JPH0125362B2 - - Google Patents

Info

Publication number
JPH0125362B2
JPH0125362B2 JP61021052A JP2105286A JPH0125362B2 JP H0125362 B2 JPH0125362 B2 JP H0125362B2 JP 61021052 A JP61021052 A JP 61021052A JP 2105286 A JP2105286 A JP 2105286A JP H0125362 B2 JPH0125362 B2 JP H0125362B2
Authority
JP
Japan
Prior art keywords
metal
powder
raw material
cylinder
hip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61021052A
Other languages
Japanese (ja)
Other versions
JPS62180005A (en
Inventor
Nobuyasu Kawai
Hiroshi Takigawa
Tsuneo Tateno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2105286A priority Critical patent/JPS62180005A/en
Publication of JPS62180005A publication Critical patent/JPS62180005A/en
Publication of JPH0125362B2 publication Critical patent/JPH0125362B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産上の利用分野] 本発明は、各種プラスチツク材の射出成形或は
押出成形等に使用される、耐食性及び耐摩耗性の
優れたシリンダ、その他ノズルや複合金属管等の
複合中空部材の製造方法に関するものである。 [従来の技術] 上記の様なプラスチツク材の射出又は押出成形
はかなりの高温条件下で行なわれる為、一部原料
の熱分解は回避しきれず多少の腐食性ガスが生成
することは当然視されている向きもある。特に難
燃化を期してハロゲン含有化合物を配合した場合
には大量のハロゲン含有ガスが発生する。その後
シリンダ内部は常時腐食環境に曝らされることと
なり、シリンダには高レベルの耐食性が要求され
る。しかし成形時に負荷される圧力は相当高く、
且つ強度向上の為に配合されることの多い無機質
充填材は非常の高強度である為シリンダには高レ
ベルの耐摩耗性も要求される。 この様な要求特性を一応備えるものとして従来
はSACMやSCM等の窒化シリンダが汎用されて
おり、この素材は低廉で製造が容易であるといつ
た特徴も有している。しかしながら窒化による硬
化層が0.1mm程度と極めて薄い為、必ずしも十分
な耐食性及び耐摩耗性を発揮しているとは言えな
い。そこで上記の様な過酷な使用条件に耐え得る
シリンダとして遠心鋳造によるバイメタリツクシ
リンダが開発され、これは従来のシリンダに比べ
て格段に優れた性能を有しているところから、需
要が急激に増大してきている。ところがこのバイ
メタリツクシリンダにも問題点がない訳ではな
く、下記の様な種々の問題点が残されている。 遠心鋳造法では製法上の制約からライニング
合金の融点に限点に限界があり、1000〜1100℃
以下の融点を有する成分に限定される。 遠心鋳造法では耐摩耗性改善の為WC等の高
硬度物質を強化材として添加するが、これらの
強化材はマトリツクス成分に比べて比重が大き
い為ライニング層の内部へ偏析し易く、摺動面
となる内周表面側の存在量は極めて僅かであ
る。 遠心鋳造工程で溶融した合金は当然のことな
がらバツクメタル(シリンダ本体を構成する鋼
材)と接触するが、合金層にはバツクメタルか
ら相当量の鉄分が混入してくる為期待されるほ
どの耐食性は得られない。 小径のシリンダでは十分に遠心力が得られな
い為、シリンダ本体に対するライニング材の接
合性を十分に高めることができない。 遠心鋳造により形成されるライニング合金層
は鋳造組織である為成分偏析が著しく且つ金属
間化合物はかなり粗大化している。その為ライ
ニング層の強度及び靭性は良好とは言えず、耐
食性や対摩耗性も不均一である。 [発明が解決しようとする問題点] 一方、バツクメタル内周面に硬化層を形成して
シリンダーを製造する一手法として、従来から焼
ばめ法が知られている。しかしながら該方法で
は、特にセラミツクを硬化層(内筒)に用いた場
合には下記に示す問題がある。 焼ばめを行なう為の許容値は1/1000〜15/100
0程度であるので、セラミツクス内筒の外周面
の仕上研削にはより一層高精度が要求される。 例えば内筒外径寸法が10mmφ程度の小径材を
製造するときには、焼ばめ代が小さくなり焼ば
め法を実施することが困難である。これは焼ば
め代の絶対量が小さいこと及びセラミツクスの
耐熱衝撃が小さいこと等の為、外筒(バツクメ
タル)の温度をあまり上げることができない
(通常最大温度600℃)からである。 上述した従来技術の問題点を解決し得る一つの
方法として第2図及び第3図に示す様な技術が提
案されている。図面を参照しつつ当該技術を説明
する。 第2図に示す如く鋼製シリンダ本体を構成する
バツクメタル1の内周面側に、略同芯状の環状中
空部2を形成しつつ円状のインナパイプ3を配設
し、脱気用を兼ねた粉末充填用バイプ4を設けた
上蓋5で環状中空部2の上部を密封し、一方下部
は下蓋6で密封する。次いでリークテストを行な
つて密封状態を確認した後、粉末充填工程に移
る。即ち粒度調整を終えた原料粉末(金属粉末又
はセラミツクス粉末)8を充填用パイプ4から環
状中空部2内へ万遍なく充填する。充填完了後、
加熱下に真空引きし、環状中空部2内部を完全に
脱気した後真空状態で密封する。こうして原料粉
末8の充填と脱気・密封を終えた組立体を第3図
に示す如くHIP装置9内へ装入しHIP処理を行な
う。 上述の様にしてHIP処理を行なつた後で上端及
び下端を切断除去し、更に周面をBTA処理及び
ホーニング等の仕上げに付してからインナーパイ
プ3を除去することにより、バツクメタル1内面
に強固な強化層の形成されたプラスチツク成形装
置用シリンダが得られるものである。 しかしながら上記の方法においても若干の問題
が残されている。即ち原料粉末8によつて形成さ
れる内筒の内周面を規制する部材として円筒状の
インナーパイプ3を使用した場合には、HIP処理
を施したときにインナーパイプ3の内・外径が膨
張し、しかもその寸法変化(膨張による)の度合
いが周方向に不均一であることから、最終製品に
おける寸法変動の予想が困難である。 又最終機械加工においても、上記寸法変化に起
因してインナーパイプ3の除去後に内面粗加工を
行なうことが必要であり歩留が悪い。この傾向は
原料粉末に難加工性のセラミツクス微粉末を使用
した場合特に顕著なものとして現われる。 本発明は上記の様な事情に着目してなされたも
のであつて、その目的は製造時における寸法精度
をより高精度のものとし、それによつて生産性向
上を実現し得る様な複合中空部材の製造方法を提
供しようとするものである。 [問題点を解決する為の手段] 本発明に係る複合中空部材の製造方法とは、バ
ツクメタルを構成する金属管内に中空部を形成す
る為の中実金属中子を挿入して両者間に環状中空
部を形成し、該環状中空部に原料粉末を充填した
後、当該充填部を脱気、密封後HIP成形する点に
要旨を有するものである。 [作用] 本発明の作用を、図面を参照しつつ説明する。
第1図は本発明方法に従つて製造される鋼製シリ
ンダの概略説明図である。第1図に示した構成は
基本的には第2図に示した構成と類似し、対応す
る部分には同一の参照符号を付す。 まず第1図に示す如くバツクメタル1を構成す
る金属管の内周面側に、中空部を形成する為の中
実金属中子(以下インナーメタルと言う)3aを
挿入してバツクメタル1及びインナーメタル3a
の両者間に環状中空部2を形成する。環状中空部
2の上部及び下部は、脱気用を兼ねた原料粉末充
填用パイプ4を設けた上蓋5及び下蓋6によつて
夫々密封される。 バツクメタル1としてはSCM440,SNCM439,
SUS304,SUS316等の高強度鋼材を使用するの
がよく、インナーメタル3a、上蓋5、下蓋6等
は安価な軟鋼で十分である。尚これらの各部材
は、環状中空部2に面する側を十分に脱脂、清浄
化した後TIG溶接等により組付ければよい。 次いで原料粉末充填工程に移るが、その前にリ
ークテストを行なつて密封状態を確認しておくの
がよい。リーク量が多い場合は補修溶接を行なう
必要がある。 リークテストを終えた後は、粒度調整を終えた
原料粉末を充填用パイプ4から環状中空部2内へ
万遍なく充填する。充填に当たつては組立体に適
度の振動を加えることにより充填の均一度を向上
することができる。充填完了後は加熱しながら真
空引きし、環状中空部2のガスを完全に除去した
後真空状態で密封する。 こうして原料粉末の充填と脱気・密封を終えた
組立体を第4図に示す如くHIP装置9内へ装入し
HIP処理を行なう。 この様にしてHIP処理を行なつた後は上端及び
下端を切断除去し、更に内周面をBTA処理及び
ホーニング等の仕上げ加工に付してインナーメタ
ル3aを除去することにより、内面に強固な強化
層が形成されたプラスチツク成形装置用シリンダ
ーを得ることができる。 本発明は以上の様に構成されるが、要は第2図
に示す様な従来技術における円筒状のインナーパ
イプ3の代りに中空金属中子(インナーメタル)
3aを使用することによつて、下記の利益を得る
ことができるものである。 (1) 中実のインナーメタル3aを使用することに
よつて、HIP処理による寸法変化はバツクメタ
ル1の内・外径の収縮だけとなり、インナーメ
タル3aの外径寸法の変化はほとんどないの
で、最終製品形状に現れる強化層寸法変化の予
想を容易且つ高精度に行なうことができる。 (2) インナーメタル3aの外径を内面粗加工仕上
げの寸法になる様に設定しておけば、最終内面
機械加工における粗加工としてはインナーメタ
ル3aの除去だけで十分であり、ライニング強
化層の加工量が減少し、機械加工性が向上す
る。 (3) 寸法精度が高くなるので、原料粉末8として
特にセラミツクスを用いた場合であつても、
HIP処理後の研削加工は極めてわずかで良く、
場合によつては省略することも可能であるの
で、生産性が著しく向上する。 本発明は上記趣旨から明らかな如く、原料粉末
8として金属粉末又はセラミツクス粉末のいずれ
を使用した場合であつても有効であるが、夫々の
場合における各要件を挙げると下記の如くであ
る。 本発明で用いられる金属粉末の組成は全く制限
されないが下記に示す化学成分からなる耐食・耐
摩耗性合金粉末を一例として挙げることができ
る。 C:0.1〜2.0%(重量%、以下同じ) Si:0.5〜3.0% B:0.5〜3.0% Cr:10〜40% W:10〜30% Cu:0.5〜3.0% 残部:Ni:及び/若しくはCo 上記化学成分範囲は耐食・耐摩耗性を考慮した
ものであるが、夫々成分範囲の理由は下記の通り
である。 C:0.1〜2.0% CはCr及びWと炭化物を形成し耐摩耗性を高
めるうえで欠くことのできない元素であり、0.1
%未満では上記の効果が有効に発揮されない。但
しCが大過ぎると耐食性及び靭性が乏しくなるの
で2.0%以下に抑えなければならない。Cのより
好ましい含有率は0.5〜1.5%である。 Si:0.5〜3.0% 本発明に係るシリンダの作製は、後述する如く
所定化学成分の合金溶湯からアトマイズ法によつ
て合金粉を得た後、熱間静水圧加圧法(HIP)等
により所定の寸法・形状に成形することによつて
行なわれるが、Siはアトマイズ処理時における合
金溶湯の流動性を高め粉末粒径を均一化する為の
必須元素であり、0.5%未満ではこうした効果が
有効に発揮されない。しかし大過ぎると靭性に顕
著な悪影響を及ぼすので3.0%以下に抑えなけれ
ばならない。Siのより好ましい範囲は1.0〜2.0%
である。 B:0.5〜3.0% BはCrやWと硼化物を形成し耐食性及び耐摩
耗性の向上に寄与すると共にNi又はCoマトリツ
クスの硬さを高める作用があり、これらの作用を
有効に発揮される為には0.5%以上含有させなけ
ればならない。しかし3.0%を超えると合金の靭
性が低下するばかりでなく、合金の融点が過度に
低下しアトマイズ作業及びHIP作業が困難にな
る。Bのより好ましい含有率は1.0〜2.0%であ
る。 Cr:10〜40% CrはB及びCと硼化物及び炭化物を形成する
と共にNi又はCoマトリツクス中に固溶し、耐食
性及び耐摩耗性を高めるうえで不可欠の元素であ
り、10%未満ではこれらの効果が有効に発揮され
ず、特に耐硝酸食性が劣悪になる。しかし多過ぎ
ると合金の靭性が低くなるので40%以下に抑えな
ければならない。 W:10〜30% WはB及びCと硼化物及び炭化物を形成し耐食
性及び耐摩耗性を高める作用があり、10%未満で
はそれらの効果が十分に発揮されない。しかし30
%を超えると合金が過度に硬質化し靭性が劣悪に
なる。 Cu:0.5〜3.0% CuはNi又はCoマトリツクス中に固溶し、特に
耐塩酸腐食性の向上に寄与する。0.5%未満では
その効果が有効に発揮されず、一方3.0%を超え
ると合金の靭性が劣悪になる。 残部成分:Ni及び/若しくはCo マトリツクス成分として最低限の耐食性及び耐
摩耗性を確保する為、残部成分はNi及び/若し
くはCoとする。尚NiやCo或は上記必須合金成分
の配合に伴ない不可避不純物としてP,S,Fe,
Mn,Al等が微量混入してくることがあるが、こ
れらは何れも不純物量(1.0%程度以下)である
限り格別の悪影響を及ぼすことはない。 一方セラミツクス粉末としても何ら限定される
ものではないが、Al2O3やPSZ等の酸化物基のも
のを例示することができる。 [実施例] 実施例 1 C:1.0%、Si:3.2%、B:3.08%、Ni:13.75
%、Cr:25.1%、W:16.7%、Cu:1.22%、残部
が実質的にCoの組成で粒度が147μm以下のアト
マイズ金属粉末を用い、第1図及び第4図に示し
た本発明方法にて複合中空部材を製造した。又比
較の為に、上記金属粉末を用いて第2図及び第3
図に示した従来方法に準じて複合中空部材を製造
した。尚夫々の金属粉末の環状中空部2へ充填に
際しては、300℃で、10-5orrの真空中で1時間脱
気した金属粉末を真空下で環状中空部2内へ充填
した。金属粉末充填後に真空密封し、夫々の組立
体を第3図及び第4図に示した様なHIP装置9内
へ装入し、930℃、1000Kg/cm2で3時間のHIP処
理を行なつた。 その結果、金属粉末充填層は100%の密度で固
まつて完全に拡散接合し、バツクメタル1の内面
に薄肉の耐食性金属層が形成された。この場合に
おけるバツクメタル1、インナーパイプ3(従来
技術)及びインナーメタル3a(本発明方法)の
寸法変化を下記第1表に示す。尚寸法測定箇所は
第5図1,2(横断面図)に示す通りである。
[Field of Industrial Application] The present invention is applicable to the production of cylinders with excellent corrosion resistance and wear resistance, which are used in injection molding or extrusion molding of various plastic materials, and other composite hollow members such as nozzles and composite metal pipes. It is about the method. [Prior Art] Since injection or extrusion molding of plastic materials as described above is carried out under considerably high temperature conditions, thermal decomposition of some raw materials cannot be avoided and it is natural that some corrosive gas will be generated. Some people do. In particular, when a halogen-containing compound is added for flame retardancy, a large amount of halogen-containing gas is generated. After that, the inside of the cylinder is constantly exposed to a corrosive environment, and the cylinder is required to have a high level of corrosion resistance. However, the pressure applied during molding is quite high;
In addition, inorganic fillers that are often added to improve strength have extremely high strength, so cylinders are also required to have a high level of wear resistance. Conventionally, nitrided cylinders such as SACM and SCM have been widely used as materials that meet these required characteristics, and these materials also have the characteristics of being inexpensive and easy to manufacture. However, since the hardened layer due to nitriding is extremely thin at about 0.1 mm, it cannot be said that it necessarily exhibits sufficient corrosion resistance and wear resistance. Therefore, a bimetallic cylinder made by centrifugal casting was developed as a cylinder that could withstand the harsh operating conditions mentioned above. Demand for this cylinder increased rapidly as it had much superior performance compared to conventional cylinders. I've been doing it. However, this bimetallic cylinder is not without its problems, and various problems remain as described below. In the centrifugal casting method, there is a limit to the melting point of the lining alloy due to manufacturing constraints, which is 1000 to 1100℃.
Limited to ingredients with melting points below. In the centrifugal casting method, high-hardness substances such as WC are added as reinforcing materials to improve wear resistance, but these reinforcing materials have a higher specific gravity than the matrix components, so they tend to segregate inside the lining layer and cause damage to the sliding surface. The amount present on the inner peripheral surface side is extremely small. The alloy melted during the centrifugal casting process naturally comes into contact with the back metal (steel material that makes up the cylinder body), but because a considerable amount of iron from the back metal mixes into the alloy layer, it does not have the expected corrosion resistance. I can't. Since sufficient centrifugal force cannot be obtained with a small-diameter cylinder, it is not possible to sufficiently improve the bondability of the lining material to the cylinder body. Since the lining alloy layer formed by centrifugal casting has a cast structure, component segregation is significant and intermetallic compounds are considerably coarsened. Therefore, the strength and toughness of the lining layer are not good, and the corrosion resistance and abrasion resistance are also uneven. [Problems to be Solved by the Invention] On the other hand, a shrink fit method has been known as a method for manufacturing a cylinder by forming a hardened layer on the inner peripheral surface of a back metal. However, this method has the following problems, especially when ceramic is used for the hardened layer (inner cylinder). Tolerance for shrink fit is 1/1000 to 15/100
Since it is approximately 0, even higher precision is required for finish grinding of the outer circumferential surface of the ceramic inner cylinder. For example, when manufacturing a small-diameter material with an inner cylinder outer diameter of about 10 mmφ, the shrink fit margin becomes small, making it difficult to implement the shrink fit method. This is because the temperature of the outer cylinder (back metal) cannot be raised very much (usually maximum temperature 600°C) because the absolute amount of shrinkage fit is small and the thermal shock resistance of ceramics is small. A technique as shown in FIGS. 2 and 3 has been proposed as a method for solving the problems of the prior art described above. The technology will be explained with reference to the drawings. As shown in Fig. 2, a circular inner pipe 3 is disposed on the inner circumferential side of a back metal 1 constituting a steel cylinder body, forming a substantially concentric annular hollow part 2, and a circular inner pipe 3 is provided for degassing. The upper part of the annular hollow part 2 is sealed with an upper lid 5 provided with a powder filling pipe 4 which also serves as a powder filling pipe 4, while the lower part is sealed with a lower lid 6. Next, a leak test is performed to confirm the sealing state, and then the powder filling process is started. That is, the raw material powder (metal powder or ceramic powder) 8 whose particle size has been adjusted is evenly filled into the annular hollow part 2 through the filling pipe 4. After filling is completed,
The inside of the annular hollow part 2 is completely degassed by evacuation while heating and then sealed in a vacuum state. The assembly, which has been filled with the raw material powder 8, deaerated and sealed, is loaded into the HIP device 9 as shown in FIG. 3 and subjected to HIP processing. After performing HIP treatment as described above, the upper and lower ends are cut and removed, and the peripheral surface is subjected to finishing such as BTA treatment and honing, and then the inner pipe 3 is removed. A cylinder for a plastic molding device in which a strong reinforcing layer is formed is obtained. However, some problems remain in the above method as well. In other words, when the cylindrical inner pipe 3 is used as a member for regulating the inner peripheral surface of the inner cylinder formed from the raw material powder 8, the inner and outer diameters of the inner pipe 3 are Because it expands and the degree of dimensional change (due to expansion) is uneven in the circumferential direction, it is difficult to predict dimensional changes in the final product. Further, in the final machining process, it is necessary to perform rough machining of the inner surface after removing the inner pipe 3 due to the above-mentioned dimensional change, resulting in poor yield. This tendency becomes particularly noticeable when ceramic fine powder, which is difficult to process, is used as the raw material powder. The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a composite hollow member that can achieve higher dimensional accuracy during manufacturing and thereby improve productivity. The present invention aims to provide a method for manufacturing. [Means for Solving the Problems] The method of manufacturing a composite hollow member according to the present invention involves inserting a solid metal core for forming a hollow part into a metal tube constituting a back metal, and forming an annular shape between the two. The gist is that after a hollow part is formed and the annular hollow part is filled with raw material powder, the filled part is degassed and sealed, followed by HIP molding. [Operation] The operation of the present invention will be explained with reference to the drawings.
FIG. 1 is a schematic illustration of a steel cylinder manufactured according to the method of the present invention. The configuration shown in FIG. 1 is basically similar to the configuration shown in FIG. 2, and corresponding parts are given the same reference numerals. First, as shown in FIG. 1, a solid metal core (hereinafter referred to as inner metal) 3a for forming a hollow part is inserted into the inner peripheral surface of a metal tube constituting back metal 1, and the back metal 1 and inner metal 3a
An annular hollow part 2 is formed between the two. The upper and lower parts of the annular hollow part 2 are sealed by an upper lid 5 and a lower lid 6, respectively, which are provided with a raw material powder filling pipe 4 that also serves as deaeration. Back metal 1 is SCM440, SNCM439,
High-strength steel such as SUS304 and SUS316 is preferably used, and inexpensive mild steel is sufficient for the inner metal 3a, upper cover 5, lower cover 6, etc. Each of these members may be assembled by TIG welding or the like after thoroughly degreasing and cleaning the side facing the annular hollow portion 2. Next, the process moves to the raw material powder filling process, but before that, it is a good idea to perform a leak test to confirm the sealing state. If there is a large amount of leakage, it is necessary to perform repair welding. After completing the leak test, the raw material powder whose particle size has been adjusted is evenly filled into the annular hollow part 2 through the filling pipe 4. During filling, the uniformity of filling can be improved by applying appropriate vibration to the assembly. After filling is completed, the annular hollow part 2 is evacuated while being heated to completely remove the gas in the annular hollow part 2, and then sealed in a vacuum state. The assembly that has been filled with raw material powder, degassed, and sealed is loaded into the HIP device 9 as shown in Fig. 4.
Perform HIP processing. After performing HIP processing in this way, the upper and lower ends are cut and removed, and the inner peripheral surface is subjected to finishing processing such as BTA processing and honing to remove the inner metal 3a, thereby creating a strong inner surface. It is possible to obtain a cylinder for a plastic molding device on which a reinforcing layer is formed. The present invention is constructed as described above, but the point is that a hollow metal core (inner metal) is used instead of the cylindrical inner pipe 3 in the prior art as shown in FIG.
By using 3a, the following benefits can be obtained. (1) By using the solid inner metal 3a, the only dimensional change due to HIP processing is the shrinkage of the inner and outer diameters of the back metal 1, and there is almost no change in the outer diameter of the inner metal 3a, so the final It is possible to easily and accurately predict changes in the dimensions of the reinforcing layer that appear in the product shape. (2) If the outer diameter of the inner metal 3a is set to match the dimensions of the inner surface rough machining finish, only the removal of the inner metal 3a is sufficient for the rough machining in the final inner surface machining, and the lining reinforcement layer is The amount of machining is reduced and machinability is improved. (3) Since the dimensional accuracy is high, even when ceramics are used as the raw material powder 8,
Only a small amount of grinding is required after HIP treatment.
Since it can be omitted in some cases, productivity is significantly improved. As is clear from the above gist, the present invention is effective regardless of whether metal powder or ceramic powder is used as the raw material powder 8, but the requirements in each case are as follows. Although the composition of the metal powder used in the present invention is not limited at all, examples include corrosion-resistant and wear-resistant alloy powders having the chemical components shown below. C: 0.1 to 2.0% (weight%, same below) Si: 0.5 to 3.0% B: 0.5 to 3.0% Cr: 10 to 40% W: 10 to 30% Cu: 0.5 to 3.0% Balance: Ni: and/or Co The above chemical component ranges are based on consideration of corrosion resistance and wear resistance, and the reasons for each component range are as follows. C: 0.1-2.0% C is an indispensable element that forms carbides with Cr and W to improve wear resistance.
If the amount is less than %, the above effects will not be effectively exhibited. However, if C is too large, corrosion resistance and toughness will be poor, so it must be kept below 2.0%. A more preferable content of C is 0.5 to 1.5%. Si: 0.5-3.0% As will be described later, the cylinder according to the present invention is manufactured by obtaining alloy powder from a molten alloy having a predetermined chemical composition by an atomization method, and then obtaining a predetermined powder by hot isostatic pressing (HIP) or the like. Si is an essential element for increasing the fluidity of the molten alloy during atomization and making the powder particle size uniform, and if it is less than 0.5%, this effect will not be effective. Not demonstrated. However, if it is too large, it will have a significant negative effect on toughness, so it must be kept below 3.0%. A more preferable range of Si is 1.0 to 2.0%
It is. B: 0.5-3.0% B forms boride with Cr and W, contributing to improving corrosion resistance and wear resistance, and has the effect of increasing the hardness of Ni or Co matrix, and these effects are effectively exerted. Therefore, it must be contained at 0.5% or more. However, if it exceeds 3.0%, not only the toughness of the alloy decreases, but also the melting point of the alloy decreases excessively, making atomization and HIP operations difficult. A more preferable content of B is 1.0 to 2.0%. Cr: 10-40% Cr forms borides and carbides with B and C, and is also dissolved in the Ni or Co matrix, and is an essential element for improving corrosion resistance and wear resistance. The effects of this are not effectively exhibited, and the nitric acid corrosion resistance in particular becomes poor. However, if it is too large, the toughness of the alloy will decrease, so it must be kept below 40%. W: 10-30% W forms borides and carbides with B and C and has the effect of increasing corrosion resistance and wear resistance, and if it is less than 10%, these effects are not fully exhibited. But 30
%, the alloy becomes excessively hard and its toughness deteriorates. Cu: 0.5-3.0% Cu is dissolved in the Ni or Co matrix and particularly contributes to improving hydrochloric acid corrosion resistance. If it is less than 0.5%, the effect will not be exhibited effectively, while if it exceeds 3.0%, the toughness of the alloy will deteriorate. Remaining component: Ni and/or Co In order to ensure minimum corrosion resistance and wear resistance as a matrix component, the remaining component is Ni and/or Co. In addition, P, S, Fe, P, S, Fe,
Although trace amounts of Mn, Al, etc. may be mixed in, these do not have any particular adverse effect as long as they are contained in impurity amounts (approximately 1.0% or less). On the other hand, the ceramic powder is not limited in any way, but examples include those based on oxides such as Al 2 O 3 and PSZ. [Example] Example 1 C: 1.0%, Si: 3.2%, B: 3.08%, Ni: 13.75
%, Cr: 25.1%, W: 16.7%, Cu: 1.22%, the balance being substantially Co, and using an atomized metal powder with a particle size of 147 μm or less, the method of the present invention shown in FIGS. 1 and 4. A composite hollow member was manufactured. For comparison, Figures 2 and 3 were prepared using the above metal powder.
A composite hollow member was manufactured according to the conventional method shown in the figure. When filling each of the metal powders into the annular hollow part 2, the metal powders were degassed at 300° C. in a vacuum of 10 -5 orr for one hour, and then filled into the annular hollow part 2 under vacuum. After filling with metal powder, it is vacuum-sealed, and each assembly is loaded into the HIP device 9 as shown in Figures 3 and 4, and HIP treatment is performed at 930°C and 1000 kg/cm 2 for 3 hours. Ta. As a result, the metal powder filling layer solidified to a density of 100% and was completely diffusion bonded, forming a thin corrosion-resistant metal layer on the inner surface of the back metal 1. The dimensional changes of the back metal 1, inner pipe 3 (prior art) and inner metal 3a (method of the present invention) in this case are shown in Table 1 below. The locations where the dimensions were measured are as shown in FIGS. 1 and 2 (cross-sectional view).

【表】 第1表の結果から下記の様に考察することがで
きる。インナーパイプ3を使用した場合にはバツ
クメタル1の寸法変化は認められないが、インナ
ーパイプ3の内外径は25.0,27.0mm〓の2種類とも
に大きく変化し、夫々2mm以上もの変化量をなつ
ている。又インナーパイプ3の外径の変化に伴な
つて金属層の変化量も大きなものとなり、最終寸
法を予想して金属層の寸法を調整することは極め
て困難である。特に前記寸法変化は金属粉末の充
填密度と密接な関係にあり、該充填密度が低いと
寸法変化量も当然大きくなる。通常プラスチツク
射出成形用シリンダーの様に長尺物の場合には、
シリンダーの上部と下部では同一金属粉末を充填
してもその充填密度が不均一になることは避けら
れない。その為インナーパイプ3を用いた従来技
術では、安全性を考考慮して金属粉末の充填層を
比較的大きく設計しておき、充填率が低い場合で
も必要最小寸法を超えない様にしている。従つて
充填率が十分な健全部分では相当大きな厚みの金
属強化層が強固に形成され、該強化層を研削する
必要が生じ、多大な労力及び余分な金属粉末が必
要となり不経済である。 これに対しインナーメタル3aを使用した本発
明方法では、第1表から明らかな様にバツクメタ
ル1の外径は0.7〜0.8mm収縮する傾向を示すが金
属強化層の内径に相当するインナーメタル3aの
外径はHIP処理前後で寸法変化を生じない。従つ
て軟らかいインナーメタル3aのみを機械加工工
程で除去するだけで希望する最終製品を得ること
ができる。即ち金属強化層はほとんど研削する必
要がない。尚バツクメタル1の外径が若干収縮す
るが、この点に関しては通常の鍛造手段或は圧延
機による粗加工を行なうことができるので最終仕
上げのときに寸法調整ができる様に少し大きめに
寸法を設定しておけば何ら問題は生じない。 実施例 2 次に原料粉末8としてセラミツクス粉末を使用
した場合の実施例について説明する尚説明の便宜
上第6〜8図を用いて説明するが、基本的な構成
は第1図及び第4図に示した構成と何ら変ること
はなく、対応する部分には同一の参考符号を付
す。 使用した各部材の材質は下記の如くである。 バツクメタル1:S45C[外径56mm〓、内径36mm
〓、170mm ] インナーメタル3a:SUS304[外径30mm〓] 上蓋5:S45C セラミツクス粉末:3モルY2O3―ZrO2(PSZ) 上記の様な材料を用い、第6図に示す様に有底
筒状のバツクメタル1内にインナーメタル3aを
挿入し、バツクメタル1とインナーメタル3aと
によつて形成された環状中空部2内にセラミツク
ス粉末を充填し、脱気用を兼ねた充填用パイプ4
を設けた上蓋5によつて充填部分(環状中空部
2)の上部を覆い、脱気・密封する。第7図には
組立体を密封した状態を示しており、第7図中1
0は溶接部分である。 第7図に示した状態の組立体を前記第4図(又
は第3図)に示した様なHIP装置9内に挿入し、
1300℃、1500atm(Ar)で1時間のHIP処理を行
なつた。その後バツクメタル1の外周部を旋削加
工すると共に両端部を切断してインナーメタル3
aを除去することによつて、第8図に示す様なバ
ツクメタル1の内周側にセラミツクス強化層11
が形成された金属―セラミツクスの複合構造管を
得た。 セラミツクス強化層11は、特に研削加工仕上
げを行なつたわけではないが、30±0.1mm〓程度の
精度を得ることができ、且つ表面粗度も1sが得ら
れた。これはインナーメタル3aの表面仕上げ精
度にほぼ対応したものである。 この様にして形成されたセラミツクス強化層1
1はその密度が6.10g/cm3であり、これは充填密
度(相対密度)100%に相当する。 尚セラミツクス粉末としてSiCとバイコールガ
ラスの混合体を用いて、上記実施例と同様の条件
にて実験を行なつたが、相対密度99%以上の優れ
たセラミツクス強化層11を有する金属―セラミ
ツクス複合構造管が得られた。 本発明によれば金属―セラミツクス複合構造管
の高精度に製造することができるので、難加工性
のセラミツクスを硬化層とする場合には最終仕上
げ加工を極力避せることができ、特に有益であ
る。又本発明によれば、インナーメタル3aの形
状を種々変更することにより、希望する形状の金
属セラミツクス複合構造管を製造することができ
る。例えば第9図に示す様な形状のインナーメタ
ル3bを使用することによつて、第10図に示す
様なノズル12を得ることができる。 [発明の効果] 以上述べた如く本発明によれば、既述の構成を
採用することによつて各種複合中空部材の製造時
における寸法精度をより高精度にすることが可能
となり、よつて生産性向上に大いに寄与し得るも
のである。
[Table] From the results in Table 1, the following can be considered. When the inner pipe 3 is used, no change in the dimensions of the back metal 1 is observed, but the inner and outer diameters of the inner pipe 3 change significantly for both types, 25.0 and 27.0 mm, each with a change of more than 2 mm. . Further, as the outer diameter of the inner pipe 3 changes, the amount of change in the metal layer also increases, and it is extremely difficult to predict the final size and adjust the size of the metal layer. In particular, the dimensional change is closely related to the packing density of the metal powder, and as the packing density is low, the amount of dimensional change naturally increases. In the case of long items such as plastic injection molding cylinders,
Even if the same metal powder is filled in the upper and lower parts of the cylinder, it is inevitable that the packing density will be uneven. Therefore, in the conventional technology using the inner pipe 3, the packed layer of metal powder is designed to be relatively large in consideration of safety, so that it does not exceed the minimum required size even when the filling rate is low. Therefore, in a healthy part with a sufficient filling rate, a considerably thick metal reinforcing layer is firmly formed, and it becomes necessary to grind the reinforcing layer, which requires a great deal of labor and extra metal powder, which is uneconomical. On the other hand, in the method of the present invention using the inner metal 3a, as is clear from Table 1, the outer diameter of the back metal 1 tends to shrink by 0.7 to 0.8 mm; The outer diameter does not change before and after HIP treatment. Therefore, the desired final product can be obtained by removing only the soft inner metal 3a in the machining process. That is, the metal reinforcing layer hardly needs to be ground. Note that the outer diameter of the back metal 1 will shrink slightly, but in this regard, rough processing can be performed using normal forging means or a rolling mill, so the dimensions should be set slightly larger so that the dimensions can be adjusted during the final finishing. If you do this, no problems will occur. Example 2 Next, an example in which ceramic powder is used as the raw material powder 8 will be explained. For convenience of explanation, the explanation will be given using FIGS. 6 to 8, but the basic structure is shown in FIGS. 1 and 4. There is no difference in the configuration from that shown, and corresponding parts are given the same reference numerals. The materials used for each member are as follows. Back metal 1: S45C [outer diameter 56mm, inner diameter 36mm
〓, 170mm] Inner metal 3a: SUS304 [Outer diameter 30mm〓] Top lid 5: S45C Ceramic powder: 3 mol Y 2 O 3 - ZrO 2 (PSZ) Using the above materials, The inner metal 3a is inserted into the bottom cylindrical back metal 1, and the annular hollow part 2 formed by the back metal 1 and the inner metal 3a is filled with ceramic powder, thereby creating a filling pipe 4 which also serves as deaeration.
The upper part of the filled part (annular hollow part 2) is covered with the upper lid 5 provided with the above, and is degassed and sealed. Figure 7 shows the assembly in a sealed state.
0 is the welded part. Insert the assembly shown in FIG. 7 into the HIP device 9 as shown in FIG. 4 (or FIG. 3),
HIP treatment was performed at 1300°C and 1500 atm (Ar) for 1 hour. After that, the outer periphery of back metal 1 is turned and both ends are cut to form inner metal 3.
By removing a, a ceramic reinforcing layer 11 is formed on the inner peripheral side of the back metal 1 as shown in FIG.
A metal-ceramics composite structure tube was obtained. Although the ceramic reinforced layer 11 was not particularly finished by grinding, it was possible to obtain an accuracy of about 30±0.1 mm and a surface roughness of 1 s. This approximately corresponds to the surface finish accuracy of the inner metal 3a. Ceramics reinforced layer 1 formed in this way
No. 1 has a density of 6.10 g/cm 3 , which corresponds to a filling density (relative density) of 100%. The experiment was conducted under the same conditions as in the above example using a mixture of SiC and Vycor glass as the ceramic powder. A tube was obtained. According to the present invention, a metal-ceramic composite structure tube can be manufactured with high precision, so when a hardened layer is made of difficult-to-process ceramics, final finishing can be avoided as much as possible, which is particularly advantageous. . Further, according to the present invention, by variously changing the shape of the inner metal 3a, a metal-ceramic composite structure tube having a desired shape can be manufactured. For example, by using an inner metal 3b having a shape as shown in FIG. 9, a nozzle 12 as shown in FIG. 10 can be obtained. [Effects of the Invention] As described above, according to the present invention, by employing the above-described configuration, it is possible to further improve the dimensional accuracy during the manufacturing of various composite hollow members, and therefore, the production speed can be improved. This can greatly contribute to improving sexual performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法に従つて構成される鋼製シ
リンダーの概略説明図、第2図は従来技術を示す
概略説明図、第3図は第2図に示した従来技術の
HIP処理を行なう状態を示す概略説明図、第4図
は本発明方法にてHIP処理を行なう状態を示す概
略説明図、第5図1,2は寸法測定箇所を示す横
断面図、第6図は原料粉末にセラミツクス粉末を
用いた場合の製造工程を示す概略説明図、第7図
は第6図に示した組立体を溶接密封した状態を示
す断面図、第8図は金属―セラミツクス複合構造
管を示す断面図、第9図はインナーメタル3bの
形状を示す側面図、第10図はノズル12を示す
断面図である。 1……バツクメタル、2……環状中空部、3…
…インナーパイプ、3a,3b……インナーメタ
ル、5……上蓋、6……下蓋、9……HIP処理装
置、10……溶接部分。
FIG. 1 is a schematic explanatory diagram of a steel cylinder constructed according to the method of the present invention, FIG. 2 is a schematic explanatory diagram showing the prior art, and FIG.
4 is a schematic explanatory diagram showing a state in which HIP processing is performed. FIG. 5 is a schematic explanatory diagram showing a state in which HIP processing is performed by the method of the present invention. FIG. 7 is a schematic explanatory diagram showing the manufacturing process when ceramic powder is used as the raw material powder, FIG. 7 is a sectional view showing the assembly shown in FIG. 6 in a welded and sealed state, and FIG. 8 is a metal-ceramics composite structure. 9 is a sectional view showing the tube, FIG. 9 is a side view showing the shape of the inner metal 3b, and FIG. 10 is a sectional view showing the nozzle 12. 1... Back metal, 2... Annular hollow part, 3...
...Inner pipe, 3a, 3b...Inner metal, 5...Upper cover, 6...Lower cover, 9...HIP processing device, 10...Welding part.

Claims (1)

【特許請求の範囲】 1 バツクメタルを構成する金属管内に中空部を
形成する為の中実金属中子を挿入して両者間に環
状中空部を形成し、該環状中空部に原料粉末を充
填した後、当該充填部を脱気、密封後HIP成形す
ることを特徴とする複合中空部材の製造方法。 2 原料粉末がアトマイズ金属粉末である特許請
求の範囲第1項に記載の複合中空部材の製造方
法。 3 原料粉末がセラミツクス粉末である特許請求
の範囲第1項に記載の複合中空部材の製造方法。
[Scope of Claims] 1. A solid metal core for forming a hollow portion is inserted into a metal tube constituting the back metal to form an annular hollow portion between the two, and the annular hollow portion is filled with raw material powder. A method for manufacturing a composite hollow member, characterized in that the filled portion is then deaerated and sealed, followed by HIP molding. 2. The method for manufacturing a composite hollow member according to claim 1, wherein the raw material powder is an atomized metal powder. 3. The method for manufacturing a composite hollow member according to claim 1, wherein the raw material powder is ceramic powder.
JP2105286A 1986-01-31 1986-01-31 Production of composite hollow member Granted JPS62180005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2105286A JPS62180005A (en) 1986-01-31 1986-01-31 Production of composite hollow member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2105286A JPS62180005A (en) 1986-01-31 1986-01-31 Production of composite hollow member

Publications (2)

Publication Number Publication Date
JPS62180005A JPS62180005A (en) 1987-08-07
JPH0125362B2 true JPH0125362B2 (en) 1989-05-17

Family

ID=12044140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2105286A Granted JPS62180005A (en) 1986-01-31 1986-01-31 Production of composite hollow member

Country Status (1)

Country Link
JP (1) JPS62180005A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136846A (en) * 1976-05-13 1977-11-15 Takayoshi Kobayashi Metal molded articles and method of the same
US4104787A (en) * 1977-03-21 1978-08-08 General Motors Corporation Forming curved wafer thin magnets from rare earth-cobalt alloy powders
JPS5888181A (en) * 1981-11-19 1983-05-26 株式会社神戸製鋼所 Thermal hydrostatic press formation for ceramics special form material
JPS60181208A (en) * 1984-02-28 1985-09-14 Hitachi Metals Ltd Manufacture of multi-shaft cylinder for plastic molding machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136846A (en) * 1976-05-13 1977-11-15 Takayoshi Kobayashi Metal molded articles and method of the same
US4104787A (en) * 1977-03-21 1978-08-08 General Motors Corporation Forming curved wafer thin magnets from rare earth-cobalt alloy powders
JPS5888181A (en) * 1981-11-19 1983-05-26 株式会社神戸製鋼所 Thermal hydrostatic press formation for ceramics special form material
JPS60181208A (en) * 1984-02-28 1985-09-14 Hitachi Metals Ltd Manufacture of multi-shaft cylinder for plastic molding machine

Also Published As

Publication number Publication date
JPS62180005A (en) 1987-08-07

Similar Documents

Publication Publication Date Title
US4729789A (en) Process of manufacturing an extruder screw for injection molding machines or extrusion machines and product thereof
JP2003205352A (en) Member for molten metal, composed of sintered alloy having excellent corrosion resistance and wear resistance to molten metal, its producing method and machine structural member using it
JPH0615708A (en) High-temperature corrosion-resistant bimetal cylinder for injection molding machine
JPH01272738A (en) Corrosion-resistant and wear-resistant alloy
JPH06182409A (en) Combined sleeve roll and its production
JPH0125362B2 (en)
US4471899A (en) Method for fabricating hollow cylinders of machines
US5160690A (en) Process for using a high pressure injection molding cylinder
EP1193042A2 (en) Housing for plastics, metal powder, ceramic powder or food processing machines
WO2001087508A1 (en) Composite roll of cemented carbide, and steel hot-rolling method using the same
JPH0124620B2 (en)
JPS62142705A (en) Production of cylinder for plastic molding device
JPH0220686B2 (en)
JP2005169419A (en) Composite rolling roll made of cemented carbide
JPS58128525A (en) Manufacture of composite roll
JPH034601B2 (en)
JPH03264607A (en) Manufacture of complex cylinder and screw for injection and extrusion compacting machine
JPH0379086B2 (en)
JP2781717B2 (en) Method for producing composite two-layer material
JP2001138022A (en) Plunger sleeve for die casting machine and plunger tip
JP2001342530A (en) Corrosion and abrasion resistive ni alloy, its raw material powder and injection, extrusion molding machine or die casting machine using it
JPS62273820A (en) Composite cylinder for plastic molding apparatus
JPS61218869A (en) Construction and manufacture for cylinder with high resistance to abrasion and erosion
FI97452C (en) Preparation of a piece
JPH11300461A (en) Sleeve for die casting machine