JPH01252881A - Cold-regenerative refrigerator - Google Patents

Cold-regenerative refrigerator

Info

Publication number
JPH01252881A
JPH01252881A JP8064088A JP8064088A JPH01252881A JP H01252881 A JPH01252881 A JP H01252881A JP 8064088 A JP8064088 A JP 8064088A JP 8064088 A JP8064088 A JP 8064088A JP H01252881 A JPH01252881 A JP H01252881A
Authority
JP
Japan
Prior art keywords
cold
cold storage
temperature
storing
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8064088A
Other languages
Japanese (ja)
Inventor
Koji Yamada
浩二 山田
Noriaki Sakamoto
則秋 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8064088A priority Critical patent/JPH01252881A/en
Publication of JPH01252881A publication Critical patent/JPH01252881A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lower the temperature of the cold-regenerative material at the end of the time zone for a cold-storing operation by repeating a cold-storing run by shifting the passage for refrigerant to the one for cold-storing evaporator when a temperature sensor finds the temperature of the cold-regenerative material to be above a prescribed temperature even after completion of a cold storing. CONSTITUTION:On a day's time schedule of the operating mode of a cold-regenerative refrigerator, starting the operation at 10.00 p.m. in an unbroken time zone from B2 to B1, the refrigerator alternates an ordinary cooling run with a cold-storing run, that is, while maintaining the storage space temperature at a constant point by ordinary cooling runs, the refrigerator stores cold by cold-storing runs. To store cold, a solenoid valve for cold storing 15 is opened, whereas a main solenoid valve 9 is closed, and a liquid refrigerant is fed to a cold-storing evaporator 19 by driving a compressor 1. When, as a result of cold-storing runs, a cold-storing evaporator sensor 33 finds that the temperature T of the cold-regenerative material 18 has touched a point T1 signifying completion of the cold storing, for example, -29 deg.C, the operation shifts to the ordinary cooling; however, when the temperature T of the cold-regenerative material 18 has risen to T2, for example, -26 deg.C, even during the ordinary cooling operation, the cold-storing operation is resumed and continued until the temperature T of the cold- regenerative material declines to -29 deg.C again.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、蓄冷式冷蔵庫に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a cold storage refrigerator.

(従来の技術) 従来の蓄冷式冷蔵庫は、周囲に蓄冷材を配した蓄冷用エ
バポレータを設け、コンプレッサがら主エバポレータと
蓄冷用エバポレータとに対する切換可能な冷媒流路を設
け、この冷媒流路とは別に主エバポレータと蓄冷用エバ
ポレータとの間に例えばサーモサイホンからなる伝熱経
路を設けたものであった。主エバポレータと蓄冷用エバ
ポレータとの間の伝熱経路は、この経路に配された電磁
弁の開閉によって流通及び遮断が可能である。
(Prior Art) A conventional cold storage type refrigerator is provided with a cold storage evaporator surrounded by a cold storage material, and a compressor is provided with a refrigerant flow path that can be switched between the main evaporator and the cold storage evaporator. In addition, a heat transfer path consisting of, for example, a thermosiphon was provided between the main evaporator and the cool storage evaporator. The heat transfer path between the main evaporator and the cool storage evaporator can be opened and closed by opening and closing a solenoid valve arranged in this path.

主エバポレータの近傍には庫内冷気循環用のファンが設
けられ、蓄冷用エバポレータには蓄冷材の温度Tを検出
する蓄冷エバセンサが配される。
A fan for circulating cold air inside the refrigerator is provided near the main evaporator, and a cold storage evaporator sensor for detecting the temperature T of the cold storage material is arranged in the cold storage evaporator.

この蓄冷式冷蔵庫は、1日のうちの一定の時間帯に対応
する次の3つの運転モードを有していた。第5図は、従
来の蓄冷式冷蔵庫の1日の時間帯別運転モードを示す図
である。
This cold storage refrigerator had the following three operating modes corresponding to certain time periods of the day. FIG. 5 is a diagram showing operating modes of a conventional regenerator refrigerator according to time of day.

すなわち、例えば9時から13時までの時間帯A1と1
6時から21時までの時間帯A2とは、通常冷却運転モ
ードを実行する。これらの時間帯では、コンプレッサか
らの冷媒流路を主エバポレータ側に切換え、コンプレッ
サを運転して液冷媒を主エバポレータに供給する。この
ようにして主エバポレータに液冷媒を供給しながらファ
ンを駆動すると、庫内が冷却される。
That is, for example, the time periods A1 and 1 from 9:00 to 13:00
During the time period A2 from 6:00 to 21:00, the normal cooling operation mode is executed. During these times, the refrigerant flow path from the compressor is switched to the main evaporator side, and the compressor is operated to supply liquid refrigerant to the main evaporator. When the fan is driven while supplying liquid refrigerant to the main evaporator in this manner, the interior of the refrigerator is cooled.

0時から8時までの時間帯Blと22時から24時まで
の時間帯b2とは、通常冷却運転と蓄冷運転とが交互に
実行される。すなわち、通常冷却運転によって庫内温度
を一定に保ちながら蓄冷運転によって蓄冷材に蓄冷して
いく。蓄冷は、コンプレッサからの冷媒流路を蓄冷用エ
バポレータ側に切換え、コンプレッサを運転して蓄冷用
エバポレータに液冷媒を供給することにより行°なわれ
る。この際、ファンの運転は停止されている。そして、
蓄冷エバセンサで検出した蓄冷材温度Tが低下してT1
例えば−29℃に達したことによって蓄冷完了を検知す
ると蓄冷運転を終了し、この時間帯の路側すなわち8時
まで通常冷却運転のみを実行する。
In the time period B1 from 0:00 to 8:00 and the time period b2 from 22:00 to 24:00, normal cooling operation and cold storage operation are performed alternately. That is, while the temperature inside the refrigerator is kept constant through the normal cooling operation, cold is stored in the cold storage material through the cold storage operation. Cold storage is performed by switching the refrigerant flow path from the compressor to the cold storage evaporator side, operating the compressor, and supplying liquid refrigerant to the cold storage evaporator. At this time, the operation of the fan is stopped. and,
The temperature T of the cold storage material detected by the cold storage Eva sensor decreases to T1
For example, when the completion of cold storage is detected by reaching -29°C, the cold storage operation is terminated, and only the normal cooling operation is performed on the road side during this time period, that is, until 8 o'clock.

8時から9時までの時間帯CI、13時から16時まで
の時間帯C2及び21時から22時までの時間帯C3は
、コンプレッサの運転を強制的に停止した状態で主エバ
ポレータと蓄冷用エバポレータとの間の伝熱経路を開放
する蓄冷冷却運転を実行する。この際、蓄冷用エバポレ
ータの周囲に配された蓄冷材から主エバポレータに放冷
がなされる。このようにして放冷を実行しながらファン
を運転すると、コンプレッサの運転を停止しているにも
かかわらず庫内が冷却される。
During time period CI from 8:00 to 9:00, time period C2 from 13:00 to 16:00, and time period C3 from 21:00 to 22:00, compressor operation is forcibly stopped and the main evaporator and cold storage are used. Execute cold storage cooling operation to open the heat transfer path between the evaporator and the evaporator. At this time, cooling is released from the cold storage material arranged around the cold storage evaporator to the main evaporator. When the fan is operated while performing cooling in this manner, the inside of the refrigerator is cooled even though the compressor is not operating.

(発明が解決しようとする課題) 以上に説明した従来の蓄冷式冷蔵庫では、蓄冷運転を実
行する時間帯B  、B  において、蓄除材温度Tが
低下して一旦蓄冷完了温度T1すなわち例えば−29℃
に達した後は、この時間帯の路側まで再び蓄冷運転を実
行することなく通常冷却運転のみを実行していたので、
蓄冷運転の終了後に熱リーク等による蓄冷材温度Tの上
昇を招くことがあった。したがって、この時間借路側の
蓄冷材温度Tが高くなり、蓄冷冷却運転時間帯C1゜C
2又はC3中に蓄冷材の冷凍能力が不足して、蓄冷冷却
運転の続行ができなくなることがあった。
(Problems to be Solved by the Invention) In the conventional cold storage type refrigerator described above, during the time periods B and B during which the cold storage operation is performed, the storage/removal material temperature T decreases and once the cold storage completion temperature T1, for example, -29 ℃
After reaching this time, only normal cooling operation was performed without performing cold storage operation again until the roadside during this time.
After the cold storage operation ends, the temperature T of the cold storage material may rise due to heat leakage or the like. Therefore, the temperature T of the cold storage material on the rented road side increases during this time, and the cold storage cooling operation time period C1°C
2 or C3, the refrigerating capacity of the cold storage material was insufficient, and the cold storage cooling operation could not be continued.

本発明は、以上の事情を考慮してなされたものであって
、蓄冷材の熱リーク等があっても蓄冷運転実行時間帯の
路側における蓄冷材温度Tを低く押えることができる蓄
冷式冷蔵庫を提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and provides a cold storage type refrigerator that can keep the cold storage material temperature T low on the roadside during the cold storage operation period even if there is heat leakage of the cold storage material. The purpose is to provide.

[発明の構成] (課題を解決するための手段) 本発明の蓄冷式冷蔵庫は、前記の目的を達成するために
、コンプレッサから主エバポレータと周囲に蓄冷材を配
した蓄冷用エバポレータとにそれぞれ至る冷媒流路を切
換える流路切換手段を備えるとともに、蓄冷材の温度を
検出する塩度センサを有し、蓄冷完了後であってもこの
温度センサで検出した蓄冷材温度が所定温度以上になっ
た場合に流路切換手段により冷媒流路を蓄冷用エバポレ
ータ側に切換えて蓄冷運転を再実行するものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above-mentioned object, the cold storage type refrigerator of the present invention includes a main evaporator from the compressor and a cold storage evaporator having a cold storage material arranged around the compressor. In addition to being equipped with a flow path switching means for switching the refrigerant flow path, it also has a salinity sensor that detects the temperature of the cold storage material, and even after the cold storage is completed, the temperature of the cold storage material detected by this temperature sensor exceeds a predetermined temperature. In this case, the refrigerant flow path is switched to the cool storage evaporator side by the flow path switching means and the cool storage operation is re-executed.

(作 用) 流路切換手段により冷媒流路を蓄冷用エバポレータ側に
切換えて蓄冷運転を実行することによって、この蓄冷用
エバポレータの周囲に配した蓄冷材への蓄冷がなされる
。そして、この蓄冷運転によって蓄冷が完了した後であ
っても、熱り−ク等のために蓄冷材温度Tが所定温度1
2以上になった場合には、冷媒流路を主エバポレータ側
から蓄冷用エバポレータ側に切換えて蓄冷運転を再実行
する。したがって、蓄冷運転実行時間帯の路側における
蓄冷材温度TがT2より低く押えられる。
(Function) By switching the refrigerant flow path to the cold storage evaporator side by the flow path switching means and executing the cold storage operation, cold storage is performed in the cold storage material arranged around the cold storage evaporator. Even after the cold storage is completed by this cold storage operation, the temperature T of the cold storage material is reduced to a predetermined temperature 1 due to heat leakage, etc.
If the number is 2 or more, the refrigerant flow path is switched from the main evaporator side to the cool storage evaporator side and the cool storage operation is re-executed. Therefore, the temperature T of the cold storage material on the roadside during the cold storage operation execution time period is kept lower than T2.

(実施例) 第1図は、本発明の実施例に係る蓄冷式冷蔵庫の構成図
である。
(Example) FIG. 1 is a configuration diagram of a regenerator refrigerator according to an example of the present invention.

コンプレッサlの吐出側1aは吐出管を介してコンデン
サ3の一端に接続される。コンデンサ3の他端は、差圧
弁5、主電磁弁9及び主キャピラリチューブ11を順次
介して主エバポレータ13の流入側L3aに接続される
。また、差圧弁5の流出側は、蓄冷用電磁弁15及び蓄
冷用キャピラリチューブ17を順次介して、周囲に蓄冷
材18が配された蓄冷用エバポレータ19の流入側19
aに接続される。
A discharge side 1a of the compressor 1 is connected to one end of the condenser 3 via a discharge pipe. The other end of the capacitor 3 is connected to the inflow side L3a of the main evaporator 13 via the differential pressure valve 5, the main electromagnetic valve 9, and the main capillary tube 11 in this order. Further, the outflow side of the differential pressure valve 5 is connected to the inflow side 19 of a cold storage evaporator 19 around which a cold storage material 18 is arranged, through a cold storage solenoid valve 15 and a cold storage capillary tube 17 in sequence.
connected to a.

蓄冷用エバポレータ19の流出側19bは、主エバポレ
ータ13の流入側13aに接続される。主エバポレータ
13の流出側13bは、アキュムレータ21及び逆止弁
23を順次介してコンプレッサlの吸入側1bに接続さ
れる。この吸入側1bの圧力は差圧弁5に印加される。
The outflow side 19b of the cold storage evaporator 19 is connected to the inflow side 13a of the main evaporator 13. The outflow side 13b of the main evaporator 13 is connected to the suction side 1b of the compressor I via an accumulator 21 and a check valve 23 in this order. This pressure on the suction side 1b is applied to the differential pressure valve 5.

さらに、主エバポレータ13と蓄冷用エバポレータ19
との間には、例えば重力式の閉ループ形サーモサイホン
25が独立の伝熱経路として設けられ、このサーモサイ
ホン25の途中に放冷用電磁弁27が配される。主エバ
ポレータ13の近傍には庫内冷気循環用のファン29が
設けられる。また、蓄冷用エバポレータ19には蓄冷材
18の温度Tを検出するために蓄冷エバセンサ33が配
される。
Furthermore, the main evaporator 13 and the cold storage evaporator 19
For example, a gravity-type closed-loop thermosiphon 25 is provided as an independent heat transfer path between the two, and a cooling solenoid valve 27 is disposed in the middle of this thermosiphon 25. A fan 29 for circulating cold air inside the refrigerator is provided near the main evaporator 13. Further, a cold storage evaporator 33 is arranged in the cold storage evaporator 19 to detect the temperature T of the cold storage material 18 .

第2図は、以上の蓄冷式冷蔵庫の制御回路のブロック図
である。
FIG. 2 is a block diagram of the control circuit of the above regenerator refrigerator.

冷凍室内の温度を検出するFセンサ31及び前記蓄冷エ
バセンサ33の出力は、ともに制御回路35に入力され
る。また、この制御回路35は、コンプレッサ1及びフ
ァン29の運転・停止を制御するとともに、主電磁弁9
、蓄冷用電磁弁15及び放冷用電磁弁27の開閉を制御
する。
The outputs of the F sensor 31 that detects the temperature inside the freezer compartment and the cold storage evaporator sensor 33 are both input to the control circuit 35. Further, this control circuit 35 controls the operation/stop of the compressor 1 and the fan 29, and also controls the main solenoid valve 9.
, controls the opening and closing of the cold storage solenoid valve 15 and the cold release solenoid valve 27.

以上に説明した本発明の実施例に係る蓄冷式冷蔵庫の運
転モードの1日のタイムスケジュールは、次のとおり、
基本的には第5図に関して先に説明したものと同様であ
る。
The daily time schedule of the operation mode of the cold storage refrigerator according to the embodiment of the present invention described above is as follows:
It is basically the same as that described above with respect to FIG.

時間帯A  、A  では、従来と同様に通常冷却運転
が実行される。通常冷却運転は、蓄冷用電磁弁15を閉
じて主電磁弁9を開き、コンプレッサlを駆動して主エ
バポレータ13に液冷媒を供給するとともに、ファン2
9を駆動することによって行われる。この通常冷却運転
は、Fセンサ31で検出される冷凍室温度が所定温度よ
り高くなった場合に起動され、この温度より若干低い所
定温度以下になるまで継続する。これにより、冷凍室温
度がほぼ一22℃に保持される。
In time periods A 1 and A 2 , normal cooling operation is performed as in the conventional case. In normal cooling operation, the cold storage solenoid valve 15 is closed, the main solenoid valve 9 is opened, the compressor l is driven to supply liquid refrigerant to the main evaporator 13, and the fan 2
This is done by driving 9. This normal cooling operation is started when the temperature of the freezer compartment detected by the F sensor 31 becomes higher than a predetermined temperature, and continues until the temperature reaches a predetermined temperature slightly lower than this temperature. As a result, the temperature of the freezer compartment is maintained at approximately -22°C.

B2から81に連続する時間帯の始剤22時からは、通
常冷却運転と蓄冷運転とを交互に実行する。すなわち、
通常冷却運転により庫内温度を一定に保ちながら蓄冷運
転により蓄冷する。蓄冷運転は、主電磁弁9を閉じて蓄
冷用電磁弁15を開き、コンプレッサlを駆動して蓄冷
用エバポレータ19に液冷媒を供給することにより行な
われる。
From 22:00 onwards in the continuous time period from B2 to 81, normal cooling operation and cold storage operation are performed alternately. That is,
The temperature inside the refrigerator is kept constant through normal cooling operation, and the cold is stored through cold storage operation. The cold storage operation is performed by closing the main solenoid valve 9, opening the cold storage solenoid valve 15, and driving the compressor 1 to supply liquid refrigerant to the cold storage evaporator 19.

蓄冷中はファン29の運転が停止している。何回かの蓄
冷運転の結果、蓄冷エバセンサ33で検出した蓄冷材1
8の温度Tが蓄冷完了温度T1すなわち例えば−29℃
に達する。蓄冷材温度Tが一29℃に達した直後は通常
冷却運転を実行するが、この通常冷却運転中であっても
蓄冷材18の温度Tが上昇してT2例えば−26℃に達
した場合には蓄冷運転を再開し、蓄冷材温度Tが低下し
てこの温度が再び一29℃に達するまで蓄冷運転を継続
する。
The operation of the fan 29 is stopped during cold storage. As a result of several cold storage operations, the cold storage material 1 detected by the cold storage Eva sensor 33
8 is the cold storage completion temperature T1, for example -29°C
reach. Immediately after the cool storage material temperature T reaches -29°C, a normal cooling operation is performed, but even during this normal cooling operation, if the temperature T of the cool storage material 18 rises and T2 reaches, for example, -26°C. restarts the cold storage operation and continues the cold storage operation until the temperature T of the cold storage material decreases and this temperature reaches -29°C again.

つまり、蓄冷材温度Tが一旦−29℃に達した後であっ
ても、通常冷却運転中の熱リーク等によって蓄冷材温度
Tが上昇してこの温度が一26℃に達した場合には何回
でも蓄冷運転を再実行し、蓄冷材温度Tが一26℃より
高くならないようにする。
In other words, even after the cool storage material temperature T once reaches -29°C, what happens if the cool storage material temperature T rises due to heat leakage during normal cooling operation and reaches -26°C? The cold storage operation is re-executed even once, so that the temperature of the cold storage material does not rise above -26°C.

この場合の蓄冷材温度Tの時間変化の様子を第3図に示
す。
FIG. 3 shows how the cool storage material temperature T changes over time in this case.

まず、従来と同様に通常冷却運転と蓄冷運転とが交互に
実行されて、蓄冷材温度Tが時刻111、: −29℃
に達する。蓄冷材温度Tが一29℃に達した直後は通常
冷却運転b1を実行する。この通常冷却運転b1中は、
庫内が冷却されるもののコンプレッサーから蓄冷用エバ
ポレータ19に冷媒が供給されることがないから、熱リ
ーク等によって蓄冷材温度Tが上昇する。蓄冷材温度T
が上昇してこの温度が時刻t2に一26℃に達すると、
蓄冷運転b2が再開される。したがって、蓄冷材温度T
が再び低下する。以下、通常冷却運転b1と蓄冷運転b
 とを繰返しながら、時刻t6において時間帯B1の終
刻すなわち8時となる。したかって、時刻taにおける
蓄冷材温度Tが一26℃以下に押えられる。
First, as in the past, normal cooling operation and cold storage operation are performed alternately, and the cold storage material temperature T is -29℃ at time 111.
reach. Immediately after the cool storage material temperature T reaches -29° C., the normal cooling operation b1 is performed. During this normal cooling operation b1,
Although the inside of the refrigerator is cooled, no refrigerant is supplied from the compressor to the cold storage evaporator 19, so the temperature T of the cold storage material increases due to heat leakage or the like. Cold storage material temperature T
rises and this temperature reaches -26°C at time t2,
Cool storage operation b2 is restarted. Therefore, the cold storage material temperature T
decreases again. Below, normal cooling operation b1 and cold storage operation b
While repeating these steps, at time t6, the end of time zone B1, that is, 8 o'clock has arrived. Therefore, the temperature T of the cold storage material at time ta is suppressed to 126° C. or less.

時間帯C、C及びC3では、コンブレラサーの運転を強
制的に停止した状態で放冷用電磁弁27を開くことによ
り、冷凍能力を備蓄した蓄冷材18からサーモサイホン
25を通して主エバポレータ13に放冷がなされる。こ
の際、主エバポレータ13と蓄冷用エバポレータ19の
周囲の蓄冷材18との間の温度差と重力の作用とによっ
てサーモサイホン25内を冷媒が循環するから、放冷の
ために外部から電力を供給する必要がない。このように
して蓄冷材18からの放冷を実行しながらファン29を
運転する蓄冷冷却運転モードでは、コンプレッサーの運
転を停止しているにもかかわらず庫内が冷却される。た
だし、蓄冷冷却運転中に蓄冷材18の冷凍能力を使い果
してしまった場合には、このまま蓄冷冷却運転を継続す
ると庫内温度上昇を招くので、蓄冷エバセンサ33で検
出した蓄冷材温度TがT4例えば−18℃に達したこと
によって蓄冷材18の冷凍能力の喪失を検知し、蓄冷冷
却運転を中止して通常冷却運転に切換える。しかし赴か
ら、時間帯B1の路側における蓄冷材温度Tが前記のよ
うにT2例えば−26℃以下の低温に押えられるため、
蓄冷冷却運転中に蓄冷材18の冷凍能力が不足して蓄冷
冷却運転の続行ができなくなることはまれである。
During time periods C, C, and C3, by opening the solenoid valve 27 for cooling while forcibly stopping the operation of the combiner thermos, cooling is released from the cold storage material 18 that has stored refrigeration capacity to the main evaporator 13 through the thermosiphon 25. will be done. At this time, the refrigerant circulates within the thermosiphon 25 due to the temperature difference between the main evaporator 13 and the cold storage material 18 surrounding the cold storage evaporator 19 and the action of gravity, so power is supplied from the outside for cooling. There's no need to. In the cold storage cooling operation mode in which the fan 29 is operated while discharging cold from the cold storage material 18 in this manner, the inside of the refrigerator is cooled even though the compressor is not operating. However, if the refrigerating capacity of the cold storage material 18 is used up during the cold storage cooling operation, if the cold storage cooling operation is continued as it is, the temperature inside the refrigerator will rise. When the temperature reaches −18° C., loss of refrigerating capacity of the cold storage material 18 is detected, and the cold storage cooling operation is stopped and switched to normal cooling operation. However, since the cold storage material temperature T on the roadside during time period B1 is suppressed to a low temperature T2 of, for example, -26°C or lower, as described above,
During the cold storage cooling operation, it is rare that the refrigerating capacity of the cold storage material 18 becomes insufficient and the cold storage cooling operation cannot be continued.

なお、時間帯B、B2において、通常冷却■ 運転時間β1と蓄冷運転時間β2とをそれぞれ一定時間
として、通常冷却運転b1と蓄冷運転b2とを交互に実
行してもよい。この際、蓄冷エバセンサ33で検出した
蓄冷材18の温度Tが一旦T1例えば−29℃以下にな
った場合でも、設定された蓄冷運転時間β2の始剤にお
ける蓄冷材温度TがT2例えば−26℃以上であるとき
に限って蓄冷運転b2を実行する。
In addition, in the time periods B and B2, the normal cooling operation b1 and the cold storage operation b2 may be performed alternately, with the normal cooling operation time β1 and the cool storage operation time β2 each being set as a fixed time. At this time, even if the temperature T of the cold storage material 18 detected by the cold storage evaporator 33 once drops below T1, for example, -29°C, the temperature T of the cold storage material 18 at the starting material for the set cold storage operation time β2 is T2, for example, -26°C. Cool storage operation b2 is executed only when the above conditions are met.

この場合の蓄冷材温度Tの時間変化の様子を第4図に示
す。
FIG. 4 shows how the cool storage material temperature T changes over time in this case.

通常冷却運転時間β1及び蓄冷運転時間β2は、それぞ
れ例えば23分及び9分である。この場合には、通常冷
却運転b と蓄冷運転b2との交互実行中のある蓄冷運
転時間β2内の時刻t1□において、蓄冷材温度Tが蓄
冷完了温度−29℃に達する。したがって、この時間β
2の路側にはTが一29℃より低くなっている。この蓄
冷運転時間β2が経過すると、次の通常冷却時間β1が
経過してさらに次の蓄冷運転時間β2が到来しても、蓄
冷運転b2を実行せずに通常冷却運転b1を続行する。
The normal cooling operation time β1 and the cold storage operation time β2 are, for example, 23 minutes and 9 minutes, respectively. In this case, the cold storage material temperature T reaches the cold storage completion temperature -29° C. at time t1□ within a certain cold storage operation time β2 during the alternating execution of the normal cooling operation b and the cold storage operation b2. Therefore, this time β
On the roadside of No. 2, T is lower than -29°C. When this cool storage operation time β2 has elapsed, even if the next normal cooling time β1 has elapsed and the next cool storage operation time β2 has arrived, the normal cooling operation b1 is continued without executing the cool storage operation b2.

この通常冷却運転b1の間は前記と同様に熱リーク等に
よって蓄冷材温度Tが徐々に上昇する。蓄冷材温度Tが
上昇して時刻t1□において例えば−26℃に達すると
、通常冷却運転時間β1の路側では蓄冷材温度Tが若干
−26℃を上回るものの、次の蓄冷運転時間β2におい
て蓄冷運転b2が再開され、蓄冷材温度Tが再び低下す
る。この蓄冷運転b 中の時刻t13において蓄除材温
度Tが再び一29℃に達し、この蓄冷運転b2の終了時
には一29℃より低くなる。以下同様の通常冷却運転b
 と蓄冷運転b2とを繰返す。
During this normal cooling operation b1, the cool storage material temperature T gradually rises due to heat leakage, etc., as described above. When the cold storage material temperature T rises and reaches, for example, -26°C at time t1□, although the cold storage material temperature T slightly exceeds -26°C on the roadside during the normal cooling operation time β1, the cold storage material temperature T will not be activated during the next cold storage operation time β2. b2 is restarted, and the cool storage material temperature T decreases again. At time t13 during this cold storage operation b, the storage/removal material temperature T reaches -29°C again, and becomes lower than -29°C at the end of this cold storage operation b2. Same normal cooling operation b
and cold storage operation b2 are repeated.

■ したがって、時間帯B1の路側における蓄冷材温度Tが
ほぼ一26℃以下に押えられる。
(2) Therefore, the temperature T of the cold storage material on the roadside during the time period B1 is suppressed to approximately -26°C or less.

なお、前記の蓄冷運転再開温度T2より高い温度T と
この温度T より高い温度T4とを設定し、時間帯C、
C及びC3の蓄冷冷却運転は、蓄冷エバセンサ33で検
出した蓄冷材温度TがT3以下であるときに限り開始し
、この蓄冷材温度Tが14以上になったときに終了する
ようにしでもよい。なお、T2を一26℃とする場合に
は、T3.T4をそれぞれ例えば−24℃及び−20℃
とすればよい。この場合には、蓄冷材18の熱リーク等
による温度上昇より大きい温度差をT2とT3との間に
設定しておけば、蓄冷冷却運転の開始が禁止されること
はない。
In addition, a temperature T higher than the cold storage operation restart temperature T2 and a temperature T4 higher than this temperature T are set, and the time period C,
The cold storage cooling operation of C and C3 may be started only when the cold storage material temperature T detected by the cold storage Eva sensor 33 is below T3, and may be ended when the cold storage material temperature T becomes 14 or higher. Note that when T2 is -26°C, T3. T4 for example -24℃ and -20℃ respectively
And it is sufficient. In this case, by setting a temperature difference between T2 and T3 that is larger than the temperature increase due to heat leakage of the cold storage material 18, the start of the cold storage cooling operation will not be prohibited.

また、以上に説明した実施例においては、主エバポレー
タ13と蓄冷用エバポレータ19との間の伝熱経路を重
力式の閉ループ形サーモサイホン25としているので放
冷のために外部から電力を供給する必要がないが、ヒー
トバイブ等の他の手段でこの伝熱経路を構成してもよい
。コンプレッサ1から主エバポレータ13の流入側13
aに至る冷媒流路とコンプレッサ lから蓄冷用エバポ
レータ19の流入側19aに至る他の冷媒流路とを切換
える流路切換手段として主電磁弁9と蓄冷用電磁弁15
との2つの電磁弁を用いていたが、これに代えて1つの
三方電磁弁を使用してもよい。
In addition, in the embodiment described above, since the heat transfer path between the main evaporator 13 and the cool storage evaporator 19 is a gravity-type closed-loop thermosiphon 25, it is necessary to supply power from the outside for cooling. However, this heat transfer path may be configured by other means such as a heat vibrator. Inlet side 13 of main evaporator 13 from compressor 1
A main solenoid valve 9 and a cold storage solenoid valve 15 serve as flow path switching means for switching between the refrigerant flow path leading to a refrigerant flow path and another refrigerant flow path leading from the compressor l to the inflow side 19a of the cold storage evaporator 19.
Although two solenoid valves are used, one three-way solenoid valve may be used instead.

[発明の効果] 以上に説明したように、本発明に係る蓄冷式冷蔵庫は、
蓄冷完了時に蓄冷運転を一旦終了した後であっても、熱
リーク等によって蓄冷材温度が所定温度以上に上昇した
場合には何回でも蓄冷運転を再実行するから、蓄冷運転
実行時間帯の路側における蓄冷材温度を低く押えること
ができる。
[Effect of the invention] As explained above, the cold storage refrigerator according to the present invention has the following effects:
Even after the cold storage operation is once terminated when the cold storage is completed, if the temperature of the cold storage material rises above the predetermined temperature due to heat leakage, the cold storage operation will be re-executed as many times as necessary. It is possible to keep the temperature of the cold storage material low.

したがって、この蓄冷材の冷凍能力を利用した蓄冷冷却
運転中に蓄冷材の冷凍能力が不足して蓄冷冷却運転の続
行ができなくなることを極力防止することができる。
Therefore, during the cold storage cooling operation that utilizes the cooling capacity of the cold storage material, it is possible to prevent as much as possible from being unable to continue the cold storage cooling operation due to insufficient freezing capacity of the cold storage material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る蓄冷式冷蔵庫の構成図、
第2図は前回の蓄冷式冷蔵庫の制御回路のブロック図、
第3図は第1図の蓄冷式冷蔵庫における蓄冷材温度の時
間変化を示すタイムチャート、第4図は本発明の他の実
施例に係る蓄冷式冷蔵庫における蓄冷材温度の時間変化
を示すタイムチャート、第5図は従来の蓄冷式冷蔵庫の
1日の時間帯別運転モードを示す図である。 符号の説明 ■・・・コンプレッサ、9・・・主電磁弁、13・・・
主エバポレータ、15・・・蓄冷用電磁弁、18・・・
蓄冷材、19・・・蓄冷用エバポレータ、25・・・サ
ーモサイホン、27・・・放冷用電磁弁、29・・・フ
ァン、31・・・Fセンサ、33・・・蓄冷エバセンサ
、T・・・蓄冷材温度。 ばか1名 第1図 第2図
FIG. 1 is a configuration diagram of a cold storage refrigerator according to an embodiment of the present invention,
Figure 2 is a block diagram of the control circuit of the previous cold storage refrigerator.
FIG. 3 is a time chart showing temporal changes in the temperature of the cold storage material in the cold storage refrigerator of FIG. 1, and FIG. 4 is a time chart showing temporal changes in the temperature of the cold storage material in the cold storage refrigerator according to another embodiment of the present invention. , FIG. 5 is a diagram showing operating modes of a conventional regenerator refrigerator according to time of day. Explanation of symbols■...Compressor, 9...Main solenoid valve, 13...
Main evaporator, 15... Solenoid valve for cold storage, 18...
Cold storage material, 19... Evaporator for cold storage, 25... Thermosiphon, 27... Solenoid valve for cooling, 29... Fan, 31... F sensor, 33... Cool storage evaporator, T. ...Cold storage material temperature. One Idiot Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、コンプレッサから主エバポレータに至る冷媒流路と
前記コンプレッサから周囲に蓄冷材を配した蓄冷用エバ
ポレータに至る他の冷媒流路とを切換える流路切換手段
を備えるとともに前記蓄冷材の温度を検出する温度セン
サを有する蓄冷式冷蔵庫であって、蓄冷完了後であって
も前記温度センサで検出した蓄冷材温度が所定温度以上
になった場合に前記流路切換手段により冷媒流路を蓄冷
用エバポレータ側に切換えて蓄冷運転を再実行すること
を特徴とする蓄冷式冷蔵庫。
1. A flow path switching means is provided for switching between a refrigerant flow path from the compressor to the main evaporator and another refrigerant flow path from the compressor to a cold storage evaporator around which a cold storage material is arranged, and the temperature of the cold storage material is detected. In a refrigerant refrigerator having a temperature sensor, when the temperature of the regenerator material detected by the temperature sensor exceeds a predetermined temperature even after completion of regenerator, the refrigerant flow path is switched to the refrigerant evaporator side by the refrigerant flow path switching means. A cold storage type refrigerator characterized in that the cold storage operation is re-executed by switching to the cold storage mode.
JP8064088A 1988-03-31 1988-03-31 Cold-regenerative refrigerator Pending JPH01252881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8064088A JPH01252881A (en) 1988-03-31 1988-03-31 Cold-regenerative refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8064088A JPH01252881A (en) 1988-03-31 1988-03-31 Cold-regenerative refrigerator

Publications (1)

Publication Number Publication Date
JPH01252881A true JPH01252881A (en) 1989-10-09

Family

ID=13723966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8064088A Pending JPH01252881A (en) 1988-03-31 1988-03-31 Cold-regenerative refrigerator

Country Status (1)

Country Link
JP (1) JPH01252881A (en)

Similar Documents

Publication Publication Date Title
US5272884A (en) Method for sequentially operating refrigeration system with multiple evaporators
EP0611147B1 (en) Fuzzy logic apparatus control
EP2142863B1 (en) Control method of refrigerator
EP1182410B1 (en) Refrigerator and method of controlling the same
CN111059861B (en) Refrigeration control method of refrigerator and refrigerator
KR20110067591A (en) Control method for refrigerator
JP2002013781A (en) Air-conditioning system
EP3686523A1 (en) Refrigerator
WO2015043678A1 (en) Refrigerator with an improved defrost circuit and method of controlling the refrigerator
JPH09318165A (en) Electric refrigerator
JPH01252881A (en) Cold-regenerative refrigerator
JP2000205612A (en) Cold storage air conditioner
JP2013040691A (en) Refrigeration storage
JPH01247978A (en) Cold heat reserving type refrigerator
JPH01252882A (en) Cold-regenerative refrigerator
JPH01234780A (en) Heat storage type refrigerator
JP2850491B2 (en) Operation control method of refrigerator
KR102589265B1 (en) Refrigerator and method for controlling the same
JP3030225B2 (en) How to stop absorption chiller operation
JP2002071233A (en) Refrigerator and its controlling method
JPH02230057A (en) Freezer
JPH03233262A (en) Freezing cycle
JPH01247977A (en) Cold heat reserving type refrigerator
JPH0541336Y2 (en)
JP2000329443A (en) Refrigerator