and AR20,
Alternatively, they are filled with chemically stable materials such as ZrO2 that have a small neutron reaction cross section, making the number density of fissile material smaller than in fuel rods in other areas. FIGS. 9 to 11 show changes in the control rod value at cold temperature, the difference in reactivity at temperature during power operation, and the difference in reactivity at cold stop during power operation when the degree of hollowness is used as a parameter.

本実施例も、原子炉運転中炉停止余裕が最も厳しくなる
時点において炉心平均軸方向出力ビーキングが生しると
考えられる炉心高さを含む範囲で実施すれば十分な効果
が得られる。
This embodiment can also produce sufficient effects if it is implemented in a range that includes the core height at which the core average axial power peaking is considered to occur at the point in time during reactor operation when the reactor shutdown margin becomes the most severe.

これらの図から、本実施例によっても前記実施例と同様
の効果が得られることがわかる。
From these figures, it can be seen that the present example also provides the same effects as those of the previous example.

さらに、燃料集合体において少なくとも制御棒に対面せ
ずに水ギャップに面する燃料棒の大部分を中心に、燃料
棒の濃縮度を他の領域の燃料棒の濃縮度より小さくする
こと、あるいは燃料枠内に穴をあけて中空とし、そこに
八0.203 もしくはZrO2等の中性子反応断面積
の小さい化学的に安定な物質をつめて他の領域にある燃
料棒より核分裂性物質の数密度を小さくしても前記各実
施例とは同様の効果が得られる。
Furthermore, in the fuel assembly, the enrichment of the fuel rods is made smaller than the enrichment of the fuel rods in other areas, at least in most of the fuel rods that face the water gap without facing the control rods, or Drill a hole in the frame to make it hollow, and fill it with a chemically stable substance with a small neutron reaction cross section, such as 80.203 or ZrO2, to make the number density of fissile material lower than that of the fuel rods in other areas. Even if it is made smaller, the same effects as those of the above embodiments can be obtained.

〔発明の効果〕〔Effect of the invention〕

以」−説明したように、本発明では従来の燃料集合体と
同一平均濃縮度で比較した場合炉停止余裕の大きな燃料
集合体を提供することができ、設計基準を満足すること
により高濃縮度燃料集合体を作成可能となり、燃料ザイ
クルコスI−の低減を図ることができる。
- As explained above, the present invention can provide a fuel assembly with a large reactor shutdown margin when compared with conventional fuel assemblies at the same average enrichment, and by satisfying the design criteria, it is possible to provide a fuel assembly with a high enrichment level. It becomes possible to create a fuel assembly, and it is possible to reduce the fuel cycle cost I-.

【図面の簡単な説明】[Brief explanation of the drawing]

第1−図(a)は本発明の一実施例の平面図、第1図(
b)は同図(a)の各燃料棒の濃縮度を示す図、第2図
は本発明の他の実施例の平面図、第3図(a)は従来の
燃料集合体の平面図、第3図(b)は同図(a)の各燃
料棒の濃縮度を示す図、第4図(a)は他の従来の燃料
集合体の平面図、第4図(b)は同図(a)の各燃料棒
の濃縮度を示す図、第5図〜第7図はそれぞれ本発明と
従来例の冷温時制御棒価値、出力運転時論温時反応度差
及び出力運転時冷温停止時反応度差を比較したグラフ、
第8図は冷温停止時の炉心平均軸方向分布図、第9図〜
第11図はそれぞれ第2図に示す本発明の冷温時制御棒
価値、出力運転時論温時反応度差及び出力運転時冷温停
止時反応度差を示したグラフである。 1〜14・燃料棒番号   W・・ウォータロy1〜L
・中空燃料棒 (8733)  代理人 弁理士 猪 股 祥 晃(ぼ
か]−名)(a) 全文γとイ斗指1勺≧喉jざ費へL   :  3.0
   (t−t°/、))^0@燃牙11今4ヤ灼a乱
寺崗刀3  =  2.6   (Mllloん)(b
) 第3図 (a) (b) 第4図
Figure 1 (a) is a plan view of one embodiment of the present invention;
b) is a diagram showing the enrichment of each fuel rod in Fig. 2(a), Fig. 2 is a plan view of another embodiment of the present invention, Fig. 3(a) is a plan view of a conventional fuel assembly, Figure 3(b) is a diagram showing the enrichment of each fuel rod in Figure 4(a), Figure 4(a) is a plan view of another conventional fuel assembly, and Figure 4(b) is the same figure. The figure showing the enrichment of each fuel rod in (a), and Figures 5 to 7 are the control rod value at cold temperature, the reactivity difference at temperature during power operation, and the cold shutdown during power operation, respectively, of the present invention and the conventional example. A graph comparing the time reactivity difference,
Figure 8 is a core average axial distribution diagram during cold shutdown, Figures 9~
FIG. 11 is a graph showing the cold control rod value, the reactivity difference during power operation at temperature, and the reactivity difference during power operation and cold shutdown of the present invention shown in FIG. 2, respectively. 1~14・Fuel rod number W...Wataro y1~L
・Hollow fuel rod (8733) Agent Patent attorney Inomata Yoshiaki (boka) - first name) (a) Full text γ and 1 finger ≧ Throat cost L: 3.0
(t-t°/, )) ^0@Mega 11 now 4 ya A Ranji grang sword 3 = 2.6 (Mlllon) (b
) Figure 3 (a) (b) Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)多数の燃料棒を規則的に配置して構成してなる燃
料集合体において、制御棒未挿入側水ギャップに面した
燃料棒を中心に核分裂性物質の数密度を他の領域におけ
る燃料棒の核分裂性物質の数密度より小さくしたことを
特徴とする燃料集合体。
(1) In a fuel assembly formed by regularly arranging a large number of fuel rods, the number density of fissile material in other regions is determined by the number density of fissile material centered on the fuel rod facing the water gap on the side where the control rods are not inserted. A fuel assembly characterized by having a number density smaller than that of the fissile material of the rod.
JP63078080A 1988-01-23 1988-04-01 Fuel assembly Pending JPH01253693A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63078080A JPH01253693A (en) 1988-04-01 1988-04-01 Fuel assembly
DE3901504A DE3901504A1 (en) 1988-01-23 1989-01-19 FUEL ARRANGEMENT FOR CORE REACTORS
US07/299,238 US5009840A (en) 1988-01-23 1989-01-19 Fuel assembly for nuclear reactor
SE8900222A SE505363C2 (en) 1988-01-23 1989-01-23 Nuclear reactor fuel cartridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63078080A JPH01253693A (en) 1988-04-01 1988-04-01 Fuel assembly

Publications (1)

Publication Number Publication Date
JPH01253693A true JPH01253693A (en) 1989-10-09

Family

ID=13651865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63078080A Pending JPH01253693A (en) 1988-01-23 1988-04-01 Fuel assembly

Country Status (1)

Country Link
JP (1) JPH01253693A (en)

Similar Documents

Publication Publication Date Title
JP2510565B2 (en) Reactor fuel assembly
JP2742441B2 (en) Fast breeder reactor core
JPH01253693A (en) Fuel assembly
JPH102980A (en) Manufacture of fuel assembly and fuel assembly
JPH06347579A (en) Core and fuel assembly of fast breed reactor
JPH0666978A (en) Fuel assembly and nuclear reactor core
JPH04265896A (en) Fuel assembly
JPS63139294A (en) Pressurized water type reactor
JPS59132389A (en) Fuel assembly
JP3093289B2 (en) Fuel assembly for boiling water reactor
EP0097372B1 (en) Fast breeder nuclear reactor
JPS63127190A (en) Nuclear reactor fuel aggregate
JP3318210B2 (en) MOX fuel assembly and core
JPS6035032B2 (en) fuel assembly
JPH0315717B2 (en)
JPH0827370B2 (en) Boiling water reactor
JPH0519672B2 (en)
JPH0549958B2 (en)
JPH1194970A (en) Fuel assembly
JPH04268489A (en) Core of fast breeder reactor, fuel assembly and control rod assembly to be used and annihilating method for waste of transuranium elements
JPS5827092A (en) Reactor control rod
JP2942249B1 (en) Fast reactor core
JP2003185776A (en) Method of loading fuel into boiling water reactor
JPH09304566A (en) Reactor fuel element and fuel assembly
JPH058398B2 (en)