JPH0125312B2 - - Google Patents

Info

Publication number
JPH0125312B2
JPH0125312B2 JP56045828A JP4582881A JPH0125312B2 JP H0125312 B2 JPH0125312 B2 JP H0125312B2 JP 56045828 A JP56045828 A JP 56045828A JP 4582881 A JP4582881 A JP 4582881A JP H0125312 B2 JPH0125312 B2 JP H0125312B2
Authority
JP
Japan
Prior art keywords
superconducting
stator core
armature winding
magnetic flux
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56045828A
Other languages
Japanese (ja)
Other versions
JPS57160360A (en
Inventor
Myoshi Takahashi
Masatoshi Watabe
Noryoshi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56045828A priority Critical patent/JPS57160360A/en
Publication of JPS57160360A publication Critical patent/JPS57160360A/en
Publication of JPH0125312B2 publication Critical patent/JPH0125312B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductive Dynamoelectric Machines (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Description

【発明の詳細な説明】 本発明は超電導発電機に係り、特に積層されて
いる固定子鉄心を有する超電導発電機に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting generator, and more particularly to a superconducting generator having a laminated stator core.

超電導発電機は超電導回転子及び固定子等から
構成されているが、その従来例が第1図及び第2
図に示されている。超電導回転子1は超電導界磁
巻線2と、この超電導界磁巻線2を内径側から支
持するトルクチユーブ3及び固定子側の過渡磁界
から超電導界磁巻線2を保護するダンパー4等と
から構成されており、両軸端近傍は軸受(図示せ
ず)で支持されている。一方、固定子は電機子巻
線5及び固定子鉄心6から構成されており、電機
子巻線5は内径側から絶縁物でできた円筒状支持
体7で、外径側から絶縁物8によつて支持されて
いる。そして固定子鉄心6は通常、厚みが0.35〜
0.5mmのけい素鋼板を軸方向に積層したものを、
鉄心押え10及びボルト9等で締付け固定して形
成されている。
A superconducting generator consists of a superconducting rotor, stator, etc., and conventional examples are shown in Figures 1 and 2.
As shown in the figure. The superconducting rotor 1 includes a superconducting field winding 2, a torque tube 3 that supports the superconducting field winding 2 from the inner diameter side, a damper 4 that protects the superconducting field winding 2 from transient magnetic fields on the stator side, and the like. Both shaft ends are supported by bearings (not shown). On the other hand, the stator is composed of an armature winding 5 and a stator core 6, and the armature winding 5 is connected to a cylindrical support 7 made of an insulator from the inner diameter side and an insulator 8 from the outer diameter side. It has been well supported. The stator core 6 usually has a thickness of 0.35~
0.5mm silicon steel plates are laminated in the axial direction.
It is formed by tightening and fixing it with an iron core holder 10, bolts 9, etc.

ところで、このように構成された超電導発電機
の超電導回転子1側は超電導界磁巻線2により高
磁界が発生し、構造物として磁気飽和の問題のあ
る磁性材は使用できないので、すべて非磁性材で
構成される所謂空心構造となる。そして超電導界
磁巻線2によつて発生した磁束φは、任意の軸方
向断面で見ると所定の間隙中に配置された電機子
巻線5に鎖交して電圧を誘起すると共に、固定子
鉄心6を通つて図中点線で示してあるような閉回
路(第2図参照)を固定子鉄心6と超電導回転子
1との間に形成する。
By the way, on the superconducting rotor 1 side of the superconducting generator configured in this way, a high magnetic field is generated by the superconducting field winding 2, and magnetic materials with problems of magnetic saturation cannot be used for the structure, so all non-magnetic materials are used. It has a so-called air-core structure made of wood. When viewed in an arbitrary axial cross section, the magnetic flux φ generated by the superconducting field winding 2 interlinks with the armature winding 5 disposed in a predetermined gap and induces a voltage in the stator. A closed circuit (see FIG. 2) as shown by the dotted line in the figure is formed between the stator core 6 and the superconducting rotor 1 through the core 6.

このように超電導回転子1は空心構造となるの
で、従来の構造物に磁性材を使用した所謂鉄心回
転子を備えた発電機と異なり、特に軸端部では界
磁電流の方向が90゜変化するので起磁力が軸端で
小さく、超電導界磁巻線2自身や電機子巻線5に
鎖交するだけで、図中矢印で示してある磁束φの
ように固定子鉄心6には入射しない磁束が増大す
る。この結果固定子鉄心6に入射する磁束φは、
縦軸に固定子鉄心部入射磁束φをとり、横軸には
固定子鉄心6の軸方向位置をとつて示した第3図
の軸方向位置による鉄心部入射磁束分布曲線のよ
うに、軸方向中央部で最大で、軸端ほど小さくな
る山形分布となる傾向にあり、このことは実験的
にも確認してある。
In this way, the superconducting rotor 1 has an air-core structure, so unlike a conventional generator with a so-called iron-core rotor that uses magnetic materials for its structure, the direction of the field current changes by 90 degrees, especially at the shaft end. Therefore, the magnetomotive force is small at the shaft end, and only interlinks with the superconducting field winding 2 itself and the armature winding 5, and does not enter the stator core 6 as shown by the magnetic flux φ indicated by the arrow in the figure. Magnetic flux increases. As a result, the magnetic flux φ incident on the stator core 6 is:
As shown in the distribution curve of the magnetic flux incident on the stator core according to the axial position in FIG. It tends to be a mountain-shaped distribution, with the maximum at the center and decreasing toward the ends of the shaft, and this has been confirmed experimentally.

従つて従来構造の固定子鉄心6の磁束密度は軸
方向の中央部だけが高くなり、従つて、中央部の
鉄損が増大し、温度上昇が著しくなる。また固定
子鉄心6の軸端部になるほど磁束密度が減少する
ので、固定子鉄心6の磁束に対する利用率が低下
し、固定子鉄心6の重量増大ひいては超電導発電
機の重量を増大させるといつた欠点があつた。
Therefore, the magnetic flux density of the stator core 6 of the conventional structure is high only in the central part in the axial direction, and therefore the core loss in the central part increases and the temperature rises significantly. In addition, since the magnetic flux density decreases toward the shaft end of the stator core 6, the utilization rate of the magnetic flux of the stator core 6 decreases, which increases the weight of the stator core 6 and, in turn, increases the weight of the superconducting generator. There were flaws.

本発明は以上の点に鑑みなされたものであり、
その目的とするところは、重量および鉄損を減少
した固定子鉄心を有する超電導発電機を提供する
にある。
The present invention has been made in view of the above points,
The objective is to provide a superconducting generator having a stator core with reduced weight and iron loss.

すなわち本発明は、固定子鉄心を、軸方向の中
央部になるほど径方向高さの大きい鉄心で形成し
たことを特徴とするものである。
That is, the present invention is characterized in that the stator core is formed of an iron core whose height in the radial direction increases toward the center in the axial direction.

以下、図示した実施例に基づいて本発明を説明
する。第4図には本発明の一実施例が示されてい
る。なお従来と同じ部品には同じ符号を付したの
で説明は省略する。本実施例では固定子鉄心6
を、端部より中央部に向うほど径方向の高さの大
きい鉄心6,6b及び6aで形成した。すなわち
固定子鉄心6を、その軸方向の中央部から端部に
向うほど外径寸法を小さくした6a,6b及び6
cの3段階の鉄心で形成した。このようにするこ
とにより固定子鉄心6の軸方向の中央部になるほ
ど磁気回路断面が大きくなつて、磁束が通り易い
ようになり、その中央部の磁束密度分布を緩和す
ることができる。磁束密度分布が緩和されるので
鉄損が減少し、温度上昇が低減する。また、磁束
密度の低い端部ほど固定子鉄心6の径方向の寸法
が小さくなるので、固定子鉄心6の磁束に対する
利用率が上昇するようになつて、固定子鉄心の重
量が減少する。更に鉄心6部の高さを変えること
により、鉄心6部の軸方向に対する磁束密度の均
一化が図れるので、鉄心6の鉄損による温度分布
も一様となり、積層鉄心間の熱伸び差や摩擦で一
般に鉄板間の絶縁の目的で鉄板表面に塗布されて
いる絶縁ワニスが損傷することもない。
The present invention will be explained below based on the illustrated embodiments. FIG. 4 shows an embodiment of the present invention. Note that parts that are the same as those in the conventional model are given the same reference numerals, and therefore their explanations will be omitted. In this embodiment, the stator core 6
was formed of iron cores 6, 6b, and 6a whose height in the radial direction increases from the ends toward the center. In other words, the stator core 6 has outer diameters 6a, 6b, and 6 whose outer diameters become smaller from the center to the end in the axial direction.
It was formed with a three-stage iron core. By doing this, the magnetic circuit cross section becomes larger toward the axial center of the stator core 6, allowing the magnetic flux to pass through it more easily, and the magnetic flux density distribution at the center can be relaxed. Since the magnetic flux density distribution is relaxed, iron loss is reduced and temperature rise is reduced. Further, since the radial dimension of the stator core 6 becomes smaller at the end where the magnetic flux density is lower, the utilization rate of the magnetic flux of the stator core 6 increases, and the weight of the stator core decreases. Furthermore, by changing the height of the core 6, the magnetic flux density in the axial direction of the core 6 can be made uniform, so the temperature distribution due to iron loss in the core 6 is also uniform, reducing the difference in thermal expansion and friction between the laminated cores. This will not damage the insulating varnish that is generally applied to the surface of the iron plates for the purpose of insulating them.

なおこのように固定子鉄心6の軸方向の中央部
になるほど径方向高さを大きくすることにより、
電磁振動に対する耐性の大きな固定子構造が得ら
れるようになる。すなわち一般に超電導回転子1
からの磁束と電機子巻線5の電流との相互作用に
よつて生じる電磁力は、超電導回転子1の磁束が
その軸方向中央部になるほど大きいので、電磁力
も軸方向中央部が最も大きくなる。しかし上述の
ように軸方向中央部になるほど固定子鉄心6の径
方向の高さを大きくしたので、中央部の固定子鉄
心6aほど電磁力に対する剛性が大きくなるから
である。
In this way, by increasing the radial height toward the axial center of the stator core 6,
A stator structure with high resistance to electromagnetic vibrations can be obtained. That is, generally superconducting rotor 1
The electromagnetic force generated by the interaction between the magnetic flux from the superconducting rotor 1 and the current in the armature winding 5 is larger as the magnetic flux of the superconducting rotor 1 approaches the center in the axial direction, so the electromagnetic force is also largest at the center in the axial direction. . However, as described above, since the height of the stator core 6 in the radial direction is increased toward the center in the axial direction, the stator core 6a closer to the center has greater rigidity against electromagnetic force.

なおまた電機子巻線5が本発明のようにスキユ
ー巻の場合は、電磁力電流による磁束分布が次に
述べるように、上述の超電導回転子1による磁束
分布のそれと同様に、固定子鉄心6に対してその
軸方向の中央部で最大の山形分布となるので、本
実施例による効果が一層効果的である。第5図に
スキユー巻の電機子巻線5の1相分を展開したも
のが示してあるように、スキユー巻の電機子巻線
5は、電機子巻線5を構成するコイル11a,1
1bが軸方向位置に対して斜めに配置された構造
で、固定子鉄心6側のコイル11aと超電導回転
子1側のコイル11bとが互いに逆方向に捩れて
ターンを構成している。そして電流は図中矢印で
示してある方向に流れるため、これにより発生す
る磁束φaは軸方向中央部を含む菱形部12を通
り、端部13では相互に打消し合う結果、電機子
電流による磁束分布は、縦軸に磁束分布φaをと
り、横軸には軸方向位置をとつて示した第6図の
軸方向位置による磁束分布曲線のように、軸方向
中央部で最大で、端部になるほど小さくなる山形
分布となる。従つて固定子鉄心6の軸方向の中央
部になるほど入射する磁束φaが多くなるからで
ある。
Furthermore, when the armature winding 5 is a skew winding as in the present invention, the magnetic flux distribution due to the electromagnetic force current is similar to the magnetic flux distribution due to the superconducting rotor 1 described above, as described below. However, since the maximum mountain-shaped distribution occurs at the center in the axial direction, the effect of this embodiment is even more effective. As shown in FIG. 5, which is an expanded view of one phase of the skew-wound armature winding 5, the skew-wound armature winding 5 has coils 11a and 1 that constitute the armature winding 5.
The coil 1b is arranged diagonally with respect to the axial position, and the coil 11a on the stator core 6 side and the coil 11b on the superconducting rotor 1 side are twisted in opposite directions to form a turn. Since the current flows in the direction indicated by the arrow in the figure, the magnetic flux φa generated by this passes through the rhombic part 12 including the central part in the axial direction, and as a result of mutual cancellation at the end part 13, the magnetic flux due to the armature current As shown in the magnetic flux distribution curve according to the axial position in Figure 6, where the vertical axis is the magnetic flux distribution φa and the horizontal axis is the axial position, the distribution is maximum at the center in the axial direction, and reaches the end. The smaller the distribution becomes, the more it becomes a mountain-shaped distribution. Therefore, the closer to the center of the stator core 6 in the axial direction, the more the incident magnetic flux φa becomes.

第7図には本発明の他の実施例が示されてい
る。本実施例では、固定子鉄心6を端部から中央
部に向うほど連続してその径方向の高さが大きく
なるようにした。すなわち固定子鉄心6の軸方向
中央部から所定軸方向長さまでは内径寸法を一定
にした鉄心6aと、これより端部では端部に向う
ほど連続的に内径寸法を大きくした鉄心6bとで
形成した。このようにすることにより次のような
作用効果を奏することができる。端部の鉄心6b
の内径寸法が連続して増大するので、電機子巻線
5の端部を同図に示してあるように外径方向に持
上げることができて、隣接コイルとの電気及び冷
却系統の接続等の電工作業に必要な作業空間が増
大するようになり、電工作業が容易となる。また
大地電位の固定子鉄心6や超電導回転子1と、高
電位の電機子巻線5との間の必要な絶縁距離を容
易に確保できる。なおまた固定子鉄心6の端部の
鉄心6bの内径が連続的に増大するので、固定子
鉄心6の軸方向端部への電界集中が緩和できる。
Another embodiment of the invention is shown in FIG. In this embodiment, the height of the stator core 6 in the radial direction increases continuously from the ends toward the center. In other words, the stator core 6 is formed of an iron core 6a whose inner diameter is constant from the axial center part to a predetermined axial length, and an iron core 6b whose inner diameter is continuously increased from this point toward the end. did. By doing so, the following effects can be achieved. End core 6b
Since the inner diameter of the armature winding 5 increases continuously, the end of the armature winding 5 can be lifted in the outer diameter direction as shown in the figure, making it possible to connect the electrical and cooling systems to adjacent coils, etc. The work space required for electrical work will increase, making electrical work easier. Further, the required insulation distance between the stator core 6 and superconducting rotor 1 at ground potential and the armature winding 5 at high potential can be easily secured. Furthermore, since the inner diameter of the core 6b at the end of the stator core 6 increases continuously, the electric field concentration on the axial end of the stator core 6 can be alleviated.

第8図には本発明の更に他の実施例が示されて
いる。本実施例では固定子鉄心6を、端部から中
央部に向うほど径方向高さの大きい鉄心6d,6
c,6b及び6aで形成した。すなわち固定子鉄
心6を、その軸方向の中央部から端部に向うほど
内径寸法を大きくした6a,6b,6c及び6d
の4段階の鉄心で形成し、このうち6dだけをそ
の内径寸法が端部に向うほど連続して大きくなる
ようにした。そしてこのようにして形成した固定
子鉄心6の軸方向の長さLcを、電機子巻線5の
軸方向長さLaや超電導回転子1の軸方向の有効
長Lfよりも大きくした。このようにすることに
より、前述の各実施例の場合と同じように固定子
鉄心6の軸方向の中央部になるほど磁束が通り易
くなると共に、このような作用効果を奏すること
ができる。すなわち固定子鉄心6の軸方向の長さ
Lcが電機子巻線5の軸方向長さLaや超電導回転
子1の軸方向の有効長Lfよりも大きいので、電
機子巻線5及び超電導回転子1で発生した磁束
は、すべて固定子鉄心6の内径部に入射する。従
つて鉄心押え10近傍の端部の固定子鉄心6dの
積層方向に直角に入射する磁束(電機子巻線5及
び超電導回転子1の端部に発生する周方向電流成
分による)は固定子鉄心6dが積層してあるの
で、その径方向に流れるようになり、固定子鉄心
6の軸方向端部のうず電流損ひいては局部加熱を
防止することができる。
FIG. 8 shows yet another embodiment of the invention. In this embodiment, the stator core 6 has cores 6d and 6 whose radial height increases from the end toward the center.
c, 6b and 6a. In other words, stator cores 6a, 6b, 6c, and 6d have an inner diameter that increases from the center to the end in the axial direction.
The inner diameter of only 6d of these cores is made to continuously increase toward the end. The axial length Lc of the stator core 6 thus formed was made larger than the axial length La of the armature winding 5 and the effective axial length Lf of the superconducting rotor 1. By doing so, as in the case of each of the above-described embodiments, the magnetic flux becomes easier to pass toward the center of the stator core 6 in the axial direction, and such effects can be achieved. In other words, the axial length of the stator core 6
Since Lc is larger than the axial length La of the armature winding 5 and the axial effective length Lf of the superconducting rotor 1, all of the magnetic flux generated in the armature winding 5 and the superconducting rotor 1 is transferred to the stator core. 6. Therefore, the magnetic flux incident at right angles to the stacking direction of the stator core 6d at the end near the core holder 10 (due to the circumferential current component generated at the ends of the armature winding 5 and the superconducting rotor 1) is transmitted to the stator core 6d. 6d are laminated, so that the current flows in the radial direction, thereby preventing eddy current loss at the axial ends of the stator core 6, and thereby preventing local heating.

なお上述の各実施例では固定子鉄心の軸方向中
央部が最も磁束が通り易いようにするのに、固定
子鉄心の径方向高さが端部から中央部に向けて階
段状あるいは連続して大きくなるようにした。こ
のように端部から中央部にかけて左右対称に変化
させるだけでなく、左右非対称に変化させるよう
にしてもよい。このようにしても上述の実施例の
場合と同様な作用効果が得られることは言を俟た
ない。
In each of the above-mentioned embodiments, the radial height of the stator core is stepped or continuous from the end to the center in order to allow the magnetic flux to pass most easily through the axial center of the stator core. I tried to make it bigger. In this way, it is not only possible to change the shape symmetrically from the end portions to the center portion, but also to change it asymmetrically. Needless to say, even in this case, the same effects as in the above-mentioned embodiment can be obtained.

上述のように本発明は、固定子鉄心を、軸方向
の中央部になるほど径方向高さの大きい鉄心で形
成したので、軸方向の中央部が最も磁束が通り易
いようになつて、中央部の磁束分布が緩和され、
磁束に対する利用率が上昇して重量および鉄損が
減少するようになり、重量および鉄損を減少した
固定子鉄心を有する超電導発電機を得ることがで
きる。
As described above, in the present invention, the stator core is formed of an iron core whose height in the radial direction increases toward the central part in the axial direction, so that the magnetic flux is most easily passed through the central part in the axial direction. The magnetic flux distribution of is relaxed,
The utilization factor for magnetic flux is increased and the weight and iron loss are reduced, making it possible to obtain a superconducting generator having a stator core with reduced weight and iron loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の超電導発電機の縦断側面図、第
2図は第1図のA―A線に沿う断面図、第3図は
従来の超電導発電機の固定子鉄心の軸方向位置と
鉄心部入射磁束との関係を示す特性図、第4図は
本発明の超電導発電機の一実施例の縦断側面図、
第5図は第4図の効果を説明する説明図、第6図
は本発明の超電導発電機の固定子鉄心の軸方向位
置と電機子電流による磁束分布との関係を示す特
性図、第7図は本発明の超電導発電機の他の実施
例の縦断側面図、第8図は本発明の超電導発電機
の更に他の実施例の縦断側面図である。 1…超電導回転子、2…超電導界磁巻線、5…
電機子巻線、6,6a,6b,6c,6d…固定
子鉄心。
Figure 1 is a longitudinal side view of a conventional superconducting generator, Figure 2 is a sectional view taken along line A-A in Figure 1, and Figure 3 is the axial position and core of the stator core of a conventional superconducting generator. FIG. 4 is a longitudinal sectional side view of an embodiment of the superconducting generator of the present invention.
FIG. 5 is an explanatory diagram explaining the effect of FIG. 4, FIG. 6 is a characteristic diagram showing the relationship between the axial position of the stator core of the superconducting generator of the present invention and the magnetic flux distribution due to the armature current, and FIG. The figure is a longitudinal sectional side view of another embodiment of the superconducting generator of the invention, and FIG. 8 is a longitudinal sectional side view of still another embodiment of the superconducting generator of the invention. 1...Superconducting rotor, 2...Superconducting field winding, 5...
Armature winding, 6, 6a, 6b, 6c, 6d... stator core.

Claims (1)

【特許請求の範囲】 1 超電導界磁巻線を装着した超電導回転子と、
この超電導回転子に所定の間隙を介して配置さ
れ、かつスキユー巻された電機子巻線と、この電
機子巻線の外周に絶縁物を介して配設された固定
子鉄心とからなる超電導発電機において、前記固
定子鉄心を、軸方向の中央部になるほど径方向高
さの大きい鉄心で形成したことを特徴とする超電
導発電機。 2 超電導界磁巻線を装着した超電導回転子と、
この超電導回転子に所定の間隙を介して配置さ
れ、かつスキユー巻された電機子巻線と、この電
機子巻線の外周に絶縁物を介して配設された固定
子鉄心とからなる超電導発電機において、前記固
定子鉄心を、軸方向の中央部になるほど径方向高
さの大きい鉄心で形成すると共に、その軸方向長
さを前記超電導回転子及び電機子巻線の軸方向長
さより大きくしたことを特徴とする超電導発電
機。
[Claims] 1. A superconducting rotor equipped with a superconducting field winding;
A superconducting power generator consisting of a skew-wound armature winding arranged on this superconducting rotor with a predetermined gap in between, and a stator core arranged around the outer periphery of this armature winding with an insulator in between. 1. A superconducting power generator, characterized in that the stator core is formed of a core whose height in the radial direction increases toward the center in the axial direction. 2. A superconducting rotor equipped with superconducting field windings,
A superconducting power generator consisting of a skew-wound armature winding arranged on this superconducting rotor with a predetermined gap in between, and a stator core arranged around the outer periphery of this armature winding with an insulator in between. In the machine, the stator core is formed of a core whose radial height increases toward the center in the axial direction, and the axial length thereof is larger than the axial length of the superconducting rotor and armature winding. A superconducting generator characterized by:
JP56045828A 1981-03-27 1981-03-27 Superconductive generator Granted JPS57160360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56045828A JPS57160360A (en) 1981-03-27 1981-03-27 Superconductive generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56045828A JPS57160360A (en) 1981-03-27 1981-03-27 Superconductive generator

Publications (2)

Publication Number Publication Date
JPS57160360A JPS57160360A (en) 1982-10-02
JPH0125312B2 true JPH0125312B2 (en) 1989-05-17

Family

ID=12730091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56045828A Granted JPS57160360A (en) 1981-03-27 1981-03-27 Superconductive generator

Country Status (1)

Country Link
JP (1) JPS57160360A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548049B2 (en) * 2004-09-01 2010-09-22 株式会社日立製作所 Rotating electric machine
US8886266B2 (en) 2010-06-21 2014-11-11 Sumitomo Electric Industries, Ltd. Superconducting coil, rotating device, and superconducting coil manufacturing method
JP2014057087A (en) * 2013-11-05 2014-03-27 Sumitomo Electric Ind Ltd Rotary device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219202A (en) * 1975-08-06 1977-02-14 Hitachi Ltd Stator cores for rotary electric machines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219202A (en) * 1975-08-06 1977-02-14 Hitachi Ltd Stator cores for rotary electric machines

Also Published As

Publication number Publication date
JPS57160360A (en) 1982-10-02

Similar Documents

Publication Publication Date Title
RU2479880C2 (en) Assembly of superconductive coils and equipment for generation of magnetic field
US4385251A (en) Flux shield for an inductor-alternator machine
US6211595B1 (en) Armature structure of toroidal winding type rotating electric machine
JPS5833410B2 (en) Dengejijikuukeyouso
CN100487257C (en) Permanent-magnetic biased axial magnetic bearing
US5861700A (en) Rotor for an induction motor
US4394597A (en) Multiple pole axial field electromagnetic devices
US20080054733A1 (en) Slotless Ac Induction Motor
JP2006518180A (en) Expansion core for motor / generator
US3418506A (en) Axial airgap motors and generators
US4409506A (en) Induction motor
US6181041B1 (en) Inductance rotating electric machine
US6803693B2 (en) Stator core containing iron-aluminum alloy laminations and method of using
JPH0125312B2 (en)
Kikuchi et al. An interesting method for obtaining parametric motors with excellent performance
US2857539A (en) Induction motors
JPS63310366A (en) Synchronous machine
US4692647A (en) Rotor construction in an induction motor for eliminating rotor reaction
JPH01190250A (en) Cylindrical linear induction motor
KR200244148Y1 (en) A Internal Iron Core type of Three Phases Potential Transformer for a Welding Machine
US4626815A (en) Polyphase assembly
US4390941A (en) Static magnetic frequency multiplies
JP3630991B2 (en) Armature structure of toroidal winding electric machine
JPH0582364A (en) Reactor
JPS59175363A (en) Permanent magnet type synchronous machine