JPH01252877A - Engine-powered air-conditioner - Google Patents

Engine-powered air-conditioner

Info

Publication number
JPH01252877A
JPH01252877A JP63075981A JP7598188A JPH01252877A JP H01252877 A JPH01252877 A JP H01252877A JP 63075981 A JP63075981 A JP 63075981A JP 7598188 A JP7598188 A JP 7598188A JP H01252877 A JPH01252877 A JP H01252877A
Authority
JP
Japan
Prior art keywords
heat exchanger
engine
cooling water
outdoor heat
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63075981A
Other languages
Japanese (ja)
Inventor
Akira Nishimura
章 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP63075981A priority Critical patent/JPH01252877A/en
Publication of JPH01252877A publication Critical patent/JPH01252877A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To enable, at the time of cooling at low outside air temperatures, a heat pump circuit, which shares the same fans with an adjacently set outdoor heat exchanger, to function for both cooling and heating concurrently to achieve comfortable air conditioning by passing the cooling water for the engine through an outdoor heat exchanger. CONSTITUTION:When a temperature sensor finds the outside air temperature Ta to be substantially below 15 deg.C, a cooling water-controlling solenoid valve 4 is turned off to pass the cooling water for the engine 7 entirely through an auxiliary heating channel 23 so that the outdoor heat exchanger 2 is warmed by the cooling water and the condensing pressure of the refrigerant therein can be prevented from declining. Thus even under low atmospheric temperatures the operation involves no fall in condensing pressure of the refrigerant in the outdoor heat exchanger 2 and freeze in the indoor heat exchanger 39 is prevented so that an optimum condition can be achieved in the cooling opera tion. Dispensing with adjustment of the air flow from fans under low outside temperatures, the operation permits the heating function of a huet pump circuit adjacently positioned to be performed concurrently without any trouble.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はエンジン駆動式空調装置、特に外気低温時の冷
房運転が円滑に行なわれるエンジン駆動式空調装置に間
するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an engine-driven air conditioner, and particularly to an engine-driven air conditioner that smoothly performs cooling operation when the outside air is low temperature.

〈従来の技術〉 エンジン駆動式空調装置においては冷房運転に際しては
、冷房効率を向上させるためにエンジンの冷却水を室外
側熱交換器とは別に設けられているラジェータに導いて
放熱している。
<Prior Art> In an engine-driven air conditioner, during cooling operation, engine cooling water is guided to a radiator provided separately from an outdoor heat exchanger to radiate heat in order to improve cooling efficiency.

最近、例えば電算機によるプラントの自動制御室などで
は、外気温の低い状態でも室内の温度を所定の低温状態
に保持するために空調機によって冷房状態が維持される
ことが要求される。このように外気温が低い状態でエン
ジン駆動式空調機に冷房運転を行なわせると、凝縮器と
して使用される室外側熱交換器での圧力が上がりにくく
なる。
Recently, for example, in an automatic control room of a plant using a computer, it is required that an air conditioner maintain a cooling state in order to maintain the indoor temperature at a predetermined low temperature even when the outside temperature is low. When the engine-driven air conditioner performs cooling operation in such a low outside temperature state, the pressure in the outdoor heat exchanger used as a condenser becomes difficult to rise.

室外側熱交換器でこのように圧力が低下すると、室内側
熱交換器においても所定の圧力が得られなくなって凍結
するおそれもある。
If the pressure in the outdoor heat exchanger decreases in this way, there is a risk that the indoor heat exchanger will no longer be able to obtain a predetermined pressure and may freeze.

〈発明が解決しようとする課題〉 このため、このような状態で室外側熱交換器のファンの
運転台数を減らしたり、或はファンの回転速度を低下さ
せて冷房運転をすることも考えられる。
<Problems to be Solved by the Invention> Therefore, in such a state, it is conceivable to reduce the number of operating fans of the outdoor heat exchanger or to perform cooling operation by lowering the fan rotation speed.

しかし、エンジン駆動式空調機では、−台のエンジンで
複数の独立したし−トボンブ回路を同時に作動させるこ
とが多く、前記のように低外気温で冷房される自動制御
室に隣接して暖房される保守員の控室があり、これらの
室が共通の室外熱交換器室に配される室外側熱交換器の
作るし−トボンブ回路にそれぞれ接続されていることが
ある。
However, in engine-driven air conditioners, multiple independent air conditioner circuits are often operated simultaneously using a single engine, and as mentioned above, the air conditioner is heated adjacent to the automatic control room that is cooled at low outside temperatures. There are waiting rooms for maintenance personnel, and these rooms may be connected to the bomb circuits of the outdoor heat exchangers arranged in a common outdoor heat exchanger room.

このような場合には、自動制御室及び控室にそれぞれ対
応する室外側熱交換器用のファンは共通である。
In such a case, the outdoor heat exchanger fans corresponding to the automatic control room and the waiting room are common.

従って、外気温が低い状態で自動制御室を冷房し、室外
側熱交換器での圧力の低下を防ぐためにファンの回転速
度を低下させると、控室での暖房能力が低下し室外側熱
交換器が着霜し易くなってしまう。
Therefore, if you cool the automatic control room when the outside temperature is low and reduce the rotation speed of the fan to prevent a drop in pressure in the outdoor heat exchanger, the heating capacity in the waiting room will decrease and the outdoor heat exchanger will becomes susceptible to frost formation.

本発明の目的は、低外気温時の冷房運転に際してエンジ
ン冷却水を室外側熱交換器に流すことにより、ファンを
共通と、する隣接したヒートポンプ回路に冷房及び暖房
運転を同時に快適に行なわせることが出来るエンジン駆
動式空調装置を提供することにある。
An object of the present invention is to allow adjacent heat pump circuits that share a common fan to comfortably perform cooling and heating operations at the same time by flowing engine cooling water to an outdoor heat exchanger during cooling operations at low outside temperatures. The purpose of the present invention is to provide an engine-driven air conditioner that can perform the following functions.

〈課題を解決するための手段〉 前記目的を達成するために、本発明では冷房運転時にお
いて外気温が所定値以下である場合には外気温に対応す
る流量のエンジン冷却水を補助加熱流路に流すように制
御する流量制御手段が設けられている。
<Means for Solving the Problems> In order to achieve the above object, in the present invention, during cooling operation, when the outside temperature is below a predetermined value, engine cooling water is supplied to the auxiliary heating channel at a flow rate corresponding to the outside temperature. A flow rate control means is provided for controlling the flow rate so that the flow rate increases.

すなわち、本発明は、コンプレッサ、冷媒流路切換弁、
室内側熱交換器、減圧素子及び室外側熱交換器よりヒー
トポンプ回路を形成し、前記コンプレッサをエンジンで
駆動するエンジン駆動式空調装置であって、前記エンジ
ンの冷却水を前記室外側熱交換器に流す補助加熱流路と
、外気温を検出する外気温センサと、冷房運転時におい
て前記外気温センサの検出温度が所定値以下である場合
には、前記検出温度に対応する流量の前記冷却水を前記
補助加熱流路に流すように制御する流量制御手段、とを
有する構成となっている。
That is, the present invention provides a compressor, a refrigerant flow path switching valve,
An engine-driven air conditioner in which an indoor heat exchanger, a pressure reducing element, and an outdoor heat exchanger form a heat pump circuit, and the compressor is driven by an engine, the engine-driven air conditioner supplying cooling water from the engine to the outdoor heat exchanger. an auxiliary heating channel for flowing the cooling water, an outside temperature sensor that detects the outside temperature, and when the temperature detected by the outside temperature sensor is below a predetermined value during cooling operation, the cooling water is supplied at a flow rate corresponding to the detected temperature. and a flow rate control means for controlling the flow to the auxiliary heating channel.

〈作  用〉 本発明では、外気温センサで検出される外気温度が所定
値以下であると、流量制御手段によってエンジンの冷却
水が外気温度に対応した最適量だけ補助加熱流路に流さ
れる。このために室外側熱交換器が冷却水で暖められ、
外気温度が低い場合でも室外側熱交換器における圧力の
低下が防止される。従って室内側熱交換器でも所定の圧
力が確保され、凍結することなく冷房運転が行なわれる
<Operation> In the present invention, when the outside air temperature detected by the outside air temperature sensor is below a predetermined value, the flow rate control means causes the engine cooling water to flow into the auxiliary heating flow path in an optimum amount corresponding to the outside air temperature. For this purpose, the outdoor heat exchanger is heated with cooling water,
Even when the outside air temperature is low, pressure drop in the outdoor heat exchanger is prevented. Therefore, a predetermined pressure is ensured even in the indoor heat exchanger, and cooling operation is performed without freezing.

また、室外側熱交換器のファンの風量は減少しないので
、隣接する部屋の暖房運転は何らの支障もなく行なわれ
る。
Further, since the air volume of the fan of the outdoor heat exchanger does not decrease, heating operation of the adjacent room can be performed without any hindrance.

〈実施例〉 以下、本発明の実施例を図面を用いて詳細に説明する。<Example> Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の実施例の構成を示す説明図で、エンジ
ン7によって2台のコンプレッサ6が駆動され、それぞ
れのコンプレッサ6によって同一構成の二つのヒートポ
ンプ回路が作動するようになっているので、以下の説明
では一方のヒートポンプ回路を収り上げて行なう。
FIG. 1 is an explanatory diagram showing the configuration of an embodiment of the present invention. Two compressors 6 are driven by an engine 7, and each compressor 6 operates two heat pump circuits with the same configuration. In the following explanation, one heat pump circuit will be included.

化 コンプレッサ6はアキュムレータ36を通過−冷媒を圧
縮して、オイルセパレータ37を介して四方弁38に送
出するようになっていて、第1図に実線で示した暖房運
転選択状態では、四方弁38から冷媒は室内側熱交換器
39に送られ、凝縮熱を放出して室内側熱交換器39が
取り付けられた部屋が暖房されるようになっている。
The refrigerant compressor 6 passes through an accumulator 36, compresses the refrigerant, and sends it to a four-way valve 38 via an oil separator 37. In the heating operation selection state shown by the solid line in FIG. The refrigerant is then sent to the indoor heat exchanger 39, and the room to which the indoor heat exchanger 39 is attached is heated by releasing the heat of condensation.

室内側熱交換器39からの冷媒は、逆止弁40を介して
レシーバ41に送られ、液量変化を吸収して平滑化され
た後に、膨張弁42から室外側熱交換器2に送出される
ようになっている。この室外側熱交換器2に並んでエン
ジン7の冷却水を放熱するラジェータ3が設けられ、ケ
ース29に対して室外側熱交換器2の近傍にファン1が
取り付けられている。そして、室外側熱交換器2で熱を
吸収して蒸発した冷媒は、四方弁38を通ってアキュム
レータ36に戻されるようにヒートポンプ回路が形成さ
れている。
The refrigerant from the indoor heat exchanger 39 is sent to the receiver 41 via the check valve 40, where it is smoothed by absorbing changes in liquid volume, and then sent from the expansion valve 42 to the outdoor heat exchanger 2. It has become so. A radiator 3 for radiating heat from the cooling water of the engine 7 is provided alongside the outdoor heat exchanger 2, and a fan 1 is attached to the case 29 near the outdoor heat exchanger 2. A heat pump circuit is formed such that the refrigerant that has absorbed heat and evaporated in the outdoor heat exchanger 2 is returned to the accumulator 36 through the four-way valve 38.

第1図に点線で示す冷房運転選択状態では同一のヒート
ポンプ回路において、室外側熱交換器2が凝縮器として
使用されて冷媒の凝縮熱が放出され、室内側熱交換器3
9が蒸発器として使用されて室内の空気から冷媒が気化
熱を吸収するようになっている。
In the cooling operation selection state shown by the dotted line in FIG. 1, in the same heat pump circuit, the outdoor heat exchanger 2 is used as a condenser and the heat of condensation of the refrigerant is released, and the indoor heat exchanger 3
9 is used as an evaporator so that the refrigerant absorbs the heat of vaporization from the indoor air.

第2図は実施例におけるエンジンの冷却水の流路を中心
とした構成を示し、エンジンルーム15の側面に防音パ
ネル16が取り付けられ、この防音パネル16を介して
導入される吸気が、エアクリーナ17を通過してガスミ
キサ18で燃料と混合され、この混合気の点火でエンジ
ン7が駆動されるようになっている。燃料は低圧スイッ
チが具備されているガス電磁弁19及びガスレギュレー
タ20を介してガスミキサ18に供給され、ガス電磁弁
19が低圧でOFFとなることによって、エンジン7の
負圧で燃料が吸い込まれ他の需要者の燃料圧の異常低下
を起さないようになっている。
FIG. 2 shows a configuration centered on the flow path of the engine cooling water in this embodiment. The mixture is mixed with fuel in a gas mixer 18, and the engine 7 is driven by ignition of this air-fuel mixture. Fuel is supplied to the gas mixer 18 through a gas solenoid valve 19 and a gas regulator 20, both of which are equipped with a low pressure switch, and when the gas solenoid valve 19 is turned off at low pressure, the fuel is sucked in by the negative pressure of the engine 7. This prevents an abnormal drop in fuel pressure for customers.

エンジン7はコンプレッサ6に対し図示せぬクラッチを
介して接続され、サーモスタット8、冷却水フィルタ2
1を介して導出される流路22が分岐され、一方が冷却
水電磁弁5を通って室外側熱交換器2を通過する補助加
熱流路23に接続され、他方が冷却水電磁弁4を通って
ラジェータ3に接続されている。そして、補助加熱流路
23及びラジェータ3に共通の流路25が、冷却水ポン
プ11の流入口に接続され、冷却水ポンプ11の流出口
が排気ガス熱交換器10を介してサーモスタット8に接
続されている。
The engine 7 is connected to the compressor 6 via a clutch (not shown), and includes a thermostat 8 and a cooling water filter 2.
A flow path 22 led out through the cooling water solenoid valve 5 is branched, and one side is connected to an auxiliary heating flow path 23 that passes through the cooling water solenoid valve 5 and the outdoor heat exchanger 2, and the other side is connected to the cooling water solenoid valve 4. through which it is connected to the radiator 3. A flow path 25 common to the auxiliary heating flow path 23 and the radiator 3 is connected to the inlet of the cooling water pump 11, and the outlet of the cooling water pump 11 is connected to the thermostat 8 via the exhaust gas heat exchanger 10. has been done.

このサーモスタット8は第2図に示すようにエンジンシ
リンダ30に取り付けられ、エンジン7の冷却水の温度
が70℃〜85℃に低下すると、端子L1側に切換えら
れるようになっていて、サーモスタット8が端子t1側
に切換えられると、端子t0、端子t1、冷却水ポンプ
11、排気ガス熱交換器1o及び端子t0と循環するバ
イパス流路26が形成されるように構成されている。
This thermostat 8 is attached to the engine cylinder 30, as shown in FIG. When switched to the terminal t1 side, a bypass passage 26 is formed that circulates through the terminal t0, the terminal t1, the cooling water pump 11, the exhaust gas heat exchanger 1o, and the terminal t0.

また、エンジンルーム15の上方にはエンジンルーム換
気ファン27が取り付けられ、エンジン7の排気は排気
マフラ28を介してエンジンルーム15外に放出されて
いる。さらに、室外側熱交換器24、ラジェータ3、冷
却水電磁弁4及び冷却水電磁弁5はケース29内に収容
され、このケース29の上方に室外機ファン1が取り付
けられている。
Further, an engine room ventilation fan 27 is installed above the engine room 15, and exhaust gas from the engine 7 is discharged to the outside of the engine room 15 via an exhaust muffler 28. Further, the outdoor heat exchanger 24, the radiator 3, the cooling water solenoid valve 4, and the cooling water solenoid valve 5 are housed in a case 29, and the outdoor unit fan 1 is attached above the case 29.

一方、第5図に示すように、ケース29に外気温センサ
32と冷媒配管温度センサとが取り付けられ、第2図に
示すように冷却水の温度を検出する温度センサ9がエン
ジン7に取り付けられ、これらのセンサは第4図に示す
ようにCPU31の入力側に接続され、cpuatの出
力側には、冷却水電磁弁5、冷却水電磁弁4、ファン1
のモータ34及びコンプレッサ6のクラッチ35が接続
されている。
On the other hand, as shown in FIG. 5, an outside air temperature sensor 32 and a refrigerant pipe temperature sensor are attached to the case 29, and as shown in FIG. 2, a temperature sensor 9 for detecting the temperature of cooling water is attached to the engine 7. , these sensors are connected to the input side of the CPU 31 as shown in FIG.
The motor 34 and the clutch 35 of the compressor 6 are connected.

このような構成の本発明の実施例において、CPU31
が流量制御手段を構成している。
In the embodiment of the present invention having such a configuration, the CPU 31
constitutes the flow rate control means.

次に、実施例の動作を、第6図のフローチャートを用い
て説明する。
Next, the operation of the embodiment will be explained using the flowchart shown in FIG.

ステップSSIで冷房運転状態とされると、ステップS
S2に進んで外気温センサ32によって外気温Taが検
出され、その外気温Taが15℃を越えているか否かが
CPU31によって判定される。この判定でTa>15
℃であることが確認されると、ステップSS4に進んで
CPU31からの指令信号によって冷却水電磁弁5がO
FFとされ、冷却水電磁弁4がONとされ、エンジン7
の冷却水はラジェータ3において放熱される。
When the cooling operation state is set in step SSI, step S
Proceeding to S2, the outside temperature Ta is detected by the outside temperature sensor 32, and the CPU 31 determines whether or not the outside temperature Ta exceeds 15°C. In this judgment Ta>15
If it is confirmed that the temperature is
FF, the cooling water solenoid valve 4 is turned ON, and the engine 7
The heat of the cooling water is radiated in the radiator 3.

このようにして、外気温が所定値を越えて高温であると
室外側熱交換器2において冷媒に対して充分な凝縮圧が
設定され、冷媒からは凝縮熱が外気に放出され、室内側
熱交換器39では室内空気から冷媒の気化熱を吸収して
、良好な冷房運転が行なわれる。
In this way, when the outside air temperature exceeds a predetermined value, sufficient condensation pressure is set for the refrigerant in the outdoor heat exchanger 2, and the heat of condensation is released from the refrigerant to the outside air. The exchanger 39 absorbs the heat of vaporization of the refrigerant from the indoor air to perform a good cooling operation.

また、ステップSS2でTaSi2であると判定される
と、ステップSS5に進んで冷却水電磁弁5がONとさ
れ、冷却水電磁弁4が外気温Taに応じて制御される。
If it is determined in step SS2 that the air temperature is TaSi2, the process proceeds to step SS5, where the cooling water solenoid valve 5 is turned on, and the cooling water solenoid valve 4 is controlled according to the outside temperature Ta.

外気温センサで検出した外気温Taが15℃よりもかな
り低温である場合には、冷却水電磁弁4はOFFとされ
、エンジン7の冷却水は全量が補助加熱流路23を流れ
るので冷却水によって室外側熱交換器2が暖められ、室
外側熱交換器2においての冷媒の凝縮圧力の低下が防止
される。
When the outside temperature Ta detected by the outside temperature sensor is considerably lower than 15°C, the cooling water solenoid valve 4 is turned OFF, and the entire amount of cooling water for the engine 7 flows through the auxiliary heating flow path 23, so that the cooling water is not used. As a result, the outdoor heat exchanger 2 is warmed, and the condensation pressure of the refrigerant in the outdoor heat exchanger 2 is prevented from decreasing.

このようにして室外側熱交換器2での凝縮圧力の低下が
防止されると、室内側熱交換器39でも充分な圧力が設
定され、室内側熱交換器39が凍結することはなくなる
。また、低外気温での冷房運転でファン34の回転速度
を低下させることはしないので、隣接する室内側熱交換
器45による暖房運転は何ら支障なく行なわれる。
When the condensation pressure in the outdoor heat exchanger 2 is prevented from decreasing in this way, a sufficient pressure is set in the indoor heat exchanger 39, and the indoor heat exchanger 39 will not freeze. Furthermore, since the rotational speed of the fan 34 is not reduced during cooling operation at low outside temperatures, heating operation using the adjacent indoor heat exchanger 45 is performed without any problem.

そして、外気温センサで検出した外気温Taが15℃近
傍の場合には、冷却水電磁弁5と共に冷却水電磁弁4 
(JONとされる。このような制御においては、補助加
熱流路23を流れる冷却水が、はぼ半分となり室外側熱
交換器2において凝縮圧力が増加しすぎることが阻止さ
れ、最適な冷房運転が行なわれる。
When the outside temperature Ta detected by the outside temperature sensor is around 15°C, the cooling water solenoid valve 5 and the cooling water solenoid valve 4
(JON) In such control, the cooling water flowing through the auxiliary heating flow path 23 is reduced to about half, preventing the condensation pressure from increasing too much in the outdoor heat exchanger 2, and achieving optimal cooling operation. will be carried out.

一方、暖房運転の場合には、第6図のステップS1で暖
房運転状態とされ、ステップS−2に進んで第2のタイ
マが50分を計数したか否かが判定され、50分の計数
が確認されるとステップS3に進んで、冷媒配管温度セ
ンサ33によって冷媒配管の温度Trが検出され、この
温度Trが一5℃以上であるか否かの判定がCPU31
によって行なわれる。
On the other hand, in the case of heating operation, the heating operation state is entered in step S1 of FIG. If confirmed, the process proceeds to step S3, where the temperature Tr of the refrigerant pipe is detected by the refrigerant pipe temperature sensor 33, and the CPU 31 determines whether or not this temperature Tr is 15°C or higher.
It is carried out by

ステップS3において、Tr>−5℃であると判定され
ると、ステップS4においてCPU31からの指令信号
によって、冷却水電磁弁5がONとされ冷却水電磁弁4
がOFFとされ、この状態で暖房運転が継続される。
If it is determined in step S3 that Tr>-5°C, the cooling water solenoid valve 5 is turned ON by a command signal from the CPU 31 in step S4.
is turned off, and heating operation continues in this state.

また、ステップS3においてTr≦−5℃であると判定
されると、ステップS4に進んでデフロスト運転が行な
われ、ステップS5でCPU31によって冷却水電磁弁
5がOFFとされ、冷却水電磁弁4がOFFとされ、冷
却水はバイパス流路26を循環する。そしてステップS
6で冷却水の温度Teが95℃に達したかどうかの判定
が行なわれ、Te<95℃であるとステップS5に戻り
、Te295℃であるとステップS7に進んで、CPU
31によってコンプレッサ6のクラッチ35がOFFと
され、ファン1のモータ34がOFFとされる0次いで
ステップS8に進んで冷却水電磁弁5がONとされ、冷
却水電磁弁4がOFFとされ、ステップs9に進んで外
気温センサ32の検出値と冷媒配管温度センサ33の検
出値によって、CPU31によって外気温度と冷媒配管
温度に差があるか否かの判定が行なわれる。
Further, if it is determined in step S3 that Tr≦-5°C, the process proceeds to step S4, where a defrost operation is performed, and in step S5, the cooling water solenoid valve 5 is turned OFF by the CPU 31, and the cooling water solenoid valve 4 is turned off. It is turned off, and the cooling water circulates through the bypass channel 26. and step S
In step 6, it is determined whether the temperature Te of the cooling water has reached 95°C. If Te<95°C, the process returns to step S5, and if Te is 295°C, the process proceeds to step S7, where the CPU
31, the clutch 35 of the compressor 6 is turned OFF, and the motor 34 of the fan 1 is turned OFF.0 Next, the process proceeds to step S8, where the cooling water solenoid valve 5 is turned ON, the cooling water solenoid valve 4 is turned OFF, and the process proceeds to step S8. Proceeding to s9, the CPU 31 determines whether there is a difference between the outside air temperature and the refrigerant pipe temperature based on the detected value of the outside air temperature sensor 32 and the detected value of the refrigerant pipe temperature sensor 33.

ステップS9において冷媒配管温度の方が高いと判定さ
れると、ステップS10に進んでデフロスト運転が終了
し、ステップSllにおいて第2のタイマがリセットさ
れステップS1に戻る。また、ステップS9において外
気温度が冷媒配管温度に等しいか或はそれよりも高いと
判定されると、ステップ11に進んで第1のタイマで5
分計数が完了した後にステップSIOに進んでデフロス
ト運転S10が終了する。
If it is determined in step S9 that the refrigerant pipe temperature is higher, the process proceeds to step S10, where the defrost operation ends, the second timer is reset in step Sll, and the process returns to step S1. Further, if it is determined in step S9 that the outside air temperature is equal to or higher than the refrigerant pipe temperature, the process proceeds to step 11 and the first timer is set to 5.
After the minute counting is completed, the process advances to step SIO and the defrost operation S10 ends.

このようにして実施例では、外気温が低い状態でも室外
側熱交換器2で冷媒に対しての凝縮圧が低下することが
なく、室内側熱交換器39の凍結も防止されて最適な冷
房運転が行なわれる。また、低外気温状態でファンの流
量調整は行なわれず、隣接するヒートポンプ回路での暖
房運転を並行して快適に行なうことが出来る。
In this way, in the embodiment, even when the outside temperature is low, the condensation pressure for the refrigerant in the outdoor heat exchanger 2 does not decrease, and freezing of the indoor heat exchanger 39 is also prevented, resulting in optimal cooling. Driving takes place. Further, the flow rate of the fan is not adjusted when the outside temperature is low, and heating operation can be comfortably performed in parallel with the adjacent heat pump circuit.

く効  果〉 本発明によると、低外気温状態での冷房運転を室外側熱
交換器での凝縮圧を低下させずに快適に行なうことが出
来る。また、隣接するし−トボンプ回路での暖房運転を
何の支障もなく同時に行なわせることが可能となる。
Effects> According to the present invention, cooling operation can be performed comfortably at low outside temperatures without reducing the condensing pressure in the outdoor heat exchanger. In addition, it is possible to simultaneously perform heating operations in adjacent exhaust pump circuits without any hindrance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成を示す説明図、第2図は
本発明の実施例におけるエンジンの冷却水の流路を中心
とした構成を示す説明図、第3図は実施例におけるエン
ジンに対するサーモスタットの取付状態を示す一部切開
図、第4図は実施例の流量制置手段の構成を示すブロッ
ク図、第5図は実施例のケースの構成を示す斜視図、第
6図は実施例の動作を示すフローチャートである。 1・・・ファン    2・・・室外側熱交換器3・・
・ラジェータ  4.5・・・冷却水電磁弁6・・・コ
ンプレッサ 7・・・エンジン8・・・サーモスタット
  9・・・温度センサ10・・・排気ガス熱交換器 
12・・・バイパス流路23・・・補助加熱流路 代理人 弁理士   鈴  木  秀  雄第3図 第4図
FIG. 1 is an explanatory diagram showing the configuration of an embodiment of the present invention, FIG. 2 is an explanatory diagram showing a configuration centered on the engine cooling water flow path in the embodiment of the present invention, and FIG. 3 is an explanatory diagram showing the configuration of the embodiment of the invention. FIG. 4 is a block diagram showing the structure of the flow control means of the embodiment. FIG. 5 is a perspective view showing the structure of the case of the embodiment. 3 is a flowchart showing the operation of the embodiment. 1...Fan 2...Outdoor heat exchanger 3...
・Radiator 4.5...Cooling water solenoid valve 6...Compressor 7...Engine 8...Thermostat 9...Temperature sensor 10...Exhaust gas heat exchanger
12... Bypass channel 23... Auxiliary heating channel Agent Patent attorney Hideo Suzuki Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims]  コンプレッサ、冷媒流路切換弁、室内側熱交換器、減
圧素子及び室外側熱交換器よりヒートポンプ回路を形成
し、前記コンプレッサをエンジンで駆動するエンジン駆
動式空調装置であって、前記エンジンの冷却水を前記室
外側熱交換器に流す補助加熱流路と、外気温を検出する
外気温センサと、冷房運転時において前記外気温センサ
の検出温度が所定値以下であると、前記検出温度に対応
する流量の前記冷却水を、前記補助加熱流路に流す流量
制御手段とを有することを特徴とするエンジン駆動式空
調装置。
An engine-driven air conditioner in which a heat pump circuit is formed from a compressor, a refrigerant flow switching valve, an indoor heat exchanger, a pressure reducing element, and an outdoor heat exchanger, and the compressor is driven by an engine, and the engine-driven air conditioner has cooling water for the engine. an auxiliary heating flow path that allows the temperature to flow through the outdoor heat exchanger; an outside temperature sensor that detects the outside temperature; and when the temperature detected by the outside temperature sensor during cooling operation is below a predetermined value, the temperature corresponds to the detected temperature. An engine-driven air conditioner comprising: a flow rate control means for causing a flow rate of the cooling water to flow through the auxiliary heating flow path.
JP63075981A 1988-03-31 1988-03-31 Engine-powered air-conditioner Pending JPH01252877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63075981A JPH01252877A (en) 1988-03-31 1988-03-31 Engine-powered air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63075981A JPH01252877A (en) 1988-03-31 1988-03-31 Engine-powered air-conditioner

Publications (1)

Publication Number Publication Date
JPH01252877A true JPH01252877A (en) 1989-10-09

Family

ID=13591948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63075981A Pending JPH01252877A (en) 1988-03-31 1988-03-31 Engine-powered air-conditioner

Country Status (1)

Country Link
JP (1) JPH01252877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966952A (en) * 1996-09-05 1999-10-19 Yamaha Hatsudoki Kabushiki Kaisha Heat pump system with balanced total heating-emitting and absorbing capacities and method for stable heat pumping operation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966952A (en) * 1996-09-05 1999-10-19 Yamaha Hatsudoki Kabushiki Kaisha Heat pump system with balanced total heating-emitting and absorbing capacities and method for stable heat pumping operation

Similar Documents

Publication Publication Date Title
US7770411B2 (en) System and method for using hot gas reheat for humidity control
US7062930B2 (en) System and method for using hot gas re-heat for humidity control
JP3237187B2 (en) Air conditioner
US20030070445A1 (en) Gas heat pump type air conditioning device, engine-coolant-water heating device, and operating method for gas heat pump type air conditioning device
EP1113233A2 (en) Reversible heat pump system
US7726140B2 (en) System and method for using hot gas re-heat for humidity control
US6357245B1 (en) Apparatus for making hot-water by air conditioner/heater
JPH0849943A (en) Engine driven heat pump equipment
JP4610688B2 (en) Air-conditioning and hot-water supply system and control method thereof
JP3303578B2 (en) Vehicle air conditioner
JPH01252877A (en) Engine-powered air-conditioner
JP4097405B2 (en) Engine cooling method and apparatus and refrigeration apparatus
JPH11230598A (en) Air conditioner
JP2508528Y2 (en) Air conditioner
JP3373904B2 (en) Engine driven air conditioner
JP3140215B2 (en) Cooling / heating mixed engine driven heat pump system
JP3546102B2 (en) Engine driven air conditioner
JP2952357B1 (en) Air conditioner
JPH01252880A (en) Engine-powered air-conditioner
JP2850466B2 (en) Engine-driven air conditioner
JPS62293066A (en) Engine drive type heat pump type air conditioner
JP3564212B2 (en) Engine driven air conditioner
JPS6256430B2 (en)
JPH08136067A (en) Air conditioner
JPH02140567A (en) Engine-driven heat pump