JPH01252531A - Production of titanium fluoride - Google Patents

Production of titanium fluoride

Info

Publication number
JPH01252531A
JPH01252531A JP29694388A JP29694388A JPH01252531A JP H01252531 A JPH01252531 A JP H01252531A JP 29694388 A JP29694388 A JP 29694388A JP 29694388 A JP29694388 A JP 29694388A JP H01252531 A JPH01252531 A JP H01252531A
Authority
JP
Japan
Prior art keywords
fluoride
solution
tif4
titanium
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29694388A
Other languages
Japanese (ja)
Inventor
Keisuke Nakahara
啓介 中原
Hideyuki Yoshikoshi
吉越 英之
Toshio Hinami
日並 俊雄
Takao Kawakazu
高穂 川和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP29694388A priority Critical patent/JPH01252531A/en
Publication of JPH01252531A publication Critical patent/JPH01252531A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To improve the yield of TiF4 and reduce the cost for the separation of iron, by separating FeF3 from a solution produced by the reaction of an iron-containing Ti raw material with a solution containing hydrofluoric acid and mixing the resultant crude solution of TiF4 with an NH4F solution. CONSTITUTION:An iron-containing Ti raw material 1 such as ilmenite is added with hydrofluoric acid 3 and subjected to fluorination and dissolution treatment 2 at >=40 deg.C. The obtained fluorinated solution 4 is cooled below the fluorination and dissolution temperature to effect the crystallization and separation 8 of ferric fluoric crystal 10 and obtain a crude TiF4 solution 9. The iron separation process can be carried out at a low cost since no organic solvent is used in the process. The obtained crude TiF4 solution 9 is mixed with an NH4F solution 26 prepared in the later step and concentrated by evaporation, cooling or their combination to effect the crystallization and separation 15 of ammonium fluoride salt of (NH4)2TiF6 and (NH4)3FeF6. The salt is dried and thermally decomposed in a dry gas stream at 300-800 deg.C into solid FeF3 and gaseous TiF4, HF and NH3. The gas is condensed at 20-280 deg.C to effect the condensation and separation of TiF4 23. The gas 24 containing HF and NH3 is absorbed in an NH4F solution 17 and utilized as an NH4F solution 26.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、鉄分を含有したチタン鉱を原料として、高
純度のフッ化チタンを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing highly pure titanium fluoride using iron-containing titanite ore as a raw material.

[従来技術] イルメナイト鉱石のような鉄分含有チタン原料(以下イ
ルメナイトと言う)からフッ化チタン(TiF4)を製
造する方法については、種々報告されている。たとえば
英国特許出願第29944/72号には以下の事柄が開
示されている。
[Prior Art] Various methods have been reported for producing titanium fluoride (TiF4) from iron-containing titanium raw materials such as ilmenite ore (hereinafter referred to as ilmenite). For example, British Patent Application No. 29944/72 discloses the following.

(1)イルメナイト中の鉄分が全て3価になるまで酸化
処理したイルメナイトとフッ化第二鉄(FeF3)を混
合し、この混合物を加熱することにより反応させ、フッ
化チタン(TiF、)蒸気と酸化第二鉄(Fe2es)
を生成させること。
(1) Mix oxidized ilmenite and ferric fluoride (FeF3) until all the iron in ilmenite becomes trivalent, and react by heating this mixture to form titanium fluoride (TiF) vapor. Ferric oxide (Fe2es)
to generate.

(2)TiF4蒸気を凝縮させてTiF4として回収す
ること。
(2) Condensing the TiF4 vapor and recovering it as TiF4.

(3)酸化第二鉄(Fe2es)の一部を酸性フッ化ア
ンモニウム(NH4HF2)と反応させて、第二鉄フッ
化アンモニウム((N H4)S F e F 6)を
生成すること。
(3) Reacting a portion of ferric oxide (Fe2es) with acidic ammonium fluoride (NH4HF2) to produce ferric ammonium fluoride ((NH4)S Fe F6).

(4)第二鉄フッ化アンモニウム <(NH4)3 F e F6)を熱分解して、FeF
3とNH4Fとにし、再利用に供すること。
(4) Ferric ammonium fluoride <(NH4)3 Fe F6) is thermally decomposed to produce FeF
3 and NH4F and provide for reuse.

他にイルメナイトからフッ化チタン(TiF4)を経由
して金属Tiを製造する方法に、「化学と工業J 57
 (10)、387〜392 (1983)に開示され
た溶媒抽出法がある。この方法には次の事柄が記載され
ている。
In addition, a method for producing metal Ti from ilmenite via titanium fluoride (TiF4) is described in ``Chemistry and Industry J 57.
(10), 387-392 (1983). This method states the following:

(1)イルメナイトを酸で溶解して得られたT1イオン
含有水溶液からTiイオンを有機溶媒に抽出すること。
(1) Extracting Ti ions into an organic solvent from a T1 ion-containing aqueous solution obtained by dissolving ilmenite with an acid.

(2)Tiイオンが抽出された有機溶媒にNH4HF2
含有液を接触させて、Tiイオンを逆抽出し、チタンフ
ッ化アンモニウム ((NH4)2 T i P6)を得ること。
(2) Add NH4HF2 to the organic solvent from which Ti ions were extracted.
Bringing the containing liquid into contact and back-extracting Ti ions to obtain ammonium titanium fluoride ((NH4)2TiP6).

(3)チタンフッ化アンモニウム ((N H4h T i F 6)の結晶を、不活性ガ
ス雰囲気中で加熱分解して、フッ化チタン(TiF4)
の蒸気を得て、この蒸気を凝縮し、フッ化チタン(Ti
Fa)を得ること。
(3) Titanium ammonium fluoride ((NH4h TiF6) crystals are thermally decomposed in an inert gas atmosphere to produce titanium fluoride (TiF4).
This vapor is condensed to produce titanium fluoride (Ti).
To obtain Fa).

[発明が解決しようとする課題] 英国特許出願第29944/72号の方法には次のよう
な問題点がある。
[Problems to be Solved by the Invention] The method of British Patent Application No. 29944/72 has the following problems.

(1)フッ化チタンをイルメナイト鉱石とフッ化第二鉄
の固体反応もしくは固気反応により生成するため、フッ
化チタンの収率が91%程度と低い。
(1) Since titanium fluoride is produced by a solid or solid-gas reaction between ilmenite ore and ferric fluoride, the yield of titanium fluoride is as low as about 91%.

(2)150〜250μmのイルメナイト鉱石と1μm
以下のフッ化第二鉄を流動層炉においてフッ化反応する
ことが望ましいと言っているが、これらの粉体の粒径が
大きく異なるため、フッ化第二鉄の飛沫同伴によるフッ
化第二鉄反応効率の低下およびフッ化第二鉄の回収フッ
化チタンへの混入が避けられい、何らかの対応策が必要
であり、技術的に問題がある。
(2) 150-250μm ilmenite ore and 1μm
It is said that it is desirable to fluoride the following ferric fluoride in a fluidized bed furnace, but since the particle sizes of these powders differ greatly, A decrease in iron reaction efficiency and contamination of ferric fluoride with recovered titanium fluoride are unavoidable, and some countermeasures are required, which poses a technical problem.

(3)イルメナイト鉱石の前処理としての酸化処理、フ
ッ化第二鉄の粉砕およびフッ化処理のための500〜1
500℃の温度に耐える流動層炉が必要で、製造コスト
、装置コストが高く、経済性に問題がある。
(3) 500-1 for oxidation treatment as pre-treatment of ilmenite ore, crushing of ferric fluoride and fluorination treatment
A fluidized bed furnace that can withstand a temperature of 500° C. is required, resulting in high manufacturing and equipment costs, which poses economical problems.

次に、温媒抽出法による方法では、イルメナイト鉱石の
酸溶解および溶媒抽出後の鉄含有残液の処理方法などに
関する技術が不明であり、しかも有機溶媒のランニング
コストが高いという問題がある。
Next, in the hot medium extraction method, there is a problem that the technology regarding acid dissolution of ilmenite ore and treatment of iron-containing residual liquid after solvent extraction is unknown, and the running cost of the organic solvent is high.

この発明は蒸気のような問題点を解消するためになされ
たもので、高収率でフッ化チタンを製造でき、しかも従
来法よりも経済的に有利なブツ化チタン製造方法を提供
することを目的とする。
This invention was made to solve problems such as steam, and aims to provide a method for producing titanium fluoride that can produce titanium fluoride in high yield and is more economically advantageous than conventional methods. purpose.

[課題を解決するための手段] 本発明は、鉄分を含有したチタン原料をフッ酸を含む溶
液で溶解しフッ化溶解液を生成させ、該フッ化溶解液を
冷却することによってフッ化第二鉄結晶を晶析分離し粗
フッ化チタン溶液を生成させ、該粗フッ化チタン溶液に
フッ化アンモニウム溶液を混合し、蒸発、冷却又はこれ
らの組み合わせにより濃縮することによって、フッ化ア
ンモニウム塩[(NH4)2 T t F6と(NH4
)sFeF6の混合塩]を晶析分離して、該フッ化アン
モニウム塩を乾燥ガス気流中300〜800℃で熱分解
し、固体としてフッ化第二鉄(F e F 3)、気体
としてTiF4.HF、NH,を生成させ、該気体を2
0〜280℃で凝縮させ、TiF4とHF −NHsガ
スに凝縮分離するフッ化チタンの製造方法である。
[Means for Solving the Problems] The present invention dissolves a titanium raw material containing iron in a solution containing hydrofluoric acid to produce a fluoride solution, and cools the fluoride solution to produce secondary fluoride. Ammonium fluoride salt [( NH4)2 T t F6 and (NH4
) mixed salt of sFeF6] is crystallized and separated, and the ammonium fluoride salt is thermally decomposed at 300 to 800°C in a dry gas stream to produce ferric fluoride (F e F 3) as a solid and TiF4 as a gas. Generate HF, NH, and convert the gas into 2
This is a method for producing titanium fluoride, in which titanium fluoride is condensed at 0 to 280°C and separated into TiF4 and HF-NHs gas.

〔作用〕[Effect]

この発明の工程のフローを°第1図に基づいて説明する
The process flow of this invention will be explained based on FIG.

(1)フッ化溶解 イルメナイト鉱石のような鉄分含有チタン原料1(以下
イルメナイトと称す)に反応当量比1.1以上のフッ酸
(HFsol、) 3を加え、40℃以上でフッ化溶解
2を行う、第2図にフッ酸を反応当量の1.2倍を加え
た場合のフッ化率に及ぼす反応時間・反応温度の影響を
示す、第2図から分かるように、フッ化溶解における反
応温度が高いはど、フッ化完了時間は短縮され、60〜
90℃の温度範囲では1時間以内でほぼフッ化溶解は完
了する。フッ化溶解の際、イルメナイトを粉砕する必要
はないが、溶解時間を短縮するためには粉砕しても良い
(1) Hydrofluoric acid (HFsol) 3 with a reaction equivalence ratio of 1.1 or more is added to iron-containing titanium raw material 1 such as ilmenite ore (hereinafter referred to as ilmenite), and fluoride dissolution 2 is carried out at 40°C or higher. Figure 2 shows the influence of reaction time and reaction temperature on the fluorination rate when 1.2 times the reaction equivalent of hydrofluoric acid is added.As can be seen from Figure 2, the reaction temperature in dissolving fluoride The higher the fluoridation rate, the shorter the fluoridation completion time, 60 ~
In the temperature range of 90° C., fluoride dissolution is almost completed within one hour. Although it is not necessary to crush ilmenite during fluoride dissolution, it may be crushed in order to shorten the dissolution time.

(2)フッ化第二鉄結晶の晶析分離 状に、フッ化溶解液4をフッ化溶解温度以下に冷却し、
フッ化第二鉄結晶(F e F s・4.5 HaO)
10を晶析分離8し、粗フッ化チタン溶液〈粗TiF4
液)9を生成する。第3図は、TiF4とFeF3の溶
解濃度に及ぼす温度の影響を示した図である。第3図か
ら分かるように、溶解温度が低い程、FeF3の溶解濃
度は低下し、晶析時の冷却温度が低いほど、フッ化第二
鉄結晶(FeFs ・4.5 H2O)10の晶出量は
多く、後工程の負荷を軽減できる。冷却温度は、0〜2
0℃が望ましい、20℃より温度が高いと、フッ化第二
鉄結晶10の分離効率が低下する。
(2) Cool the fluoride solution 4 to below the fluoride dissolution temperature in the form of crystallization separation of ferric fluoride crystals,
Ferric fluoride crystal (F e F s・4.5 HaO)
10 was crystallized and separated into a crude titanium fluoride solution (crude TiF4).
Liquid) 9 is produced. FIG. 3 is a diagram showing the influence of temperature on the dissolved concentration of TiF4 and FeF3. As can be seen from Figure 3, the lower the melting temperature, the lower the dissolved concentration of FeF3, and the lower the cooling temperature during crystallization, the lower the crystallization rate of ferric fluoride crystals (FeFs 4.5 H2O)10. The amount is large and the load on post-processing can be reduced. Cooling temperature is 0-2
0°C is preferable; if the temperature is higher than 20°C, the separation efficiency of the ferric fluoride crystals 10 will decrease.

0℃より温度が低いと、冷却効率が低下する。When the temperature is lower than 0°C, cooling efficiency decreases.

イルメナイトにFe”とFe”が含有されている場合、
フッ化溶解液4中にもFe2+とFe”が含有され、F
eF2とFeF3が生成する。FeF2は冷却の際、T
iF4と複塩を生成し7、TiFeF6 ・6H20と
してフッ化第二鉄結晶(FeFs ・4.5 Ha 0
)10と同時に析出し、TiF4の溶液への移行を妨害
する。このため、フッ化第二鉄結晶(FeFs ・4.
5 Ha 0) 10の冷却晶析前にFe2+をFe’
+に酸化5し、TiFeF6 ・6H20の生成を防止
することが有効となる。Fe”のFe″4+への酸化5
は、過酸化水素水、オゾン、空気、酸素などの酸化剤6
をフッ化溶解液4に添加あるいは接触させることにより
なされる。このようにFe”+をFe’“に酸化5し、
フッ化第二鉄結晶の晶析骨M8を行うことによりフッ化
溶解液7中の鉄分を1/2〜1/10に低減できる。
If ilmenite contains Fe” and Fe”,
The fluoride solution 4 also contains Fe2+ and Fe'', and F
eF2 and FeF3 are generated. When FeF2 is cooled, T
A double salt is formed with iF47, and ferric fluoride crystal (FeFs 4.5 Ha 0
) 10 and prevents the migration of TiF4 into the solution. For this reason, ferric fluoride crystal (FeFs 4.
5 Ha 0) Before cooling crystallization of 10, Fe2+ was converted to Fe'
It is effective to oxidize to +5 and prevent the formation of TiFeF6.6H20. Oxidation of Fe'' to Fe''4+5
is an oxidizing agent such as hydrogen peroxide, ozone, air, or oxygen6
This is done by adding or bringing into contact with the fluoride solution 4. In this way, Fe"+ is oxidized to Fe'",
By performing crystallization M8 of ferric fluoride crystals, the iron content in the fluoride solution 7 can be reduced to 1/2 to 1/10.

(3)フッ化アンモニウム塩の晶析分離状にフッ化第二
鉄結晶(F e Fz・4.5 Ha 0 )10を晶
析分離8して得られた粗フッ化チタン溶液(粗TiF4
液)9に後工程で調整されたフッ化アンモニウム溶液(
NH4F溶液)26を混合し、チタンフッ化アンモニウ
ム((NH4)2 T i Fa)と第二鉄フッ化アン
モニウム((N H4’s F e F b>のフッ化
アンモニウム塩を晶析させる。この晶析工程において系
内の水バランスを調整するため、混合液を蒸発源m11
し、水分を回収することが望ましい、混合液の蒸発濃縮
11によって晶出しなフッ化アンモニウム塩は熟成され
て粗粒となり、晶析分離15が容易となる。濃縮液12
は。
(3) Crystallization of ammonium fluoride salt A crude titanium fluoride solution (crude TiF4) obtained by crystallizing and separating 10 ferric fluoride crystals (F e Fz 4.5 Ha 0 )
ammonium fluoride solution (solution) adjusted in the post-process to 9.
NH4F solution) 26 to crystallize ammonium fluoride salts of titanium ammonium fluoride ((NH4)2 T i Fa) and ferric ammonium fluoride ((NH4's F e F b>). In order to adjust the water balance in the system during the analysis process, the mixed liquid is used as an evaporation source m11.
However, the ammonium fluoride salt crystallized by evaporation and concentration 11 of the mixed liquid, which is preferably recovered from moisture, is aged and becomes coarse particles, which facilitates crystallization separation 15. Concentrate 12
teeth.

第4図に示すように冷却することにより更に効果的にフ
ッ化アンモニウム塩を晶析分離15することが出来る。
By cooling as shown in FIG. 4, the ammonium fluoride salt can be crystallized and separated 15 more effectively.

このようにして得られたフッ化アンモニウム塩の濃縮液
12は晶析分離15され、フッ化アンモニウム塩16と
フッ化アンモニウム塩の溶解分を含むフッ化アンモニウ
ム溶液17となる。このフッ化アンモニウム溶液17は
後で述べる凝縮分離工程で発生するアンモニア(N H
3>とフッ化水素(HF)のガス24を吸収させ、再び
フッ化アンモニウム溶液(N H4,F溶液)26とし
て、粗フッ化チタン溶液(粗TiF4液)9に混合する
The ammonium fluoride salt concentrate 12 thus obtained is crystallized and separated 15 to become an ammonium fluoride solution 17 containing an ammonium fluoride salt 16 and a dissolved ammonium fluoride salt. This ammonium fluoride solution 17 contains ammonia (NH
3> and hydrogen fluoride (HF) gas 24 are absorbed and mixed into a crude titanium fluoride solution (crude TiF4 liquid) 9 again as an ammonium fluoride solution (NH4,F solution) 26.

蒸発濃縮11で得られた水蒸気13を凝縮し、凝縮水の
一部を排出し、残りの凝縮水14を前述の晶析分離8で
得られたフッ化第二鉄結晶(FeFs ・4.5 Ha
 0)10の洗浄水として利用して、フッ化第二鉄結晶
(F e F −41,5Ha 0 )10に付着して
いるTiF4.HFを吸収させ、更に後工程で発生する
HFガス32および原料)(Fガス34を吸収させて、
フッ酸3を調整し、再びフッ化溶解2に供することが有
効となる。なお、洗浄水は、洗浄においてフッ化第二鉄
結晶(FeFs ・4.5 Ha 0)10の溶解を防
止するため冷水とすることが望ましい、このように系内
で、水、フッ化水素(HF)を循環利用することは、系
外へのフッ素の排出を防止すると共に、公害対策コスト
およびフッ化水素(HF)原料コストを低減する上で極
めて有効である。
The water vapor 13 obtained in the evaporation concentration 11 is condensed, a part of the condensed water is discharged, and the remaining condensed water 14 is converted into ferric fluoride crystals (FeFs 4.5 Ha
0) TiF4. HF is absorbed, and further HF gas 32 and raw materials generated in the subsequent process are absorbed (F gas 34 is absorbed,
It is effective to adjust the hydrofluoric acid 3 and subject it to the fluoride dissolution 2 again. In addition, it is desirable that the washing water be cold water in order to prevent dissolution of ferric fluoride crystals (FeFs 4.5 Ha 0)10 during washing.In this way, water, hydrogen fluoride ( HF) is extremely effective in preventing fluorine from being discharged to the outside of the system, and in reducing pollution control costs and hydrogen fluoride (HF) raw material costs.

(4)フッ化アンモニウム塩の乾燥、熱分解チタンフッ
化アンモニウム((N H4)2 T i F 6)と
第二鉄フッ化アンモニウム((NH4)3 F e F
6)の混合塩であるフッ化アンモニウム塩16を乾燥1
8し、水分を含有しない乾燥ガス気流中において、30
0〜800℃で加熱する。加熱によりフッ化アンモニウ
ム塩16は熱分解19し、FeF3が固体21として、
TiF4.)IP。
(4) Drying of ammonium fluoride salt, thermal decomposition of titanium ammonium fluoride ((NH4)2 T i F 6) and ferric ammonium fluoride ((NH4)3 F e F
Dry ammonium fluoride salt 16, which is the mixed salt of 6).
8 and in a dry gas stream containing no moisture, 30
Heat at 0-800°C. Upon heating, the ammonium fluoride salt 16 is thermally decomposed 19, and FeF3 becomes a solid 21.
TiF4. ) IP.

NH,が気体20として生成する。熱分解反応は、下記
に示す通りである。
NH, is generated as a gas 20. The thermal decomposition reaction is as shown below.

(NH4)2 T i Fb→ Ti F4+28F+2NH。(NH4)2 Ti Fb→ Ti F4+28F+2NH.

乾燥ガスとしては、水分を含有していないことが重要で
ある。乾燥ガスとしては、乾燥窒素、乾燥空気、乾燥ア
ルゴン等が利用できる。ガス中に水分が存在すると、高
温下においてTiF4が加水分解反応を起こして、酸化
チタン(T i O2)を生成し、TiF4の歩留りを
低下させるためである。加水分解反応は、下記に示す通
りである。
It is important that the dry gas does not contain moisture. As the dry gas, dry nitrogen, dry air, dry argon, etc. can be used. This is because when moisture is present in the gas, TiF4 undergoes a hydrolysis reaction at high temperatures, producing titanium oxide (T i O2) and reducing the yield of TiF4. The hydrolysis reaction is as shown below.

Ti F4 +2H20→ TiO2+4HF加熱温度
は、300〜800℃の範囲である。
TiF4 +2H20→TiO2+4HF heating temperature is in the range of 300 to 800°C.

300℃より温度が低いと、TiF、が完全に昇華しな
い、800℃より温度が高いと、FeF3が幾らか昇華
する。加熱温度は、400〜600℃がより好ましい。
If the temperature is lower than 300°C, TiF will not sublimate completely, and if the temperature is higher than 800°C, FeF3 will sublimate to some extent. The heating temperature is more preferably 400 to 600°C.

(5)フッ化チタンの凝縮 Ti F4 、HF、NH3の気体20を凝縮器におい
て、20〜280℃で凝縮分離22することにより、高
純度のフッ化チタン(TiF4)23を得る。凝縮温度
は20〜280℃の範囲である。
(5) Condensation of titanium fluoride High purity titanium fluoride (TiF4) 23 is obtained by condensing and separating 22 the gases 20 of TiF4, HF, and NH3 at 20 to 280°C in a condenser. The condensation temperature ranges from 20 to 280°C.

280℃を超えるとTiF4が昇華してしまう。If the temperature exceeds 280°C, TiF4 will sublimate.

20℃より低いとHFが液化してしまう、50〜100
℃の温度範囲がより好ましい、フッ化チタン(TiF4
)23を凝縮分離した後のT(F、NHsを含有したガ
ス24は、先に述べたように、フッ化アンモニウム溶液
17に吸収させ、再び、フッ化アンモニウム溶液26と
して利用する。
HF will liquefy if it is lower than 20℃, 50-100
Titanium fluoride (TiF4
) 23 is condensed and separated, the gas 24 containing T(F, NHs) is absorbed into the ammonium fluoride solution 17 and used again as the ammonium fluoride solution 26, as described above.

(6)FeF、の熱分解 フッ化アンモニウム塩の熱分解19により残さとして得
たFeFlの固体21は、フッ化溶解液7を晶析分離8
して得られたフッ化第二鉄結晶(FeFt  4.5 
H2O)28と混合され、水の存在のもとに、600〜
1000℃で加熱される。このとき、FeF3は加水分
解し、酸化鉄(F e 20−3)31とフッ化水素(
HF)32を生成する。加熱温度が600℃より低いと
、加水分解反応が起こらない、1000℃より高いと、
FeF3が昇華してしまう、酸化鉄(Fez□5)31
は副産物として排出され、フッ化水素(HF)は、先に
示したフッ化第二鉄結晶(FeFi  4.5 H20
)10の洗浄液29に吸収され、再びイルメナイトのフ
ッ化溶解2に供される。
(6) Thermal decomposition of FeF The FeFl solid 21 obtained as a residue by the thermal decomposition 19 of ammonium fluoride salt is separated by crystallization 8 from the fluoride solution 7.
The ferric fluoride crystal (FeFt 4.5
H2O)28 and in the presence of water, from 600 to
Heated at 1000°C. At this time, FeF3 is hydrolyzed to form iron oxide (Fe20-3)31 and hydrogen fluoride (
HF)32 is produced. When the heating temperature is lower than 600℃, the hydrolysis reaction does not occur, and when it is higher than 1000℃,
Iron oxide (Fez□5)31 where FeF3 sublimates
is discharged as a by-product, and hydrogen fluoride (HF) is produced by the ferric fluoride crystal (FeFi 4.5 H20
) 10, and is again subjected to ilmenite fluorination dissolution 2.

[実施例] 実施例−1 密閉型テフロンライニング反応器に、西オーストラリア
産イルメナイト鉱石(T i O2:54.9%。
[Example] Example-1 Ilmenite ore from Western Australia (T i O2: 54.9%) was placed in a closed Teflon-lined reactor.

F e O: 19.5%、  Fe203  :21
.6%>10kgとフッ化水素(HF)55%溶液17
.9kgを80℃において1時間混合攪拌し、フッ化溶
解液とした。このフッ化溶解液を35℃まで冷却し、H
zOz(35%)溶液1.3kgを加え、30分間攪拌
の後、さらに10℃まで冷却し、これを晶折分離し、F
 e Ps ・4.5 H20ケーキ13,6kgと粗
TiF4液15.6kgを得た。
FeO: 19.5%, Fe203: 21
.. 6%>10kg and hydrogen fluoride (HF) 55% solution 17
.. 9 kg were mixed and stirred at 80° C. for 1 hour to obtain a fluoride solution. This fluoride solution was cooled to 35°C, and H
1.3 kg of zOz (35%) solution was added, stirred for 30 minutes, further cooled to 10°C, separated by crystallization, and F
e 13.6 kg of Ps 4.5 H20 cake and 15.6 kg of crude TiF4 liquid were obtained.

このFeFs  4.5 H20ケーキを5℃の冷水4
.3kgで洗浄し、F e Fi ・4.5 H20結
晶11.4kgと洗浄液6.5kgを得た。第1表に、
これらの組成およびT1含有量、鉱石中のTiの移行率
を示す。
This FeFs 4.5 H20 cake was soaked in cold water at 5°C.
.. By washing with 3 kg, 11.4 kg of F e Fi 4.5 H20 crystals and 6.5 kg of washing liquid were obtained. In Table 1,
These compositions, T1 contents, and Ti migration rates in ores are shown.

第  1  表 第1表に示したように1.イルメナイト鉱石中のT1の
99.0%が粗TiF4液と洗浄液に移行した0次に粗
TiF4液と洗浄液を混合したものに、20℃における
T i (NH4) 2 Fbの溶解濃度分を含むフッ
化アンモニウム溶液(NH4F: 37.6%、 T 
i (N H4)2 F b : 18,8%)16.
6kgを混合した。更に、80℃において攪拌しながら
減圧濃縮し、水i1.9kgを蒸発させた後、20℃ま
で冷却し、濾過分離し105℃において5時間乾燥して
、フッ化アンモニウム塩14.8kgを得た。このフッ
化アンモニウム塩の組成を第2表に示す。
Table 1 As shown in Table 1, 1. 99.0% of the T1 in the ilmenite ore has been transferred to the crude TiF4 solution and the cleaning solution.Fluorine containing the dissolved concentration of Ti(NH4)2Fb at 20°C is added to the mixture of the crude TiF4 solution and the cleaning solution. Ammonium chloride solution (NH4F: 37.6%, T
i (NH4)2 F b : 18.8%)16.
6 kg were mixed. Further, the mixture was concentrated under reduced pressure at 80° C. with stirring to evaporate 1.9 kg of water, cooled to 20° C., filtered and separated, and dried at 105° C. for 5 hours to obtain 14.8 kg of ammonium fluoride salt. . The composition of this ammonium fluoride salt is shown in Table 2.

第  2  表 次に、このフッ化アンモニウム塩をハステロイ製熱分解
反応器にいれ、窒素ガス気流中で400℃に加熱した0
分解ガスを含む出口ガスは80℃に温度調整した凝縮器
に送り、Ti F48.2kgを回収した。TiF48
.2kgは、フッ化アンモニウム塩14.8kg中のフ
ッ化チタンの98%に相当する。また、イルメナイト鉱
石中のTiの96%が、T i F 4の形で回収され
たことになる。凝縮器の出口ガスは、フッ化アンモニウ
ム塩を濾過分離して得られた濾液に吸収させ、脱湿の後
再び熱分解反応器に循環された。
Table 2 Next, this ammonium fluoride salt was placed in a Hastelloy thermal decomposition reactor and heated to 400°C in a nitrogen gas stream.
The outlet gas containing cracked gas was sent to a condenser whose temperature was adjusted to 80°C, and 48.2 kg of TiF was recovered. TiF48
.. 2 kg corresponds to 98% of titanium fluoride in 14.8 kg of ammonium fluoride salt. Furthermore, 96% of the Ti in the ilmenite ore was recovered in the form of T i F 4 . The outlet gas of the condenser was absorbed into the filtrate obtained by filtering and separating the ammonium fluoride salt, and after dehumidification, the gas was circulated to the thermal decomposition reactor again.

熱分解反応器に残留したFeF3 o、6kgと冷却晶
析により得られたFeFl ・4.5 H20結晶11
.4kgを混合し、700℃において空気をキャリアガ
スとして加熱処理することによりp e 2034 、
4 kgを残さとして得た。この時の出口ガスを5℃の
凝縮器に送り、フッ化水素3.3kgを含むフッ酸液7
.6kgを得た。
6 kg of FeF3 o remaining in the pyrolysis reactor and FeF1 4.5 H20 crystal 11 obtained by cooling crystallization
.. By mixing 4 kg and heat-treating at 700°C with air as a carrier gas, p e 2034,
4 kg was obtained as residue. The outlet gas at this time is sent to a condenser at 5°C, and a hydrofluoric acid solution containing 3.3 kg of hydrogen fluoride is
.. I got 6 kg.

実施例−2 チタンフッ化アンモニウムを105℃で20時間乾燥し
た。乾燥したチタンフッ化アンモニウム100、Ogを
管状炉内に装填した後、塩化カルシウム管に通気して乾
燥した空気を毎分1リツトルで流通させながら炉内を約
500℃に加熱した。管状炉の出口ガスを50℃に温度
調節した凝縮器に通じ、フッ化チタンを61.5g回収
した0回収率は、98%であった。
Example-2 Titanium ammonium fluoride was dried at 105°C for 20 hours. After loading dried titanium ammonium fluoride 100.0g into a tube furnace, the inside of the furnace was heated to about 500° C. while passing dry air through a calcium chloride tube at a rate of 1 liter per minute. The outlet gas of the tube furnace was passed through a condenser whose temperature was adjusted to 50° C., and 61.5 g of titanium fluoride was recovered, which was a zero recovery rate of 98%.

比較例として、塩化カルシウム管に通気しない空気つま
り大気中の空気を使用して実験を行うた。まず、チタン
フッ化アンモニウムを105℃で20時間乾燥した。乾
燥したチタンフッ化アンモニウム100.0gを管状炉
内に装填した後、大気気流中で炉内を約500℃に加熱
した。出口ガスを50℃に温度調節した凝縮器に通じ、
フッ化チタンを48.0g回収し、炉内に9.4gの酸
化チタンが残留した。フッ化チタンの回収率は77%で
あった。
As a comparative example, an experiment was conducted using air without ventilation through the calcium chloride tube, that is, atmospheric air. First, titanium ammonium fluoride was dried at 105° C. for 20 hours. After loading 100.0 g of dried titanium ammonium fluoride into a tubular furnace, the inside of the furnace was heated to about 500° C. in an air stream. The outlet gas is passed through a condenser whose temperature is controlled to 50°C.
48.0g of titanium fluoride was recovered, and 9.4g of titanium oxide remained in the furnace. The recovery rate of titanium fluoride was 77%.

実施例−3 実施例−1と全く同様の方法で調整した第2表に示す組
成のフッ化アンモニウム塩14.8kgをハステロイ製
熱分解反応器にいれ、塩化カルシウム管に通気して乾燥
した乾燥空気気流中で、400℃に加熱した0分解ガス
を含む出口ガスは、80℃に温度調整した凝縮器に送り
、TiF48.2kgを回収した。このように、乾燥ガ
スとして乾燥空気を使用した場合にも、フッ化アンモニ
ウム塩14.8kg中のフッ化チタンの98%が回収で
きた。
Example-3 14.8 kg of ammonium fluoride salt having the composition shown in Table 2 prepared in exactly the same manner as in Example-1 was placed in a Hastelloy thermal decomposition reactor, and dried by venting through a calcium chloride tube. The outlet gas containing zero decomposition gas heated to 400°C in an air stream was sent to a condenser whose temperature was adjusted to 80°C, and 48.2 kg of TiF was recovered. In this way, even when dry air was used as the drying gas, 98% of the titanium fluoride in 14.8 kg of ammonium fluoride salt could be recovered.

[発明の効果] 以上のように、この発明によれば、イルメナイトのよう
な含鉄チタン原料をフッ酸含有液と40℃以上で反応さ
せることにより、鉱石をほぼ完全に溶解することが出来
、鉱石中のチタン分のほぼ全量をフッ化チタンとして生
成できる。このため、フッ化チタンの反応生成率は著し
く高く、最終的にフッ化チタンとしての回収率も95%
以上となる。
[Effects of the Invention] As described above, according to the present invention, ore can be almost completely dissolved by reacting an iron-containing titanium raw material such as ilmenite with a hydrofluoric acid-containing liquid at 40°C or higher, and the ore can be dissolved. Almost all of the titanium in it can be produced as titanium fluoride. For this reason, the reaction production rate of titanium fluoride is extremely high, and the final recovery rate as titanium fluoride is 95%.
That's all.

更に、この発明によれば、含鉄チタン原料のフッ化溶解
液からの鉄分の分離に関して、溶媒抽出法のような高価
な有機溶媒を使用する必要はない、フッ化チタンとフッ
化鉄の溶解濃度差を利用した晶析分離による粗分離とフ
ッ化チタンとフッ化鉄の昇華温度の差を利用した精製分
離の方法の組み合わせにより、溶媒抽出法よりも低コス
トでフッ化チタンの精製分離が出来る。
Furthermore, according to the present invention, it is not necessary to use expensive organic solvents such as those used in solvent extraction methods for separating iron from a fluorinated solution of iron-containing titanium raw materials, and the dissolved concentration of titanium fluoride and iron fluoride can be reduced. By combining crude separation using crystallization separation that takes advantage of the difference in temperature and purification separation that takes advantage of the difference in sublimation temperature between titanium fluoride and iron fluoride, it is possible to purify and separate titanium fluoride at a lower cost than the solvent extraction method. .

また、晶析分離したフッ化鉄結晶および熱処理で生成し
たフッ化鉄は加水分解され、フッ素をフッ化水素として
回収することが出来る。また、フッ化アンモニウム塩の
熱分解により生成したアンモニア、フッ化水素も回収さ
れ、反応消費分以外のフッ素は系内で循環使用されるこ
とから、コスト上、公害防止上非常に有効である。
Further, the iron fluoride crystals separated by crystallization and the iron fluoride generated by heat treatment are hydrolyzed, and fluorine can be recovered as hydrogen fluoride. In addition, ammonia and hydrogen fluoride produced by thermal decomposition of ammonium fluoride salts are also recovered, and fluorine other than the amount consumed by the reaction is recycled within the system, which is very effective in terms of cost and pollution prevention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るフッ化チタンの製造方法のフロ
ーを示す図、第2図はフッ化率に及ぼす反応時間・反応
温度の影響を示す図、第3図はTiF4とFeF3の溶
解濃度に及ぼす温度の影響を示す図、第4図はチタンフ
ッ化アンモニウム((NH4)2 T i F6)の溶
解濃度に及ぼす温度の影響を示す図である。 1・・・鉄分含有チタン原料、2・・・フッ化溶解、3
・・・フッ酸、4・・・フッ化溶解液、8・・・フッ化
第二鉄結晶(F e Fi ・4.5 H20)の晶析
分離、9・・・粗フッ化チタン溶液、10・・・フッ化
第二鉄結晶<FeFs ・4.5 H2O)、11−蒸
発濃縮、15・・・フッ化アンモニウム塩の晶析分離、
16・・・フッ化アンモニウム塩、17・・・フッ化ア
ンモニウム溶液、18・・・乾燥、19・・・熱分解、
20・・・Ti F4.HF、NH3の気体、21・・
・FeF3の固体、22・・・凝縮分離、23・・・フ
ッ化チタン。
Figure 1 is a diagram showing the flow of the method for producing titanium fluoride according to the present invention, Figure 2 is a diagram showing the influence of reaction time and reaction temperature on the fluorination rate, and Figure 3 is a diagram showing the dissolved concentration of TiF4 and FeF3. FIG. 4 is a diagram showing the influence of temperature on the dissolved concentration of titanium ammonium fluoride ((NH4)2T i F6). 1...Iron-containing titanium raw material, 2...Fluoride dissolution, 3
... Hydrofluoric acid, 4... Fluoride solution, 8... Crystallization separation of ferric fluoride crystals (F e Fi 4.5 H20), 9... Crude titanium fluoride solution, 10... Ferric fluoride crystal <FeFs 4.5 H2O), 11- Evaporation concentration, 15... Crystallization separation of ammonium fluoride salt,
16... Ammonium fluoride salt, 17... Ammonium fluoride solution, 18... Drying, 19... Pyrolysis,
20...Ti F4. HF, NH3 gas, 21...
- FeF3 solid, 22... condensation separation, 23... titanium fluoride.

Claims (1)

【特許請求の範囲】[Claims] (1)鉄分を含有したチタン原料をフッ酸を含む溶液で
溶解しフッ化溶解液を生成させ、該フッ化溶解液を冷却
することによってフッ化第二鉄結晶を晶析分離し粗フッ
化チタン溶液を生成させ、該粗フッ化チタン溶液にフッ
化アンモニウム溶液を混合し、蒸発、冷却又はこれらの
組み合わせにより濃縮することによつて、フッ化アンモ
ニウム塩[(NH_4)_2TiF_6と(NH_4)
_3FeF_6の混合塩]を晶析分離して、該フッ化ア
ンモニウム塩を乾燥の後乾燥ガス気流中300〜800
℃で熱分解し、固体としてフッ化第二鉄(FeF_3)
、気体としてTiF_4、HF、NH_3を生成させ、
該気体を20〜280℃で凝縮させ、TiF_4とHF
・NH_3ガスに凝縮分離することを特徴とするフッ化
チタンの製造方法。
(1) A titanium raw material containing iron is dissolved in a solution containing hydrofluoric acid to produce a fluoride solution, and by cooling the fluoride solution, ferric fluoride crystals are crystallized and separated to produce crude fluoride. Ammonium fluoride salts [(NH_4)_2TiF_6 and (NH_4) are prepared by forming a titanium solution, mixing the crude titanium fluoride solution with an ammonium fluoride solution, and concentrating by evaporation, cooling, or a combination thereof.
Mixed salt of _3FeF_6] was crystallized and separated, and the ammonium fluoride salt was dried and heated to 300 to 800
Ferric fluoride (FeF_3) is thermally decomposed at ℃ as a solid.
, generate TiF_4, HF, and NH_3 as gases,
The gas is condensed at 20-280°C to form TiF_4 and HF.
- A method for producing titanium fluoride, which is characterized by condensation separation into NH_3 gas.
JP29694388A 1987-12-04 1988-11-24 Production of titanium fluoride Pending JPH01252531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29694388A JPH01252531A (en) 1987-12-04 1988-11-24 Production of titanium fluoride

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-306921 1987-12-04
JP30692187 1987-12-04
JP29694388A JPH01252531A (en) 1987-12-04 1988-11-24 Production of titanium fluoride

Publications (1)

Publication Number Publication Date
JPH01252531A true JPH01252531A (en) 1989-10-09

Family

ID=26560927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29694388A Pending JPH01252531A (en) 1987-12-04 1988-11-24 Production of titanium fluoride

Country Status (1)

Country Link
JP (1) JPH01252531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509905A (en) * 2008-01-14 2011-03-31 ペルーク (プロプリエタリー) リミテッド Production of titanium trifluoride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509905A (en) * 2008-01-14 2011-03-31 ペルーク (プロプリエタリー) リミテッド Production of titanium trifluoride

Similar Documents

Publication Publication Date Title
US8628740B2 (en) Processing method for recovering iron oxide and hydrochloric acid
US4917872A (en) Method for producing titanium fluoride
US3311449A (en) Process of recovering valuable components from red mud
US2167784A (en) Method of treating iron fluoride
CN111989413B (en) Method for processing titanomagnetite ore material
JPS63239128A (en) Production of uranium oxide
US3712942A (en) Method of producing vanadium compounds by alkaline leaching
JPH01252531A (en) Production of titanium fluoride
JPH03265514A (en) Method for treatment of etching waste liquid containing fluorine compd.
RU2048559C1 (en) Method for processing of zirconium concentrate
US3925531A (en) Production of titanium tetrahalide
US2857242A (en) Method for the preparation of titanium tetrachloride
JPS6020378B2 (en) Lactam manufacturing method
US3584995A (en) Vacuum purification of red cake comprised substantially of v205
RU2770576C1 (en) Method for obtaining titanium dioxide from ilmenite
US1102715A (en) Purification of mixtures containing nitrids.
US3005685A (en) Process for desilicifying fluorspar and the like minerals
JP2981931B2 (en) Method for treating aluminum foil etching waste liquid
JPS604135B2 (en) Manufacturing method of high purity iron oxide
JPH10130026A (en) Treatment of waste hydrochloric acid
JPH10237562A (en) Recovery of vanadium
WO2015094008A1 (en) Method for processing titanomagnetite ore materials
US2532102A (en) Production of ammonium beryllium fluoride
RU2264478C1 (en) Method of processing of titanium-silicon containing concentrates
US1214991A (en) Production of alumina and potassium sulfate from alunite.