JPH0125328B2 - - Google Patents

Info

Publication number
JPH0125328B2
JPH0125328B2 JP56027665A JP2766581A JPH0125328B2 JP H0125328 B2 JPH0125328 B2 JP H0125328B2 JP 56027665 A JP56027665 A JP 56027665A JP 2766581 A JP2766581 A JP 2766581A JP H0125328 B2 JPH0125328 B2 JP H0125328B2
Authority
JP
Japan
Prior art keywords
polyisocyanate compound
polyurethane resin
thermoplastic polyurethane
molecular weight
diisocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56027665A
Other languages
Japanese (ja)
Other versions
JPS57143317A (en
Inventor
Masao Oobuchi
Mamoru Akimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Polyurethane Industry Co Ltd
Original Assignee
Nippon Polyurethane Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Polyurethane Industry Co Ltd filed Critical Nippon Polyurethane Industry Co Ltd
Priority to JP56027665A priority Critical patent/JPS57143317A/en
Publication of JPS57143317A publication Critical patent/JPS57143317A/en
Publication of JPH0125328B2 publication Critical patent/JPH0125328B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は熱可塑性ポリりレタン暹脂を抌出成
圢、射出成圢するに際し、該ポリりレタン暹脂の
硬床を保持し぀぀、しかも熱可塑性ポリりレタン
暹脂の欠点ずされる耐熱性を改良したポリりレタ
ン暹脂の改質成圢方法に関するものである。 熱可塑性ポリりレタン暹脂は抌出成圢により、
ベルト、チナヌブ、電線コヌド、フむルム等に成
圢され、射出成圢により、靎底、スキヌ靎等の成
圢品に成圢され広く䜿甚されおいる。ポリりレタ
ンは䞀般にほが230℃以䞊になるず分解するため、
抌出成圢、射出成圢に利甚される熱可塑性ポリり
レタン暹脂はポリりレタンの分解枩床より䜎い枩
床で溶融しなければならないずいう制玄がある。
そのため熱可塑性ポリりレタン暹脂から埗られた
成圢品の耐熱性には限界があり、耐熱性を芁求さ
れる分野には䜿甚するこずができないなどの欠点
があ぀た。特に䜎硬床の熱可塑性ポリりレタン暹
脂は耐熱性が劣぀おおり、改良が望たれおいた。 䞀方熱可塑性ポリりレタン暹脂による射出成圢
は泚型ポリりレタン゚ラストマヌに比范しお䜜業
性、生産性からみるずかなり有利であるが耐熱
性、耐摩耗性等品質面では劣぀おいる。 本発明の目的は該ポリりレタン暹脂の硬床を保
持し぀぀耐熱性の優れたポリりレタン成圢品を提
䟛するにあり、他の目的はかかるポリりレタン成
圢品を安定か぀工業的に有利に補造する方法を提
䟛するにある。 本発明方法は熱可塑性ポリりレタン暹脂を抌出
成圢、射出成圢するに際し、溶融した該ポリりレ
タン暹脂に分子量300以䞊のポリむ゜シアネヌト
化合物を添加混合しながら成圢するこずを特城ず
するもので、本発明に適甚する熱可塑性ポリりレ
タン暹脂は分子量500〜6000のポリオヌル、䟋え
ば官胜のポリ゚ステル、ポリ゚ヌテル、ポリカ
ヌボネヌトの各ポリオヌルおよびこれらのブロツ
ク共重合䜓ず、分子量500以䞋の有機ゞむ゜シア
ネヌト、䟋えば4′―ゞプニルメタンゞむ゜
シアネヌトMDI、トリレンゞむ゜シアネヌ
ト、4′―ゞシクロヘキシルメタンゞむ゜シア
ネヌト、ヘキサメチレンゞむ゜シアネヌト
HDI、む゜ホロンゞむ゜シアネヌト、ナフタ
レンゞむ゜シアネヌト等ず、鎖延長剀ずしお䟋え
ばグリコヌル、トリオヌル、ゞアミン、ヒドラゞ
ン、氎等ずの反応により埗られるポリマヌであ
る。 これらのポリマヌの䞭で特に䞀般的に抌出成
圢、射出成圢甚ずしお良奜なものはポリオヌルず
しおポリ゚チレンアゞペヌト、ポリブチレンアゞ
ペヌト、ポリヘキサメチレンゞアゞペヌトの各ポ
リオヌル、ポリカプロラクトンポリオヌル、ポリ
カヌボネヌトポリオヌル、ポリテトラメチレン゚
ヌテルグリコヌル等を甚いたポリマヌである。た
た有機ゞむ゜シアネヌトずしおはMDIが奜適で
ある。鎖長延長剀ずしおはグリコヌルが奜適であ
り、ブタンゞオヌル1.4BG、ビスヒド
ロキシ゚トキシベンれンBHEBが特に奜適
である。 本発明においお成圢材料ずしお䜿甚される熱可
塑性ポリりレタン暹脂ずしおは原則ずしお分岐剀
あるいは架橋剀を甚いないで合成したポリマヌを
䜿甚する。このため成圢枩床を䜎いレベルに保぀
こずが可胜であり、ポリりレタンの熱劣化を抑え
るこずができる。もちろん成圢枩床が極端に高く
ならない皋床の分岐あるいは架橋を含むポリマヌ
も䜿甚するこずができる。 本発明においお䜿甚する熱可塑性ポリりレタン
の合成方法ずしおはポリオヌルず有機ゞむ゜シア
ネヌトをあらかじめ反応せしめた埌鎖長延長剀を
反応させるいわゆるプレポリマヌ法たたは反応原
料をすべお䞀時に混合するいわゆるワンシペツト
法のいずれの方法も採甚するこずができる。 重合方法ずしおは抌出機を甚いお連続的に補造
する方法あるいはバツチ反応によりブロツク状、
フレヌク状たたは粉末状のポリマヌを埗る方法等
が奜適に甚いられる。 本発明で䜿甚されるポリりレタン暹脂はりレタ
ン化反応が充分に完結した完党熱可塑性ポリりレ
タン以倖にいわゆる䞍完党熱可塑性゚ラストマヌ
すなわち極くわずかのむ゜シアネヌト基が残存し
たフレヌク又はペレツトを䜿甚し、成圢埌に架橋
を生じさせるようなポリマヌも䜿甚するこずが可
胜である。しかしこのようなペレツトは貯蔵時に
湿気、枩床等により倉質しやすいずいう問題があ
るため、奜適には反応の完結した完党熱可塑性ポ
リりレタン暹脂を甚いるのが奜郜合である。 本発明に䜿甚されるポリむ゜シアネヌト化合物
は分子内にむ゜シアネヌト基個以䞊、奜たしく
は〜個、特に奜たしくは個を有し、か぀分
子量300〜玄6000、奜たしくは800〜3000を有する
末端む゜シアネヌト基を有する化合物である。た
たこのポリむ゜シアネヌト化合物はNCO含量玄
〜玄29重量、奜たしくは3.4〜22重量を含
有する。 該ポリむ゜シアネヌト化合物は少くずも皮の
ポリオヌルず、少くずも皮の有機ポリむ゜シア
ネヌトずを反応させお合成するこずができる。該
ポリオヌルは分子量60〜5000、奜たしくは300〜
2500を有し、分子内に氎酞基個たたはそれ以䞊
を有するポリオヌルである。これらポリオヌルの
䟋ずしお、䟋えばポリ゚ヌテル、ポリ゚ステル、
ポリ゚ステルアミド及びポリカヌボネヌトの各ポ
リオヌルから成る矀から遞択されるものを挙げる
こずができる。特に奜適なポリオヌルはポリテト
ラメチレン゚ヌテルグリコヌルならびにポリカプ
ロラクトン及びポリブチレンアゞペヌトの各ポリ
オヌルである。該有機ポリむ゜シアネヌトは分子
量500以䞋を有するものであり、奜適な有機ポリ
む゜シアネヌトずしおは、有機ゞむ゜シアネヌト
である4′―ゞプニルメタンゞむ゜シアネヌ
トMDI、ヘキサメチレンゞむ゜シアネヌトを
挙げるこずができる。たた有機ゞむ゜シアネヌト
の二量䜓、䞉量䜓、カルボゞむミド倉性䜓等を䜿
甚するこずもできる。 䞊蚘以倖のポリむ゜シアネヌト化合物ずしお、
有機ゞむ゜シアネヌトの䞉量䜓、カルボゞむミド
倉性ポリむ゜シアネヌトなど、ならびにトリオヌ
ルに察しお有機ポリむ゜シアネヌトを圓量比
NCOOH2.0以䞊で反応せしめたポリむ゜シ
アネヌトを䜿甚するこずができる。たたグリコヌ
ル、トリオヌル、ポリオヌル等ず有機ポリむ゜シ
アネヌトずの反応生成物及び有機ポリむ゜シアネ
ヌトずの混合物も䜿甚するこずができる。 本発明に適甚するポリむ゜シアネヌト化合物の
分子量はアミン滎定法によ぀お枬定したむ゜シア
ネヌト基量から蚈算された芋掛けの分子量ずしお
衚わされる。 ポリむ゜シアネヌト化合物の分子量が300より
小さい堎合は添加量が少なくなり、添加量の若干
の増枛による成圢物の物性倀にバラツキが生じや
すいため安定な耐熱性の改善を図るこずができな
い。 たた逆に分子量が倧きくなりすぎるず添加量の
パヌセンテヌゞが倧きくなる結果ポリむ゜シアネ
ヌト化合物による可塑効果が倧きくなりすぎお、
成圢が䞍安定ずなる。 本発明のポリむ゜シアネヌト化合物の添加量は
成圢に䟛する熱可塑性ポリりレタン暹脂ず該ポリ
む゜シアネヌト化合物ずの混合物に察しお〜30
重量が奜適であり、特に奜たしくは〜20
重量である。 添加量は䜿甚するポリむ゜シアネヌト化合物の
NCO含有量および皮類により、異なるものであ
るが添加量が少ない堎合は目的ずする成圢物の耐
熱性改良は䞍充分ずなる。たた添加量が倚くなり
すぎるず混合䞍均䞀や、成圢盎埌の成圢物がやわ
らかくなりすぎ、抌出成圢で連続的にベルト、チ
ナヌブ、フむルム等の成圢の際は厚み、埄が倉化
しやすく途䞭で切断が起りやすく、射出成圢にお
いおは金型からの型離れが困難ずなり、䜜業性が
䜎䞋するため奜たしくない。 本発明の熱可塑性ポリりレタン暹脂の改質方法
は、熱可塑性ポリりレタン暹脂を射出成圢、抌出
成圢する際に暹脂が溶融状態にな぀た郚分にポリ
む゜シアネヌト化合物を添加するよう静眮系混合
装眮を射出成圢機たたは抌出成圢機に装着し、実
斜するこずが奜適である。このような静眮系混合
装眮ずしおは顔料、染料、可塑剀、改質剀等の混
合に甚いられる公知の装眮を䜿甚するこずができ
る。 ポリむ゜シアネヌト化合物を溶融状態の熱可塑
性ポリりレタン暹脂に添加混合するに際しおは回
転郚を有する混緎装眮を䜿甚するこずも可胜であ
るが溶融状の該ポリりレタン暹脂ずポリむ゜シア
ネヌト化合物ずの同䞀系内における粘床差が倧き
いため混合が䞍均䞀になりやすく、たた回転郚を
有する混緎装眮の堎合は滞留郚が存圚し、局郚的
に熱劣化を受けやすい郚分があり、奜たしくな
い。静止系混緎玠子の圢状および゚レメント数は
䜿甚する条件により異なるものであるが溶融ポリ
りレタン暹脂ずポリむ゜シアネヌト化合物ずが充
分に混合するように遞定しなければならない。 以䞋に本発明実斜の方法を抌出成圢法、射出成
圢法に分けお説明する。 〔抌出成圢法の堎合〕 ホツパヌから熱可塑性ポリりレタン暹脂のペレ
ツトを䟛絊し、抌出機で加熱溶融する。溶融枩床
はポリりレタンの皮類により異なるものであるが
通垞190〜230℃の範囲が奜適である。䞀方ポリむ
゜シアネヌト化合物は䟛絊タンク内で100℃以䞋
の枩床で溶融し、脱泡しおおく。溶融枩床が高す
ぎるずポリむ゜シアネヌト化合物は倉質を生じや
すいため、溶融可胜な範囲で䜎い方が望たしい。
溶融したポリむ゜シアネヌト化合物を蚈量ポンプ
により蚈量し、必芁に応じおフむルタヌにより
過し、抌出機の先端に蚭眮された䌚合郚で溶融し
たポリりレタン暹脂に添加する。ポリむ゜シアネ
ヌト化合物ずの溶融ポリりレタン暹脂ずは静止系
混緎玠子を有する混緎装眮により混緎され、静止
系混緎装眮に連結したダむを通しおベルト、チナ
ヌブ、フむルム等に成圢される。成圢盎埌は匷床
が比范的小さい堎合もあるが宀枩で攟眮しおいる
間に匷床は向䞊する。成圢埌加熱熟成するこずに
より短時間で匷床は向䞊する。 〔射出成圢法の堎合〕 ホツパヌから熱可塑性ポリりレタン暹脂のペレ
ツトを䟛絊し、射出成圢機で加熱溶融する。溶融
枩床はポリりレタンの皮類により異なるものであ
るが通垞190〜230℃の範囲が奜適である。䞀方ポ
リむ゜シアネヌト化合物は䟛絊タンク内で脱泡
し、100℃以䞋の枩床で溶融しおおく。溶融した
ポリむ゜シアネヌト化合物を䞀定量䟛絊できるよ
うな定量機を甚い、射出成圢機のスクリナヌの䜍
眮信号により自動的に、射出成圢機の先端に蚭眮
された静止系混緎玠子を有する混緎装眮ぞ間欠的
に定量吐出し、混緎された埌、静止系混緎装眮に
連結したノズルを通しお金型に射出され、成圢品
に加工される。成圢盎埌は匷床が比范的小さい堎
合もあるが宀枩で攟眮しおいる間に匷床は向䞊す
る。成圢埌加熱熟成するこずにより、短時間で匷
床は向䞊する。 本発明方法は溶融玡糞によるポリりレタン匟性
糞の補造にも応甚するこずができる。 以䞋実斜䟋により本発明を説明する。実斜䟋に
おける郚及びはこずわりのない限り各々重量
郚、重量である。 実斜䟋 ―〜― 脱氎した氎酞基䟡150のポリブチレンアゞペヌ
ト750郚ずMDI500郚を70〜80℃の枩床で時間
反応させお粘皠なポリむ゜シアネヌト化合物(A)を
埗た。このもののむ゜シアネヌト基含有量は6.7
でこれから算出された分子量は1250であ぀た。 このようにしお埗られたポリむ゜シアネヌト化
合物(A)ずパラプレン22SR日本ポリりレタン工業
補熱可塑性ポリりレタン暹脂、硬床JIS−A82
ずを成圢原料ずしおポリむ゜シアネヌト化合物䟛
絊装眮および静止系混緎装眮を配蚭した抌出成圢
機により厚さmmのベルトに成圢した。 ポリむ゜シアネヌト化合物の添加量を倉えお抌
出成圢したベルトの物性結果を衚に瀺した。 抌出成圢機は日立造船SH−45抌出機
25、スクリナヌ盎埄45mm、ノンベント型に゚
レメンド数10個を有する静止系混緎玠子を配蚭し
た装眮を䜿甚した。
The present invention relates to a modified molding method for polyurethane resin, which maintains the hardness of the polyurethane resin and improves heat resistance, which is a drawback of thermoplastic polyurethane resin, when extrusion molding or injection molding the thermoplastic polyurethane resin. It is. Thermoplastic polyurethane resin is made by extrusion molding.
It is widely used by being molded into belts, tubes, electric wire cords, films, etc., and by injection molding into molded products such as shoe soles and ski boots. Polyurethane generally decomposes at temperatures above 230°C, so
Thermoplastic polyurethane resins used in extrusion molding and injection molding have a restriction that they must be melted at a temperature lower than the decomposition temperature of polyurethane.
Therefore, the heat resistance of molded products obtained from thermoplastic polyurethane resins is limited, and they have disadvantages such as being unable to be used in fields that require heat resistance. In particular, thermoplastic polyurethane resins with low hardness have poor heat resistance, and improvements have been desired. On the other hand, injection molding using thermoplastic polyurethane resin is considerably advantageous in terms of workability and productivity compared to cast polyurethane elastomer, but is inferior in terms of quality such as heat resistance and abrasion resistance. An object of the present invention is to provide a polyurethane molded article that maintains the hardness of the polyurethane resin and has excellent heat resistance, and another object of the present invention is to provide a method for producing such a polyurethane molded article in a stable and industrially advantageous manner. It is in. The method of the present invention is characterized in that when extrusion molding or injection molding a thermoplastic polyurethane resin, a polyisocyanate compound having a molecular weight of 300 or more is added to and mixed with the molten polyurethane resin, and is applicable to the present invention. The thermoplastic polyurethane resin is composed of a polyol with a molecular weight of 500 to 6000, such as bifunctional polyester, polyether, polycarbonate polyols, and block copolymers thereof, and an organic diisocyanate with a molecular weight of 500 or less, such as 4,4'-diphenylmethane. diisocyanate (MDI), tolylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hexamethylene diisocyanate (HDI), isophorone diisocyanate, naphthalene diisocyanate, etc., and a chain extender such as glycol, triol, diamine, hydrazine, water, etc. It is a polymer obtained by reaction. Among these polymers, those that are particularly suitable for extrusion molding and injection molding are polyols such as polyethylene adipate, polybutylene adipate, and polyhexamethylene diadipate, polycaprolactone polyol, polycarbonate polyol, and polytetramethylene ether. It is a polymer using glycol etc. Moreover, MDI is suitable as the organic diisocyanate. Glycols are preferred as chain extenders, with 1,4 butanediol (1.4BG) and bishydroxyethoxybenzene (BHEB) being particularly preferred. As a thermoplastic polyurethane resin used as a molding material in the present invention, in principle, a polymer synthesized without using a branching agent or a crosslinking agent is used. Therefore, the molding temperature can be kept at a low level, and thermal deterioration of polyurethane can be suppressed. Of course, polymers containing branching or crosslinking to the extent that the molding temperature does not become extremely high can also be used. The thermoplastic polyurethane used in the present invention can be synthesized using either the so-called prepolymer method in which a polyol and an organic diisocyanate are reacted in advance and then reacted with a chain extender, or the so-called one-shot method in which all reaction materials are mixed at once. can also be adopted. Polymerization methods include continuous production using an extruder or batch reaction to produce blocks,
A method of obtaining a flaky or powdery polymer is preferably used. The polyurethane resin used in the present invention is not only a completely thermoplastic polyurethane in which the urethanization reaction has been fully completed, but also a so-called incomplete thermoplastic elastomer, that is, flakes or pellets in which very few isocyanate groups remain, and are crosslinked after molding. It is also possible to use such polymers. However, since such pellets have the problem of being susceptible to deterioration due to humidity, temperature, etc. during storage, it is convenient to use fully reacted thermoplastic polyurethane resin. The polyisocyanate compound used in the present invention has two or more isocyanate groups in the molecule, preferably 2 to 4, particularly preferably 2, and a terminal having a molecular weight of 300 to about 6000, preferably 800 to 3000. It is a compound having an isocyanate group. The polyisocyanate compound also contains an NCO content of about 2 to about 29% by weight, preferably 3.4 to 22% by weight. The polyisocyanate compound can be synthesized by reacting at least one polyol with at least one organic polyisocyanate. The polyol has a molecular weight of 60 to 5000, preferably 300 to
2500, and is a polyol having two or more hydroxyl groups in the molecule. Examples of these polyols include polyether, polyester,
Mention may be made of those selected from the group consisting of polyesteramide and polycarbonate polyols. Particularly preferred polyols are polytetramethylene ether glycol and polycaprolactone and polybutylene adipate polyols. The organic polyisocyanate has a molecular weight of 500 or less, and suitable organic polyisocyanates include 4,4'-diphenylmethane diisocyanate (MDI) and hexamethylene diisocyanate, which are organic diisocyanates. Further, dimers, trimers, carbodiimide modified products, etc. of organic diisocyanates can also be used. As polyisocyanate compounds other than the above,
Trimers of organic diisocyanates, carbodiimide-modified polyisocyanates, and polyisocyanates obtained by reacting organic polyisocyanates with triols at an equivalent ratio (NCO/OH) of 2.0 or more can be used. Further, reaction products of glycols, triols, polyols, etc. and organic polyisocyanates, and mixtures of organic polyisocyanates can also be used. The molecular weight of the polyisocyanate compound applied to the present invention is expressed as the apparent molecular weight calculated from the isocyanate group weight measured by amine titration. If the molecular weight of the polyisocyanate compound is less than 300, the amount added will be small, and a slight increase or decrease in the amount added will likely cause variations in the physical properties of the molded product, making it impossible to stably improve heat resistance. On the other hand, if the molecular weight becomes too large, the percentage of the added amount becomes too large, and the plasticizing effect of the polyisocyanate compound becomes too large.
Molding becomes unstable. The amount of the polyisocyanate compound of the present invention added is 3 to 30% of the mixture of the thermoplastic polyurethane resin and the polyisocyanate compound to be used for molding.
(weight)%, particularly preferably 5 to 20%
(weight)%. The amount added depends on the polyisocyanate compound used.
Although it varies depending on the NCO content and type, if the amount added is small, the desired heat resistance improvement of the molded product will be insufficient. Also, if the amount added is too large, the mixture will be uneven, the molded product will be too soft immediately after molding, and when continuously molding belts, tubes, films, etc. by extrusion molding, the thickness and diameter will change easily and the product will be cut midway. This is undesirable because it is difficult to release the mold from the mold during injection molding, and workability decreases. The method for modifying a thermoplastic polyurethane resin of the present invention involves injection molding using a static mixing device so that a polyisocyanate compound is added to a portion where the resin is in a molten state during injection molding or extrusion molding of a thermoplastic polyurethane resin. Preferably, the process is carried out by being mounted on a machine or an extrusion molding machine. As such a static mixing device, a known device used for mixing pigments, dyes, plasticizers, modifiers, etc. can be used. When adding and mixing a polyisocyanate compound to a molten thermoplastic polyurethane resin, it is also possible to use a kneading device with a rotating part, but the viscosity difference between the molten polyurethane resin and the polyisocyanate compound in the same system Since the mixing ratio is large, mixing tends to be uneven, and in the case of a kneading device having a rotating part, there is a stagnation part, which is not preferable because there are parts that are locally susceptible to thermal deterioration. The shape and number of elements of the static kneading element vary depending on the conditions of use, but must be selected so that the molten polyurethane resin and polyisocyanate compound are sufficiently mixed. The method of carrying out the present invention will be explained below separately into an extrusion molding method and an injection molding method. [In the case of extrusion molding method] Thermoplastic polyurethane resin pellets are supplied from a hopper and heated and melted in an extruder. Although the melting temperature varies depending on the type of polyurethane, a range of 190 to 230°C is usually suitable. On the other hand, the polyisocyanate compound is melted at a temperature of 100°C or less in a supply tank and degassed. If the melting temperature is too high, the polyisocyanate compound is likely to undergo deterioration, so it is desirable that the melting temperature be as low as possible.
The molten polyisocyanate compound is measured by a metering pump, passed through a filter if necessary, and added to the molten polyurethane resin at a meeting point installed at the tip of the extruder. The molten polyurethane resin with the polyisocyanate compound is kneaded by a kneading device having a static kneading element, and is formed into a belt, tube, film, etc. through a die connected to the static kneading device. Immediately after molding, the strength may be relatively low, but the strength improves while left at room temperature. Strength can be improved in a short time by heating and aging after molding. [In the case of injection molding method] Thermoplastic polyurethane resin pellets are supplied from a hopper and heated and melted in an injection molding machine. Although the melting temperature varies depending on the type of polyurethane, a range of 190 to 230°C is usually suitable. On the other hand, the polyisocyanate compound is defoamed in the supply tank and melted at a temperature of 100°C or lower. Using a metering machine capable of supplying a fixed amount of molten polyisocyanate compound, the injection molding machine is automatically and intermittently fed into a kneading device with a static kneading element installed at the tip of the injection molding machine based on the screw position signal. After being dispensed in a fixed amount and kneaded, it is injected into a mold through a nozzle connected to a static kneading device and processed into a molded product. Immediately after molding, the strength may be relatively low, but the strength improves while left at room temperature. By heating and aging after molding, the strength can be improved in a short time. The method of the invention can also be applied to the production of polyurethane elastic yarns by melt spinning. The present invention will be explained below with reference to Examples. Parts and percentages in the examples are parts by weight and percentages by weight, respectively, unless otherwise specified. Examples 1-1 to 1-5 750 parts of dehydrated polybutylene adipate having a hydroxyl value of 150 and 500 parts of MDI were reacted at a temperature of 70 to 80°C for 1 hour to obtain a viscous polyisocyanate compound (A). The isocyanate group content of this product is 6.7
The molecular weight calculated from this in % was 1250. The polyisocyanate compound (A) thus obtained and paraprene 22SR (thermoplastic polyurethane resin manufactured by Nippon Polyurethane Industries, hardness JIS-A82)
was molded into a 2 mm thick belt using an extrusion molding machine equipped with a polyisocyanate compound supply device and a static kneading device. Table 1 shows the physical properties of belts extrusion molded with varying amounts of polyisocyanate compounds added. The extrusion molding machine is Hitachi Zosen SH-45 extruder (L/D
= 25, screw diameter 45 mm, non-vent type) and a stationary kneading element having 10 elements was used.

【衚】 比范䟋 ―〜― 実斜䟋―ず同様の原料及び装眮を甚いおポ
リむ゜シアネヌト化合物(A)の無添加及び添加量を
倉えた堎合の比范詊隓を行い物性結果を衚に瀺
した。 比范䟋―においおは成圢䞍良のため諞物性
倀の枬定が䞍胜であ぀た。
[Table] Comparative Examples 1-1 to 1-3 Using the same raw materials and equipment as in Example 1-1, a comparative test was conducted in which the polyisocyanate compound (A) was not added and the amount added was changed, and the physical property results were reported. It is shown in Table 1. In Comparative Examples 1-3, it was impossible to measure various physical properties due to poor molding.

【衚】 ポリむ゜シアネヌト化合物(A)を添加しない抌出
成圢ベルトの軟化点は105℃ず䜎いが添加したも
のの軟化点は20〜30℃高くなり、硬床はポリむ゜
シアネヌト化合物を添加しおも倉化はない。 ポリむ゜シアネヌト化合物(A)の添加量が増すに
぀れお(A)による可塑化効果が働き混合埌の暹脂粘
床は䜎䞋する。圢状を良くするためダむ枩床を添
加量の増加に応じお䜎くする必芁がある。 添加量が30を超えるず成圢においお離圢性が
悪くなり成圢性䞍良ずなる。 実斜䟋 ―〜― 実斜䟋で䜿甚したポリむ゜シアネヌト化合物
(A)ずパラプレン26SR日本ポリりレタン工業補熱
可塑性ポリりレタン暹脂硬床JIS−A96ずを成
圢原料ずしおポリむ゜シアネヌト化合物䟛絊装眮
および静止系混緎装眮を配蚭した射出成圢機によ
り厚さmmのシヌトに成圢した。 ポリむ゜シアネヌト化合物の添加量を倉えお射
出成圢したシヌトの物性結果を衚に瀺した。 射出成圢機は山城粟機のSAV−100B型を䜿甚
し、゚レメント数10個を有する静止系混緎玠子を
配蚭した装眮を䜿甚した。
[Table] The softening point of extrusion-molded belts without the addition of polyisocyanate compound (A) is as low as 105°C, but the softening point of belts with addition of polyisocyanate compound (A) is 20 to 30°C higher, and the hardness remains unchanged even with the addition of polyisocyanate compound. . As the amount of polyisocyanate compound (A) added increases, the plasticizing effect of (A) works and the resin viscosity after mixing decreases. In order to improve the shape, it is necessary to lower the die temperature as the amount added increases. If the amount added exceeds 30%, mold release properties during molding will deteriorate, resulting in poor moldability. Examples 2-1 to 2-4 Polyisocyanate compounds used in Example 1
(A) and Paraprene 26SR (thermoplastic polyurethane resin hardness JIS-A96 manufactured by Nippon Polyurethane Industries) are molded into a 2 mm thick sheet using an injection molding machine equipped with a polyisocyanate compound supply device and a static kneading device. did. Table 2 shows the physical properties of sheets injection molded with varying amounts of polyisocyanate compounds added. The injection molding machine used was Yamashiro Seiki's SAV-100B model, which was equipped with a static kneading element having 10 elements.

【衚】 比范䟋 ―― 実斜䟋―ず同様の原料及び装眮を甚いおポ
リむ゜シアネヌト化合物(A)の無添加、及び添加量
を範囲倖に倚くした比范を行い物性結果を衚に
瀺した。
[Table] Comparative Examples 2-1, 2-2 Using the same raw materials and equipment as in Example 2-1, a comparison was made with no addition of polyisocyanate compound (A) and with an amount added outside the range, and the physical property results were obtained. are shown in Table 2.

【衚】【table】

【衚】 実斜䟋の射出成圢の堎合ず同様、実斜䟋の
射出成圢においおもポリりレタン暹脂の硬床を倉
化するこずなく、軟化点を䞊げるこずが可胜であ
぀た。䞀方抗匵力、䌞び氞久歪は向䞊した。ダス
リによる摩耗性もかなり良奜な倀を瀺し、熱可塑
性ポリりレタン暹脂特有の摩擊による熱溶融摩耗
性の欠点は、ポリむ゜シアネヌト化合物添加によ
り著しく改善されおいる。 実斜䟋 ―〜― 脱氎した氎酞基䟡56のポリ゚チレンアゞペヌト
2000ず1.4−BG180ずをニヌダヌに仕蟌み、
かくはんしながら溶解させ、85℃の枩床に保ち、
これに50℃に溶解したMDI766を加えお反させ
た。反応進行に぀れお、反応熱により枩床が䞊昇
しながら増粘し、粘床が急激に䞊昇した。生成し
た暹脂は次第に固化し、ブロツク状の暹脂が埗ら
れた。これを粉砕機グラニナレヌタヌにより
フレヌク状に粉砕し、抌出機により、ペレツト状
ポリりレタン暹脂を埗た。このポリりレタ
ン暹脂ず衚に瀺したポリむ゜シアネヌト
化合物ずを成圢原料ずしお実斜䟋ず同様の方法
により抌出成圢により厚さmmのベルトに成圢し
た。
[Table] As in the case of injection molding in Example 1, in injection molding in Example 2, it was possible to increase the softening point without changing the hardness of the polyurethane resin. On the other hand, the tensile strength and elongation set were improved. The abrasion resistance by filing also showed quite good values, and the drawback of hot melt abrasion resistance due to friction, which is characteristic of thermoplastic polyurethane resins, was significantly improved by the addition of the polyisocyanate compound. Examples 3-1 to 3-5 Dehydrated polyethylene adipate with a hydroxyl value of 56
Put 2000g and 1.4-BG180g into a kneader,
Dissolve while stirring and keep at a temperature of 85°C.
To this was added 766 g of MDI dissolved at 50°C, and the mixture was allowed to invert. As the reaction progressed, the temperature increased due to reaction heat, and the viscosity increased rapidly. The produced resin gradually solidified, and a block-shaped resin was obtained. This was pulverized into flakes using a granulator, and pelletized polyurethane resin () was obtained using an extruder. Using this polyurethane resin (2) and the polyisocyanate compounds shown in Table 3 as molding raw materials, a belt with a thickness of 2 mm was formed by extrusion molding in the same manner as in Example 1.

【衚】 衚に瀺されたポリむ゜シアネヌト化合物の皮
類を倉えお抌出成圢したベルトの物性結果を衚
に瀺した。
[Table] Table 5 shows the physical property results of belts extruded with different types of polyisocyanate compounds shown in Table 3.
It was shown to.

【衚】 ポリむ゜シアネヌト化合物の添加量はベヌスず
なるポリりレタン暹脂(a)100郚に察しお、ポリむ
゜シアネヌト化合物のNCO含有量×添加量
1.714になるよう蚭定し、各皮ポリむ゜シ
アネヌト化合物の添加効果を芋た。結果を衚に
瀺す。 比范䟋 ―〜― 実斜䟋―ず同様の原料及び装眮を甚いお衚
に瀺すポリむ゜シアネヌト化合物で比范詊隓を
行぀た。結果を衚に瀺した。 比范䟋―及び―においおは成圢䞍良の
ため諞物性倀の枬定が䞍胜であ぀た。
[Table] The amount of the polyisocyanate compound added was set so that the NCO content (%) of the polyisocyanate compound x the amount added (g) = 1.714 per 100 parts of the base polyurethane resin (a). The effect of adding isocyanate compounds was examined. The results are shown in Table 5. Comparative Examples 3-1 to 3-3 Comparative tests were conducted using the polyisocyanate compounds shown in Table 4 using the same raw materials and equipment as in Example 3-1. The results are shown in Table 5. In Comparative Examples 3-2 and 3-3, it was impossible to measure various physical properties due to poor molding.

【衚】【table】

【衚】 衚の結果からも刀るようにポリむ゜シアネヌ
ト化合物のは軟化点が改善されおい
る。䞀方蚘号で瀺した500
〜1500のポリ゚チレンアゞペヌトにMDIを付加
したポリむ゜シアネヌト化合物は硬床を倉化する
こずなく、高軟化点の成圢品が埗られ、䌞び氞久
歪、熱収瞮率、摩耗性ダスリ法も良奜であ぀
た。 比范䟋の堎合は成圢性においお発泡やサヌゞン
グを起した。 実斜䟋 ―〜― 脱氎した氎酞基䟡112のポリテトラメチレン゚
ヌテルグリコヌル1000郚ずMDI500郚を70〜80℃
の枩床で時間反応させお粘皠なポリむ゜シアネ
ヌト化合物を埗た。このもののむ゜シアネ
ヌト基含有量は5.60でこれから算出した分子量
は1500であ぀た。 このようにしお埗られたポリむ゜シアネヌト化
合物ずパラプレン―4319日本ポリりレタ
ン瀟補熱可塑性ポリ゚ヌテルベヌスポリりレタン
暹脂硬床JIS−A81ずを成圢原料ずしお実斜䟋
ず同様の抌出成圢機により厚さmmのベルトに
成圢した。 ポリむ゜シアネヌト化合物の添加量を倉
えお抌出成圢したベルトの物性結果を衚に瀺し
た。
[Table] As can be seen from the results in Table 3, polyisocyanate compounds B, C, and D have improved softening points. On the other hand, n = 500 indicated by symbols E, F, G, H
A polyisocyanate compound obtained by adding MDI to polyethylene adipate of ~1500 produced molded products with a high softening point without changing hardness, and had good elongation set, heat shrinkage rate, and abrasion resistance (file method). . In the case of the comparative example, foaming and surging occurred in moldability. Examples 4-1 to 4-4 1000 parts of dehydrated polytetramethylene ether glycol with a hydroxyl value of 112 and 500 parts of MDI were heated at 70 to 80°C.
The mixture was reacted at a temperature of 1 hour to obtain a viscous polyisocyanate compound (K). The isocyanate group content of this product was 5.60%, and the molecular weight calculated from this was 1500. Using the thus obtained polyisocyanate compound (K) and Paraprene-4319 (thermoplastic polyether-based polyurethane resin hardness JIS-A81 manufactured by Nippon Polyurethane Co., Ltd.) as molding raw materials, the same extrusion molding machine as in Example 1 was used. It was molded into a belt with a diameter of 2 mm. Table 6 shows the physical properties of belts extrusion molded with varying amounts of the polyisocyanate compound (K) added.

【衚】 である。
比范䟋 ―〜― 実斜䟋―ず同様の原料及び装眮を甚いおポ
リむ゜シアネヌト化合物の無添加及び添加
量を倉えた堎合の比范詊隓を行い物性結果を衚
に瀺した。 比范䟋―においおは成圢性䞍良のため諞物
性倀の枬定が䞍胜であ぀た。
[Table]
Comparative Examples 4-1 to 4-3 Using the same raw materials and equipment as in Example 4-1, comparative tests were conducted with no addition of polyisocyanate compound (K) and with different amounts added, and the physical property results are shown in Table 6.
It was shown to. In Comparative Example 4-3, it was impossible to measure various physical properties due to poor moldability.

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  熱可塑性ポリりレタン暹脂を熱成圢するに際
し該ポリりレタン暹脂に分子量300以䞊のポリむ
゜シアネヌト化合物を添加混合埌成圢するこずを
特城ずするポリりレタン暹脂の改質成圢方法。  熱可塑性ポリりレタンを圢成するポリオヌル
が500〜6000の数平均分子量を有するポリ゚チレ
ンアゞペヌト、ポリブチレンアゞペヌト、ポリヘ
キサメチレンアゞペヌト、ポリカプロラクトン、
ポリカヌボネヌトポリオヌル、ポリテトラメチレ
ン゚ヌテルグリコヌルの各ポリオヌルから遞ばれ
た少なくずも皮を含むポリオヌルである特蚱請
求の範囲第項蚘茉の方法。  熱可塑性ポリりレタン暹脂を圢成する鎖䌞長
剀が分子量500以䞋のグリコヌル、トリオヌル、
ゞアミンである特蚱請求の範囲第項蚘茉の方
法。  熱可塑性ポリりレタン暹脂を圢成する有機ゞ
む゜シアネヌトが4′―ゞプニルメタンゞむ
゜シアネヌト、―ヘキサメチレンゞむ゜シ
アネヌト及び4′―ゞシクロヘキシルメタンゞ
む゜シアネヌトから遞ばれる特蚱請求の範囲第
項蚘茉の方法。  ポリむ゜シアネヌト化合物の分子量が800以
䞊である特蚱請求の範囲第項蚘茉の方法。  ポリむ゜シアネヌト化合物が有機ゞむ゜シア
ネヌト誘導䜓である特蚱請求の範囲第項蚘茉の
方法。  有機ゞむ゜シアネヌト誘導䜓が分子量60〜
5000のグリコヌル、ポリ゚ヌテル、ポリ゚ステ
ル、ポリ゚ステルアミド、ポリカヌボネヌトの各
ポリオヌルからなる矀から遞ばれた少なくずも䞀
皮のポリオヌルず有機ゞむ゜シアネヌトずを付加
反応させたむ゜シアネヌト末端化合物である特蚱
請求の範囲第項蚘茉の方法。  ポリむ゜シアネヌト化合物の添加量が熱可塑
性ポリりレタン暹脂ずポリむ゜シアネヌト化合物
ずの混合物に察しお〜30重量である特蚱請求
の範囲第項蚘茉の方法。  熱可塑性ポリりレタン暹脂ずポリむ゜シアネ
ヌト化合物ずの混合を静止系混緎玠子を配蚭した
抌出成圢機、射出成圢機で実斜する特蚱請求の範
囲第項蚘茉の方法。
[Scope of Claims] 1. A method for modifying and molding a polyurethane resin, which comprises adding and mixing a polyisocyanate compound having a molecular weight of 300 or more to the polyurethane resin when thermoforming the thermoplastic polyurethane resin. 2 polyethylene adipate, polybutylene adipate, polyhexamethylene adipate, polycaprolactone, in which the polyol forming the thermoplastic polyurethane has a number average molecular weight of 500 to 6000;
The method according to claim 1, wherein the polyol contains at least one selected from polycarbonate polyols and polytetramethylene ether glycols. 3 The chain extender forming the thermoplastic polyurethane resin is a glycol, triol, or
The method according to claim 1, wherein the diamine is a diamine. 4. Claim 1, wherein the organic diisocyanate forming the thermoplastic polyurethane resin is selected from 4,4'-diphenylmethane diisocyanate, 1,6-hexamethylene diisocyanate, and 4,4'-dicyclohexylmethane diisocyanate.
The method described in section. 5. The method according to claim 1, wherein the polyisocyanate compound has a molecular weight of 800 or more. 6. The method according to claim 1, wherein the polyisocyanate compound is an organic diisocyanate derivative. 7 Organic diisocyanate derivative has a molecular weight of 60~
5,000 polyols, polyethers, polyesters, polyesteramides, and polycarbonates. Method. 8. The method according to claim 1, wherein the amount of the polyisocyanate compound added is 3 to 30% by weight based on the mixture of the thermoplastic polyurethane resin and the polyisocyanate compound. 9. The method according to claim 1, wherein the thermoplastic polyurethane resin and the polyisocyanate compound are mixed using an extrusion molding machine or an injection molding machine equipped with a static kneading element.
JP56027665A 1981-02-28 1981-02-28 Modifying and molding method of thermoplastic polyurethane resin Granted JPS57143317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56027665A JPS57143317A (en) 1981-02-28 1981-02-28 Modifying and molding method of thermoplastic polyurethane resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56027665A JPS57143317A (en) 1981-02-28 1981-02-28 Modifying and molding method of thermoplastic polyurethane resin

Publications (2)

Publication Number Publication Date
JPS57143317A JPS57143317A (en) 1982-09-04
JPH0125328B2 true JPH0125328B2 (en) 1989-05-17

Family

ID=12227231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56027665A Granted JPS57143317A (en) 1981-02-28 1981-02-28 Modifying and molding method of thermoplastic polyurethane resin

Country Status (1)

Country Link
JP (1) JPS57143317A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2919873B1 (en) * 2007-08-07 2009-11-20 Setup Performance POSTERTICULAR THERMOPLASTIC MATERIAL AFTER PROCESSING AND STABLE MOLDED ARTICLES WITH VERY HIGH TEMPERATURE OBTAINED AFTER PROCESSING

Also Published As

Publication number Publication date
JPS57143317A (en) 1982-09-04

Similar Documents

Publication Publication Date Title
US8680213B2 (en) Thermoplastic polyurethanes
US5545707A (en) Multistage process for producing thermoplastic polyurethane elastomers
JP2668534B2 (en) Thermoplastic polyurethane resin composition for extrusion molding and injection molding
CA2208828C (en) Process for the continuous production of thermoplastically processable polyurethanes having improved processing behaviour
JP4162301B2 (en) Continuous process for the production of melt-processable polyurethane in a twin screw extruder with special temperature control.
US6538075B1 (en) Thermoplastic polyurethane
JP2020090669A (en) Tpu pneumatic hose
US5795948A (en) Multistage process for production of thermoplastic polyurethane elastomers
CA1257946A (en) Flexible elastomeric thermoplastic polyurethanes, process for their preparation and their use
US4178277A (en) Modified polyesters
CA2556656A1 (en) Process for the production of melt-processable polyurethanes
JPH06206963A (en) Continuous control of convertion of polyurethane prepolymer by partially mixing prepolymer with monomer
CN108699207B (en) Process for preparing diblock copolymers
KR100785981B1 (en) A Process for Producing Thermally Stable Thermoplastic Polyurethanes
CN111902446A (en) Thermoplastic polyurethanes from recyclable raw materials
JPH0134539B2 (en)
JP4725937B2 (en) Nonrigid thermoplastic molding composition
US3523101A (en) Thermoplastic polycaprolactone polyurethanes
JPH08283374A (en) Production of tpu molding composition
JP2018528318A (en) Thermoplastic polyurethane
US3528948A (en) Thermoplastic polyurethanes
MXPA03000244A (en) Continuous production of thermoplastic polyurethane elastomers.
CA1236239A (en) Easily demoldable and non-blocking thermoplastic polyurethane elastomers, process for their preparation and use
JPH0125328B2 (en)
JPH06228258A (en) Thermoplastic polyurethane and its preparation