JPH01252246A - Beatable oil and fat composition - Google Patents
Beatable oil and fat compositionInfo
- Publication number
- JPH01252246A JPH01252246A JP8057688A JP8057688A JPH01252246A JP H01252246 A JPH01252246 A JP H01252246A JP 8057688 A JP8057688 A JP 8057688A JP 8057688 A JP8057688 A JP 8057688A JP H01252246 A JPH01252246 A JP H01252246A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- fat
- temperature
- unit
- fat composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 49
- 238000002844 melting Methods 0.000 claims abstract description 26
- 230000008018 melting Effects 0.000 claims abstract description 26
- 230000007704 transition Effects 0.000 claims abstract description 12
- 238000004458 analytical method Methods 0.000 claims abstract description 8
- 239000003921 oil Substances 0.000 claims description 88
- 239000003925 fat Substances 0.000 claims description 75
- 238000005259 measurement Methods 0.000 claims description 25
- 238000000113 differential scanning calorimetry Methods 0.000 claims 1
- 238000001816 cooling Methods 0.000 abstract description 25
- 238000005496 tempering Methods 0.000 abstract description 14
- 238000010438 heat treatment Methods 0.000 abstract description 8
- 239000000839 emulsion Substances 0.000 abstract description 5
- 230000004927 fusion Effects 0.000 abstract description 4
- 230000001747 exhibiting effect Effects 0.000 abstract description 3
- 238000007790 scraping Methods 0.000 abstract description 2
- 235000019198 oils Nutrition 0.000 description 80
- 235000019197 fats Nutrition 0.000 description 70
- 239000013078 crystal Substances 0.000 description 17
- 235000013310 margarine Nutrition 0.000 description 8
- 239000003264 margarine Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 235000021323 fish oil Nutrition 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- -1 glycerin fatty acid esters Chemical class 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 235000014593 oils and fats Nutrition 0.000 description 5
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 235000010445 lecithin Nutrition 0.000 description 4
- 239000000787 lecithin Substances 0.000 description 4
- 229940067606 lecithin Drugs 0.000 description 4
- 239000007762 w/o emulsion Substances 0.000 description 4
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 3
- 235000019484 Rapeseed oil Nutrition 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004904 shortening Methods 0.000 description 3
- 239000001593 sorbitan monooleate Substances 0.000 description 3
- 235000011069 sorbitan monooleate Nutrition 0.000 description 3
- 229940035049 sorbitan monooleate Drugs 0.000 description 3
- 238000004781 supercooling Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000010775 animal oil Substances 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000001587 sorbitan monostearate Substances 0.000 description 2
- 235000011076 sorbitan monostearate Nutrition 0.000 description 2
- 229940035048 sorbitan monostearate Drugs 0.000 description 2
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical class OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 235000019687 Lamb Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 238000007707 calorimetry Methods 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Landscapes
- Edible Oils And Fats (AREA)
- Fats And Perfumes (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は新規な油脂組成物に関し、更に詳しくは、示差
走査熱量H(DSC:Differential Sc
anningCalorimetory)による吸熱分
析において、唯1個の油脂の吸熱ピークを示し、かつ抱
気性を有する油脂組成物に関するものである。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a novel oil and fat composition.
The present invention relates to an oil and fat composition that exhibits only one oil and fat endothermic peak in an endothermic analysis using annning Calorimetry and has an aerobic property.
「従来技術と問題点」
抱気性を有するマーガリン、ショートニングは、ボテー
ター、コンビネータ−等により冷却捏和したものをダン
ボール箱等の容器包材に充填収容した後、融点より3〜
8℃低い温度で10〜60時間静置する所謂テンパリン
グ工程を経るのが一般的である。"Prior Art and Problems" Margarine and shortening that have aerobic properties are cooled and kneaded using a votator, combinator, etc., and then filled and stored in a container or packaging material such as a cardboard box.
It is common to undergo a so-called tempering process in which the material is allowed to stand at a temperature 8° C. lower for 10 to 60 hours.
しかし、かかるテンパリングは比較的高温で結晶の少な
い状態に静置するため、所謂オイルオフの原因となり易
く、またマーガリンの場合は特に衛生上の問題からも好
ましいものとは言えない。However, since such tempering is left at a relatively high temperature and in a state with few crystals, it is likely to cause so-called oil-off, and in the case of margarine, it is not preferable especially from the viewpoint of hygiene.
更に10〜60時間もの長時間を要し、生産効率面から
も問題が多い。これらの問題点を解消せんとして、例え
ば米国特許3,469,996にはマイクロ波加熱処理
するクイック・テンパリングが提唱されているが、マイ
クロ波にはムラがあり、照射装置等の工夫を施すことな
しには実用化番ご難があり、また大容量の電力を消費す
るという問題を包含してC)る。Furthermore, it takes a long time of 10 to 60 hours, and there are many problems in terms of production efficiency. In an attempt to solve these problems, for example, U.S. Patent No. 3,469,996 proposes quick tempering using microwave heating, but the microwave is uneven, so it is necessary to make improvements to the irradiation device, etc. C) Without this, it is difficult to put it into practical use, and it also involves the problem of consuming a large amount of power.
「問題点を解決するための手段」
本発明者らは、かかる実情に鑑み、これらの問題点を克
服するべく鋭意研究の結果、DSCの吸熱分析において
、熱処理(テンパリング)′&度を境として油脂の融解
帯の中に転移ピークを有さす、しかも、損気性を有する
油脂組成物を提供するに至った。"Means for Solving the Problems" In view of the above circumstances, the present inventors have conducted intensive research to overcome these problems, and as a result of their intensive research, they have determined that heat treatment (tempering)'& degree We have now provided an oil and fat composition that has a transition peak in the melting zone of the oil and has air-impairing properties.
即ち、本発明は示差走査熱量計による吸熱分析(昇温測
定)において、MP−20℃〜MP+15℃の範囲にあ
る油脂の融解帯の中に転移ピークを有しない唯1個の油
脂の融解ピークを示し、且つ損気性を備えたことを特徴
とする損気性油脂組成物を内容とするものである。That is, in endothermic analysis (temperature rise measurement) using a differential scanning calorimeter, the present invention detects the only melting peak of fats and oils that does not have a transition peak in the melting zone of fats and oils in the range of MP-20°C to MP +15°C. It contains an air-damaging oil and fat composition characterized by exhibiting the following properties and having air-damaging properties.
本発明者らは油脂組成物の損気性について種々研究を進
め、油脂結晶の作成法をコントロールすることにより、
DSCで1つのピークしか示さず、かつ損気性を有する
油脂を作成するに至った。The present inventors have conducted various studies on the air-damaging properties of oil and fat compositions, and by controlling the method of creating oil and fat crystals,
We have now created an oil and fat that shows only one peak on DSC and has air-impairing properties.
従来より、油脂の物性を熱的に測定する方法としてDS
Cが用いられている。DSCとは、物質(試料)及び基
準物質(例えばAl2O2)を調節された速度で加熱又
は冷却する環境の中で等しい温度条件に置いたとき、2
つの試料の間の温度差を0に保つに必要なエネルギーを
時間又は温度に対して記録するものである(「熱分析」
、神戸博太部著、講談社)。マーガリン、ショートニン
グの様な加工油脂では、トリグリセライド組成が非常
−に複雑であり、吸発熱測定を定量的に取り扱う
のには困難といわれている。しかし、油脂そのものを巨
視的にみて、単一相とみなして考えるならば、結晶化の
差異がピークとして現れるはずであり、実際にマーガリ
ンを吸熱測定してみると第1図の様なパターンを示す。Traditionally, DS has been used as a method to thermally measure the physical properties of oils and fats.
C is used. DSC refers to the measurement of 2
It records the energy required to maintain a zero temperature difference between two samples versus time or temperature ('thermal analysis').
, by Hirotabe Kobe, Kodansha). Processed fats and oils such as margarine and shortening have a very high triglyceride composition.
- It is said to be extremely complicated and difficult to quantitatively handle heat absorption and heat absorption measurements. However, if we look at fats and oils macroscopically and consider them as a single phase, differences in crystallization should appear as peaks, and when we actually measure the endotherm of margarine, we see a pattern like the one shown in Figure 1. show.
本ザンプルは実際に熱処理(テンパリング)されたザン
プルであるが、熱処理を実施したものと、そうでないも
のとでは、DSCの吸熱分析を行うと、ピーク発現に差
異が生しるのは明白な事実であり、吸熱パターン中にテ
ンバリング温度で発熱ピーク(転移ピーク)を示し、油
脂の融解帯がその温度を境として分割されたかのごとく
パターンを示す。この様なパターンはテンパリングを実
施しない油脂製品には、見られない。This sample was actually heat-treated (tempered), but it is clear that there is a difference in peak expression when performing DSC endothermic analysis between samples that have been heat-treated and those that have not. The endothermic pattern shows an exothermic peak (transition peak) at the tempering temperature, and the pattern appears as if the melting zone of the fat is divided at that temperature. Such a pattern is not seen in oil and fat products that are not tempered.
ここで言う融解帯とは融解熱のピークを示すものであり
、本発明で取扱う油脂組成物を一60℃〜+60℃の範
囲に於いて測定するならば、様々な融解帯が存在する。The melting zone referred to here indicates the peak of the heat of fusion, and if the oil and fat composition used in the present invention is measured in the range of -60°C to +60°C, various melting zones exist.
例えば、0℃近辺に現れる大きな吸熱ピークは氷の融解
ピークであることは周知のことである。また、氷の融解
ピークに続いて現れる融解帯は、トリグリセライド分子
により形成された油脂結晶の転移、融解ピークである。For example, it is well known that a large endothermic peak that appears near 0°C is the melting peak of ice. Furthermore, the melting zone that appears following the melting peak of ice is the transition and melting peak of fat and oil crystals formed by triglyceride molecules.
一般に、油脂結晶は多形を持つと言われており(多形現
象)、熱処理の条件によって様々な多形を有する結晶と
なっている。そのため、油脂の融解帯も様々なピークと
なって現れる。一方、本発明で取扱う加工油脂製品では
、その物性を自由にコントロールする視点から、原料油
を数種組合せる場合がある。この場合、原料油として液
状油(中性油)を使用し、かつ使用料が多量の場合、液
状油も混合された油脂組成物を一60℃まで冷却した後
、DSCにて吸熱分析(加熱・溶解)すると、氷の融解
ピークの発現よりも前に液状油の融解帯が発現する場合
もある。本発明においては、この様な液状油及び氷の融
解帯は対象とならない。Generally, oil and fat crystals are said to have polymorphism (polymorphism phenomenon), and depending on the conditions of heat treatment, the crystals have various polymorphisms. Therefore, the melting zone of fats and oils also appears as various peaks. On the other hand, in the processed oil and fat products handled in the present invention, several types of raw material oils may be combined in order to freely control their physical properties. In this case, if a liquid oil (neutral oil) is used as the raw material oil and a large amount of usage fee is used, the oil/fat composition containing the liquid oil is cooled to -60°C, and then endothermic analysis (heating・In some cases, a melting zone of liquid oil appears before the peak of ice melting occurs. In the present invention, such melting zones of liquid oil and ice are not targeted.
従って、油脂物性を大きく左右する液状油以外の油脂結
晶の融解帯の範囲はMP−20℃〜MP+15℃である
。更に、MPを起点として考えるならば、下限のMP−
20℃以上の油脂結晶の挙動が損気性という機能を左右
するのに大きく寄与しており、また上限のMP+15℃
は油脂結晶の完全なる溶解を示している。Therefore, the range of the melting zone of fat crystals other than liquid oil, which greatly influences the physical properties of fats and oils, is from MP-20°C to MP+15°C. Furthermore, if we consider MP as the starting point, the lower limit MP-
The behavior of oil and fat crystals at temperatures above 20°C greatly contributes to determining the air-impairing function, and the upper limit of MP + 15°C
indicates complete dissolution of oil crystals.
一方、本発明の油脂組成物を製造するに当たっては従来
方法とは全く異なる冷却方法を採用しており、最大のポ
イントは完全に溶解された油脂組成物を掻き取り式チュ
ーブラー冷却機(Alユニット)等で冷却する際、Al
ユニットの冷却効率を高めるため、結晶が析出しない温
度まで予め温1周することである。つまり、この温8周
された最終温度が融解ピークの発現温度である。この温
度は、DSCの発熱分析(冷却)において容易に求めら
れ、DSCの冷却速度を変えることにより、その温度は
変化するものの、本発明の目的とする損気性油脂組成物
を得るにはMP−10°c−MP−15℃の範囲が最も
望ましい。更に、この温度は、A1ユニットの入口温度
であり、AIユニットで冷却されると、この温度を境と
して多くの結晶が析出する。従って、上記方法にて製造
された油脂組成物をDSCにて吸熱分析した場合、MP
−10’C−MP−15℃より、損気性を有する油脂組
成物の融解帯が発現する。On the other hand, in producing the oil and fat composition of the present invention, a cooling method that is completely different from conventional methods is adopted. ), etc., when cooling with Al
In order to increase the cooling efficiency of the unit, it is necessary to heat the unit once beforehand to a temperature at which crystals do not precipitate. In other words, the final temperature after eight cycles of heating is the temperature at which the melting peak occurs. This temperature is easily determined by DSC exothermic analysis (cooling), and although the temperature changes by changing the DSC cooling rate, MP- A range of 10°C-MP-15°C is most desirable. Furthermore, this temperature is the inlet temperature of the A1 unit, and when cooled by the AI unit, many crystals precipitate at this temperature. Therefore, when the oil and fat composition produced by the above method is endothermally analyzed by DSC, the MP
-10'C-MP From -15°C, a melting zone of the oil and fat composition having air-impairing properties appears.
更に、本発明におけるポイントはテンバリング温度にお
ける転移ピークの発現であって、転移ピークより低い温
度域でのピーク数は、その物質固有の特性を示すもので
あって、本発明には何ら関係はない。Furthermore, the key point in the present invention is the appearance of a transition peak at the tempering temperature, and the number of peaks in a temperature range lower than the transition peak indicates the inherent characteristics of the substance and has no relation to the present invention. .
本発明の油脂組成物は、油脂又は油中水型エマルジョン
(以下、油脂類という)を加熱、)容解後、ボテーター
、コンビネータ−等の掻き取り式チューブラー冷却機(
AIユニット)において、入口温度を前記油脂類の融点
−10〜−15℃で、且つ曇点以上の温度にコントロー
ルして平均冷却速度15℃/分以上に冷却し、次いで同
じく掻き取り弐チューブラー冷却機(A2ユニット)に
おいて、その出口温度をA1ユニットの出口温度±5℃
にコントロールして捏和することによって得ることがで
きる。The oil and fat composition of the present invention is prepared by heating and dissolving the oil or water-in-oil emulsion (hereinafter referred to as oil and fat), and then using a scraping-type tubular cooler such as a votator or a combinator.
AI unit), the inlet temperature is controlled to be at the melting point of -10 to -15°C and above the clouding point of the oil and fat, and cooled at an average cooling rate of 15°C/min or more, and then the same scraped two tubular In the cooler (A2 unit), set the outlet temperature to the outlet temperature of the A1 unit ±5°C.
It can be obtained by controlling and kneading.
本発明に用いられる油脂は、特に制限されず、従来マー
ガリンやショートニングに用いられる動植物硬化油、分
別油、ラムニス油、動植物油等が好適に用いられる。こ
れらの油脂は、ホイップ温度においてSFCが15〜3
0%になる様に硬化、分別したり配合される。The fats and oils used in the present invention are not particularly limited, and hydrogenated animal and vegetable oils, fractionated oils, lamb varnish oils, animal and vegetable oils, etc. conventionally used in margarine and shortening are preferably used. These fats and oils have an SFC of 15 to 3 at whipping temperature.
It is cured, separated, and blended so that it becomes 0%.
乳化剤については特に制限されず、通常使用されるグリ
セリン脂肪酸エステル、ソルビタン脂肪酸エステル、レ
シチン、プロピレングリコール脂肪酸エステル、シュガ
ーエステル等が単独又は混合して用いられる。添加量は
0.05〜5%と通常の範囲で良い。The emulsifier is not particularly limited, and commonly used glycerin fatty acid esters, sorbitan fatty acid esters, lecithin, propylene glycol fatty acid esters, sugar esters, and the like can be used alone or in combination. The amount added may be within the usual range of 0.05 to 5%.
エマルジョンの場合は安定な油中水型エマルジョンが出
来れば良く、油分/水分は2/8(重量比)前後まで許
されるが、クリーミング価150%以上で良好なりリー
ム状態を得るには油分/水分は6/4以上、望ましくは
7/3以上である。In the case of emulsions, it is sufficient if a stable water-in-oil emulsion can be made, and oil/water content up to around 2/8 (weight ratio) is permissible, but a creaming value of 150% or more is suitable, and oil/water content is required to obtain a creamy state. is 6/4 or more, preferably 7/3 or more.
乳化剤、香料等を添加した油脂又は油中水型エマルジョ
ン、即ち油脂類を60〜70℃に加熱溶解する。必要に
応じて抗酸化剤、防腐剤等の添加物が更に添加される。Oils and fats or water-in-oil emulsions, that is, oils and fats to which emulsifiers, fragrances, etc. are added, are heated and dissolved at 60 to 70°C. Additives such as antioxidants and preservatives are further added as necessary.
次に、ボテーター、コンビネータ−等掻き取り式チュー
ブラー冷却機(以下、A1ユニットという)で冷却する
前に、該油脂類のMP−10〜−15℃の範囲で且つ曇
点以上に熱交換器(AOユニット)で温調する。温調は
、プレート式でもAユニットに入るまでは実質的に液体
でなければ後のA1ユニットでの冷却効果が無くなるた
め、結晶が析出しない程度の温度で行う必要がある。尚
、温調はA1ユニットでの冷却効果を良くするための手
段であるから、A1ユニットや冷凍機能力が十分であれ
ば省略しても差し支えない。Next, before cooling with a scraping type tubular cooler (hereinafter referred to as A1 unit) such as a votator or combinator, the MP of the oil and fat is heated to a temperature in the range of -10 to -15°C and above the clouding point using a heat exchanger. (AO unit) to control the temperature. Even if the temperature is controlled by a plate type, if the liquid is not substantially liquid until it enters the A unit, the cooling effect in the A1 unit afterwards will be lost, so it is necessary to control the temperature at a temperature that does not allow crystals to precipitate. Note that temperature control is a means for improving the cooling effect of the A1 unit, so it may be omitted if the A1 unit and refrigeration function are sufficient.
次に、油脂類をA1ユニットに入れ、平均冷却速度15
℃/分以上、好ましくは20℃/分以上で油脂類の5F
030〜60%に相当する温度にまで冷却する。A1ユ
ニット中での正確な冷却速度を把握することは至難であ
るが、本発明では□つクイ
(入口温度−出口温度)/滞留時間を平均冷却速度とす
る。平均冷却速度20℃/分〜40℃/分で結晶粒は1
〜2μm程度となる。小さな結晶粒を得るにはA1ユニ
ットの所要の伝熱面積、冷媒温度を確保するだけでなく
、AIユニットのクリアランスを小さくし、シリンダー
内の実質容積を小さくし、滞留時間を短くして冷却速度
を上げることが望ましい。クリアランスは装置のスケー
ル、加工精度、強度、材質等の装置加工技術面の制約が
あり、通常用いられているスケール(シリンダー直径8
0〜170m/m、長さ500〜1500m/m)であ
れば実質的に11以下にすることは困難である。また余
りクリアランスを小さくすると、内圧が高くなり機械メ
インテナンス上得策でない。従ってA1ユニットのクリ
アランスは1〜51程度が好適である。Next, put the oils and fats into the A1 unit, and the average cooling rate is 15
5F of fats and oils at ℃/min or more, preferably 20℃/min or more
Cool to a temperature corresponding to 0.30-60%. Although it is extremely difficult to determine the exact cooling rate in the A1 unit, in the present invention, the average cooling rate is defined as □ (inlet temperature - outlet temperature)/residence time. At an average cooling rate of 20°C/min to 40°C/min, the grain size is 1
It becomes about 2 μm. To obtain small crystal grains, it is necessary not only to secure the required heat transfer area and refrigerant temperature of the A1 unit, but also to reduce the clearance of the AI unit, reduce the actual volume inside the cylinder, and shorten the residence time to increase the cooling rate. It is desirable to raise the Clearance is limited by equipment processing technology such as equipment scale, processing accuracy, strength, and material, and the normally used scale (cylinder diameter 8
0 to 170 m/m, length 500 to 1500 m/m), it is substantially difficult to reduce the length to 11 or less. Furthermore, if the clearance is made too small, the internal pressure will increase, which is not a good idea in terms of machine maintenance. Therefore, the clearance of the A1 unit is preferably about 1 to 51.
冷却温度は油脂類の5FC30〜60%に相当する温度
である。5FC30%に満たない高い温度では冷却速度
が遅くなり、続<A2ユニットで結晶粒が大きくなる。The cooling temperature is a temperature corresponding to 30 to 60% of 5FC of fats and oils. At a high temperature below 30% of 5FC, the cooling rate slows down, and the crystal grains become larger at <A2 units.
一方、60%を越える低温)□
にすると、内圧が高くなり、安全上、メインテナンス上
問題があり好ましくない。On the other hand, if the temperature exceeds 60% (low temperature) □, the internal pressure will increase, which is undesirable because it poses safety and maintenance problems.
次に、AIユニットと同様の掻き取り式チューブラー冷
却機(A2ユニット)で捏和する。ピンマシンで捏和し
た場合に、粗大結晶粒が生成する理由については定かで
ないが、SFCの量、即ち温度と回転数、即ち攪拌効果
とが大きく影響するものと推定される。Next, the mixture is kneaded using a scraping-type tubular cooler (A2 unit) similar to the AI unit. The reason why coarse crystal grains are produced when kneading with a pin machine is not clear, but it is presumed that the amount of SFC, that is, the temperature, and the number of rotations, that is, the stirring effect, have a large influence.
そこで、AIユニットを通過した油脂類は結晶化熱、摩
擦熱等の発熱を吸収し得る温度コントロール可能な捏和
機を選択するのが望ましい。かかる捏和機としてはA1
ユニットと同様の機構(偏心も含む)を有するものが好
適である。Therefore, it is desirable to select a kneading machine that can control the temperature of the fats and oils that have passed through the AI unit so that it can absorb heat generation such as crystallization heat and frictional heat. As such a kneading machine, A1
It is preferable to have a mechanism similar to that of the unit (including eccentricity).
また、A2ユニットを通過させる間に結晶析出を完了し
、過冷却状態を脱する必要がある。このためにはBユニ
ット並の滞留時間が要求されるが、A2ユニットを何基
も並設するのは装置加工面、運転管理上から得策でなく
、A2ユニットのクリアランスを大きくし、滞留時間を
長くする方法が有利である。必要滞留時間は油脂類の配
合組成、冷却温度等により変化し、−慨には規定し難い
が、約0.5分ないしはそれ以上が望ましい。過冷却の
度合は正確に把握し難いが、A2ユニットを通した後の
油脂類の状態で判断することができる。即ち、排出され
た油脂類の硬さが急激に増す(一般に、パシまる゛と言
われる)現象や油脂類の品温が結晶化熱により上昇した
りする現象が無ければ、過冷却状態を脱し平衡状態にな
ったと判断して良い。A2ユニットの回転数は過冷却か
ら平衡状態になるまでの時間及び前記した如く結晶粒の
サイズにも影響を与える。また単結晶の安定性にも影響
を与える可能性がある。かかる観点からA2ユニットの
回転数は高い方が好ましいが、余り高くするとモーター
の馬力、摩擦熱の増大を引き起こし、装置面からは望ま
しくない。従って、周速度が好ましくは1.25m/秒
以上で、更に好ましくは1.25m/秒から3.5m/
秒の範囲である。また、A2ユニットを通過する間、一
定の温度を維持することは困難であるが、AIユニット
出口温度±5℃1好ましくは±2℃の範囲で十分抱気性
を有す1す
る油脂組成物を得ることができる。Further, it is necessary to complete crystal precipitation and escape from the supercooled state while passing through the A2 unit. For this purpose, a residence time equivalent to that of the B unit is required, but it is not a good idea to install many A2 units in parallel from the viewpoint of equipment processing and operation management. The method of lengthening is advantageous. The required residence time varies depending on the composition of the oils and fats, the cooling temperature, etc., and is difficult to specify in general, but it is preferably about 0.5 minutes or longer. Although it is difficult to accurately determine the degree of supercooling, it can be determined by the state of the oil and fat after passing through the A2 unit. In other words, unless there is a phenomenon in which the hardness of the discharged fats and oils increases rapidly (generally referred to as "hardness") or the temperature of the fats and oils rises due to heat of crystallization, the supercooling state will be overcome. It can be concluded that an equilibrium state has been reached. The rotational speed of the A2 unit also affects the time from supercooling to equilibrium and the size of crystal grains as described above. It may also affect the stability of single crystals. From this point of view, it is preferable for the rotational speed of the A2 unit to be high, but if it is too high, the horsepower of the motor and frictional heat will increase, which is not desirable from the standpoint of the device. Therefore, the peripheral speed is preferably 1.25 m/sec or more, more preferably 1.25 m/sec to 3.5 m/sec.
It is in the range of seconds. In addition, although it is difficult to maintain a constant temperature while passing through the A2 unit, it is necessary to use an oil and fat composition that has sufficient aerobic properties within the AI unit exit temperature range of ±5°C, preferably ±2°C. Obtainable.
「作用・効果」
本発明は、従来のテンパリング操作を全く必要とせず、
損気性に富んだ油脂組成物を提供する。"Action/Effect" The present invention does not require any conventional tempering operation,
To provide an oil and fat composition rich in air-damaging properties.
かくして、テンパリングに起因するオイルオフや衛生上
の問題もなく、生産効率も飛躍的に向上させることがで
きる。また、本発明の油脂組成物は損気性を要求されな
い用途にも広く用いられ得ることは勿論である。In this way, there are no oil-off or hygiene problems caused by tempering, and production efficiency can be dramatically improved. Furthermore, it goes without saying that the oil and fat composition of the present invention can be widely used in applications that do not require air-impairing properties.
「実施例」
以下、本発明を実施例、比較例に基づいて更に詳細に説
明するが、本発明は、これらにより制限されるものでは
ない。尚、DSCとしては理学電機(株)製、熱分析装
置TAS−100示差走査熱量計8230Bを用いた。"Examples" The present invention will be described in more detail below based on Examples and Comparative Examples, but the present invention is not limited thereto. As the DSC, a thermal analyzer TAS-100 differential scanning calorimeter 8230B manufactured by Rigaku Denki Co., Ltd. was used.
対照例
MP37.2℃の硬化魚油20部(重量部、以下同し)
、MP40.7℃の硬化魚油60部、ナタネ油20部に
グリセリン脂肪酸エステル0.1%(重量%、以下同し
)、ソルビタン脂肪酸エステル0゜2%を添加溶解した
混合油脂(MP=40.2℃)83.5%と水相165
%を混合して油中木型エマルジョンを得、通常の冷却条
件にて捏和しマーガリンを得た。その後、MP−5℃(
約35℃)の温度に48時間放置し、熱処理(テンパリ
ング)を行った。Control example MP 37.2°C hydrogenated fish oil 20 parts (parts by weight, the same hereinafter)
A mixed fat and oil (MP=40.7°C) was prepared by adding and dissolving 0.1% glycerin fatty acid ester (weight%, hereinafter the same) and 0.2% sorbitan fatty acid ester in 60 parts of hydrogenated fish oil with MP40.7°C and 20 parts of rapeseed oil (MP=40.7°C). 2℃) 83.5% and aqueous phase 165%
% to obtain a wood-in-oil emulsion, which was kneaded under normal cooling conditions to obtain margarine. After that, MP-5℃ (
It was left at a temperature of about 35° C. for 48 hours to perform heat treatment (tempering).
上記の如くして得られたマーガリンをDSC用試料セル
に9.1 mg秤量し、DSC測定試料室(=50℃)
内で10分間保持した後、4℃/分の速度で昇温測定(
吸熱測定)した。得られたチャートを第1回(A)、(
B)に示した。第1図(B)は第1圓(A)の部分拡大
図である(以下、同し)。尚、DSC測定感度は2mc
al/Sであった。Weighed 9.1 mg of the margarine obtained as above into a DSC sample cell, and placed it in a DSC measurement sample chamber (=50°C).
After holding the temperature for 10 minutes, the temperature was increased at a rate of 4°C/min (
(endothermic measurement). The obtained chart is shown in the first (A), (
Shown in B). FIG. 1(B) is a partially enlarged view of the first circle (A) (the same applies hereinafter). Furthermore, the DSC measurement sensitivity is 2mc.
It was al/S.
第1図(A)、(B)より明らかな如く、DSC吸熱ピ
ークの開始温度は26℃で、テンパリング温度(約35
℃)においで、転移ピークが認められる。また該油脂組
成物は50℃で完全に熔解している。As is clear from Figure 1 (A) and (B), the onset temperature of the DSC endothermic peak is 26°C, and the tempering temperature (approximately 35°C)
℃), a transition peak is observed. Further, the oil and fat composition completely melts at 50°C.
実施例1
M P 29.8℃の硬化魚油60部、M P 37.
2℃の硬化魚油20部、ナタネ油20部にソルビタンモ
ノステアレート0.1%、ソルビタンモノオレート0.
2%、レシチン0.1%を添加溶解した混合油脂(MP
=32.1℃)70重量%と水相30重量%を混合して
油中水型エマルジョンを得、下記の条件にて損気性油脂
組成物を得た。Example 1 60 parts hydrogenated fish oil at M P 29.8°C, M P 37.
0.1% sorbitan monostearate, 0.1% sorbitan monooleate in 20 parts hydrogenated fish oil and 20 parts rapeseed oil at 2°C.
Mixed fat (MP) containing 2% lecithin and 0.1% lecithin.
= 32.1°C) and 30% by weight of the aqueous phase to obtain a water-in-oil emulsion, and a gas-impairing oil and fat composition was obtained under the following conditions.
AOユニット
出口温度 :19℃
A1ユニット
滞留時間 :24秒
クリアランス=211
冷却速度 :24.8℃/分
出口温度 :9.1℃
A2ユニット
出口温度 :8.5℃
周速度 :2.5m/秒
滞留時間 :3分
クリアランス:lQmm
得られた組成物をDSC測定用試料セルに21゜2■秤
量し、−50℃より60℃まで4℃/分の速度で昇温さ
せ、吸熱測定を行った。測定感度は5mcal/Sとし
た。得られたチャートを第2図(A)、(B)に示す。AO unit outlet temperature: 19℃ A1 unit residence time: 24 seconds Clearance = 211 Cooling rate: 24.8℃/min Outlet temperature: 9.1℃ A2 unit outlet temperature: 8.5℃ Peripheral speed: 2.5m/sec Residence time: 3 minutes Clearance: 1Qmm The obtained composition was weighed at 21°2 in a sample cell for DSC measurement, and the temperature was raised from -50°C to 60°C at a rate of 4°C/min to perform endothermic measurement. . The measurement sensitivity was 5 mcal/S. The obtained charts are shown in FIGS. 2(A) and 2(B).
油脂組成物のクリーミング価は250%/15分で、ク
リーム状態は良好であった。尚、クリーミング価は油脂
(マーガリンの場合は水分も含む)単位重量当たりの空
気のmβ×100で示した。The creaming value of the oil and fat composition was 250%/15 minutes, and the cream state was good. The creaming value is expressed as mβ of air per unit weight of fat (including water in the case of margarine) x 100.
第2図(A)、(B)から明らかな如く、該油脂組成物
のDSC吸熱ピークの開始温度は19℃1また45℃で
完全に溶解し、溶解するまでに1つの融解帯しか示さな
かった。As is clear from Figures 2 (A) and (B), the starting temperature of the DSC endothermic peak of the oil and fat composition was 19°C, and it completely melted at 45°C, showing only one melting zone until it dissolved. Ta.
比較例1
実施例1と同一の油脂組成物を下記条件にて製造し、そ
の後、該油脂のMPより3℃低い温度にて熱処理(テン
パリング)し、損気性油脂組成物を得た。Comparative Example 1 The same oil and fat composition as in Example 1 was produced under the following conditions, and then heat-treated (tempered) at a temperature 3° C. lower than the MP of the oil and fat, to obtain an air-impairing oil and fat composition.
AOユニット
出口温度 =40℃
A1ユニット
滞留時間 :35秒
クリアランス:51
冷却速度 :42.9℃/分
出口温度 =15℃
A2ユニット
出口温度 :15℃
周速度 :2.5m/秒
滞留時間 23分
クリアランス=10龍
得られた組成物をDSC測定用試料セルに22゜4mg
秤量し4℃/分の速度で昇温させ、吸熱測定を行った。AO unit outlet temperature = 40℃ A1 unit residence time: 35 seconds Clearance: 51 Cooling rate: 42.9℃/min Outlet temperature = 15℃ A2 unit outlet temperature: 15℃ Peripheral speed: 2.5m/second Residence time 23 minutes Clearance = 10 22°4 mg of the obtained composition was placed in a sample cell for DSC measurement.
The sample was weighed, heated at a rate of 4° C./min, and endothermic measurement was performed.
測定感度は5mcal/Sとした。得られたチャートを
第3図(A)、(B)に示す。The measurement sensitivity was 5 mcal/S. The obtained charts are shown in FIGS. 3(A) and 3(B).
得られた油脂組成物のクリーミング価は230%/分で
あったが、DSCの吸熱ピークの中にテンパリング温度
(約29℃)における転移ピークを示した。また該油脂
組成物は45℃で完全に溶解している。The creaming value of the obtained oil/fat composition was 230%/min, but it showed a transition peak at the tempering temperature (approximately 29° C.) among the endothermic peaks of DSC. Further, the oil and fat composition is completely dissolved at 45°C.
実施例2
MP29.8℃の硬化魚油50部、M P 35.9℃
のラムニス油30部、コーン油20部にソルビタンモノ
ステアレート0.1%、ソルビタンモノオレート0.2
%、レシチン0.1%を添加溶解した混合油脂(MP=
29.4℃)70重量%と水相30重量%を混合して油
中水型エマルジョンを得、下記の条件にて損気性油脂組
成物を得た。Example 2 50 parts hydrogenated fish oil, MP 29.8°C, MP 35.9°C
30 parts of rhumnis oil, 20 parts of corn oil, 0.1% of sorbitan monostearate, 0.2% of sorbitan monooleate.
%, mixed fat with added and dissolved lecithin 0.1% (MP=
A water-in-oil emulsion was obtained by mixing 70 wt.
AOユニット
出口温度 :16℃
A1ユニット
滞留時間 :25秒
クリアランス:211+1
冷却速度 :24℃/分
出口温度 :6℃
A2ユニット
出口温度 :6℃
周速度 :2.5m/秒
滞留時間 :3分
クリアランス:lQmm
得られた組成物をDSC測定用試料セルに17゜2■秤
量し、4℃/分の速度で昇温させ吸熱測定を行った。測
定感度は5mcal/Sとした。得られたチャートを第
4図(A)、(B)に示す。AO unit outlet temperature: 16℃ A1 unit residence time: 25 seconds Clearance: 211+1 Cooling rate: 24℃/min Outlet temperature: 6℃ A2 unit outlet temperature: 6℃ Peripheral speed: 2.5m/second Residence time: 3 minutes clearance :lQmm The obtained composition was weighed at 17°2 in a sample cell for DSC measurement, and the temperature was raised at a rate of 4°C/min to perform endothermic measurement. The measurement sensitivity was 5 mcal/S. The obtained charts are shown in FIGS. 4(A) and 4(B).
油脂組成物のクリーミング価は230%/15分で、ク
リーム状態は良好であった。第3図(A)、(B)に示
す如く、該油脂組成物のDSC吸熱ピークの開始温度は
16.5℃で、また40℃で完全に溶解し、溶解するま
でに1つの融解帯しか示さなかった。The creaming value of the oil and fat composition was 230%/15 minutes, and the cream state was good. As shown in FIGS. 3(A) and (B), the starting temperature of the DSC endothermic peak of the oil and fat composition is 16.5°C, and it completely melts at 40°C, with only one melting zone remaining until it dissolves. Didn't show it.
比較例2
実施例2と同一の油脂組成物を下記条件にて製造し、そ
の後、該油脂のMPより4℃低い温度にて熱処理(テン
パリング)し、損気性油脂組成物を得た。Comparative Example 2 The same oil and fat composition as in Example 2 was produced under the following conditions, and then heat-treated (tempered) at a temperature 4° C. lower than the MP of the oil and fat, to obtain an air-impairing oil and fat composition.
AOユニット
出口温度 =30℃
A1ユニット
滞留時間 :40秒
クリアランス:2菖l
冷却速度 :ta、S℃/分
出口温度 : 21 ℃
A2ユニット
出口温度 :21℃
周速度 =2.5印/秒
滞留時間 =3分
クリアランス:lQmm
得られた組成物をDSC測定用試料セルに20゜3mg
秤量し、4℃/分の速度で昇温させ、吸熱測定を行った
。測定感度は5mcal/Sとした。得られたチャート
を第5図(A)、(B)に示す。得られた油脂組成物の
クリーミング価は210%/分であったが、DSCの吸
熱ピークの中にテンパリング温度(約25℃)における
転移ピークを示した。また該油脂組成物は40℃で完全
に溶解している。AO unit outlet temperature = 30°C A1 unit residence time: 40 seconds Clearance: 2 liters Cooling rate: ta, S°C/min Outlet temperature: 21°C A2 unit outlet temperature: 21°C Peripheral speed = 2.5 marks/second residence Time = 3 minutes Clearance: lQmm 20°3 mg of the obtained composition was placed in a sample cell for DSC measurement.
It was weighed, heated at a rate of 4° C./min, and endothermic measurement was performed. The measurement sensitivity was 5 mcal/S. The obtained charts are shown in FIGS. 5(A) and 5(B). The creaming value of the obtained oil/fat composition was 210%/min, but it showed a transition peak at the tempering temperature (approximately 25° C.) among the endothermic peaks of DSC. Further, the oil and fat composition is completely dissolved at 40°C.
実施例3
MP37.9℃の硬化魚油30部、M P 48.7℃
の硬化牛脂5部、ナタネ油65部に飽和モノグリセリド
0.5%、ソルビタンモノオレート0.3%を添加溶解
した混合油脂(MP=31.Ooc)75重量%と水相
25重量%を混合して油中木型エマルジョンを得、下記
の条件にて損気性油脂組成物を得た。Example 3 30 parts hydrogenated fish oil, MP 37.9°C, MP 48.7°C
5 parts of hardened beef tallow, 65 parts of rapeseed oil, 0.5% of saturated monoglyceride, and 0.3% of sorbitan monooleate were added and dissolved. 75% by weight of a mixed fat (MP = 31.0oc) was mixed with 25% by weight of the aqueous phase. A wood-in-oil emulsion was obtained, and an air-impairing oil and fat composition was obtained under the following conditions.
AOユニット
出口温度 =16℃
AIユニット
滞留時間 ;24秒
クリアランス=2鳳l
冷却速度 :20℃/分
出口温度 二8℃
A2ユニット
出口温度 :8℃
周速度 :3m/秒
滞留時間 22分15秒
クリアランス:1011
得られた組成物をDSC測定用試料セルに21゜2■秤
量し、4℃/分の速度で昇温させ吸熱測定を行った。測
定感度は5mcal/Sとした。得られたチャートを第
6図(A)、(B)に示す。AO unit outlet temperature = 16℃ AI unit residence time: 24 seconds Clearance = 2 hours Cooling rate: 20℃/min Outlet temperature: 28℃ A2 unit outlet temperature: 8℃ Peripheral speed: 3m/second Residence time: 22 minutes 15 seconds Clearance: 1011 The obtained composition was weighed at 21°2 in a sample cell for DSC measurement, and the temperature was raised at a rate of 4° C./min to perform endothermic measurement. The measurement sensitivity was 5 mcal/S. The obtained charts are shown in FIGS. 6(A) and 6(B).
油脂組成物のクリーミング価は265%/15分で、ク
リーム状態は良好であった。該油脂組成 ′物の
DSC吸熱ピークの開始温度ば16.5℃で、45℃で
完全に溶解し、溶解するまでに1つの融解帯しか示さな
かった。The creaming value of the oil and fat composition was 265%/15 minutes, and the cream state was good. The starting temperature of the DSC endothermic peak of the oil and fat composition was 16.5°C, and it completely melted at 45°C, showing only one melting zone until it melted.
比較例3
実施例3と同一の油脂組成物を下記条件にて製造し、そ
の後、該油脂のMPより5℃低い温度で熱処理(テンバ
リング)し、損気性油脂組成物を得た。Comparative Example 3 The same oil and fat composition as in Example 3 was produced under the following conditions, and then heat-treated (tempered) at a temperature 5° C. lower than the MP of the oil and fat to obtain an air-impairing oil and fat composition.
AOユニット
出口温度 =35℃
A1ユニット
滞留時間 :52秒
クリアランス:12.5m
冷却速度 412.7℃/分
出口温度 :24℃
A2ユニット
出口温度 :16℃
周速度 :2.5m/秒
滞留時間 :3分
クリアランス:10曹l
得られた組成物をDSC測定用試料セルに20mg秤量
し、4℃/分の速度で昇温させ、吸熱測定を行った。測
定感度は5mcal/Sとした。得られたチャートを第
7図(A)、(B)に示す。得られた油脂組成物のクリ
ーミング価は190%/分であったが、DSCの吸熱ピ
ークの中にテンパリング温度(約26℃)における転移
ピークを示した。該油脂7組成物は45℃で完全に溶解
している。AO unit outlet temperature = 35℃ A1 unit residence time: 52 seconds Clearance: 12.5m Cooling rate 412.7℃/min Outlet temperature: 24℃ A2 unit outlet temperature: 16℃ Peripheral speed: 2.5m/second Residence time: 3 minute clearance: 10 Sodium liter 20 mg of the obtained composition was weighed into a sample cell for DSC measurement, and the temperature was raised at a rate of 4° C./min to perform endothermic measurement. The measurement sensitivity was 5 mcal/S. The obtained charts are shown in FIGS. 7(A) and (B). The creaming value of the obtained oil/fat composition was 190%/min, but it showed a transition peak at the tempering temperature (approximately 26° C.) among the endothermic peaks of DSC. The fat and oil composition 7 was completely dissolved at 45°C.
第1図(A)、(B)乃至第7図(A)、(B)は、い
ずれもDSCチャートであり、(B)はそれぞれ(A)
の部分拡大チャートである。
1゛¥Jo+
蔓覆6一
■F剋=
■珈−
i゛覆69
j番YE/=S→
■下へ−
■看a−
′m′η0−
W′¥lll1→
b゛狭ど=
−i4で八−
酋゛vn −
V1ηα÷Figures 1 (A) and (B) to Figure 7 (A) and (B) are all DSC charts, and (B) is each (A).
This is a partially enlarged chart. 1゛¥Jo+ Tsurugi61■F剋= ■珈- i゛cover69 J number YE/=S→ ■Down- ■Seea- ′m′η0− W′¥lll1→ b゛Narrow= − i4 is 8− ゛vn − V1ηα÷
Claims (1)
定)において、MP−20℃〜MP+15℃の範囲にあ
る油脂の融解帯の中に転移ピークを有しない唯1個の油
脂の融解ピークを示し、且つ抱気性を備えたことを特徴
とする抱気性油脂組成物。 2、油脂の融解ピークの発現温度が該油脂のMP−10
℃〜MP−15℃の範囲にある請求項1記載の組成物。[Claims] 1. Only one product that does not have a transition peak in the melting zone of fats and oils in the range of MP-20°C to MP+15°C in endothermic analysis (temperature increase measurement) using differential scanning calorimetry (DSC). 1. An aerobic fat and oil composition, which exhibits a melting peak of a specific amount of fat and oil, and is characterized by having aerobic properties. 2. The temperature at which the melting peak of the fat or oil appears is the MP-10 of the fat or oil.
2. A composition according to claim 1, wherein the temperature is in the range of -15[deg.]C to MP-15[deg.]C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8057688A JPH01252246A (en) | 1988-03-31 | 1988-03-31 | Beatable oil and fat composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8057688A JPH01252246A (en) | 1988-03-31 | 1988-03-31 | Beatable oil and fat composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01252246A true JPH01252246A (en) | 1989-10-06 |
Family
ID=13722168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8057688A Pending JPH01252246A (en) | 1988-03-31 | 1988-03-31 | Beatable oil and fat composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01252246A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000036170A (en) * | 1999-07-15 | 2000-02-02 | Hitachi Ltd | Disk cartridge |
JP2008099603A (en) * | 2006-10-19 | 2008-05-01 | Adeka Corp | Method for producing plastic oil and fat composition |
JP2015007161A (en) * | 2013-06-25 | 2015-01-15 | 理研ビタミン株式会社 | Oil and fat solidifying agent |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52126406A (en) * | 1976-04-17 | 1977-10-24 | Asahi Denka Kogyo Kk | O/w type whipped fat emulsion and its production |
JPS5726540A (en) * | 1980-07-19 | 1982-02-12 | Asahi Denka Kogyo Kk | Fatty or oily composition |
JPS57190099A (en) * | 1981-05-18 | 1982-11-22 | Asahi Denka Kogyo Kk | Oil and fat composition |
JPS60105453A (en) * | 1983-11-14 | 1985-06-10 | Kanegafuchi Chem Ind Co Ltd | Preparation of product of edible plastic fats and oils |
-
1988
- 1988-03-31 JP JP8057688A patent/JPH01252246A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52126406A (en) * | 1976-04-17 | 1977-10-24 | Asahi Denka Kogyo Kk | O/w type whipped fat emulsion and its production |
JPS5726540A (en) * | 1980-07-19 | 1982-02-12 | Asahi Denka Kogyo Kk | Fatty or oily composition |
JPS57190099A (en) * | 1981-05-18 | 1982-11-22 | Asahi Denka Kogyo Kk | Oil and fat composition |
JPS60105453A (en) * | 1983-11-14 | 1985-06-10 | Kanegafuchi Chem Ind Co Ltd | Preparation of product of edible plastic fats and oils |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000036170A (en) * | 1999-07-15 | 2000-02-02 | Hitachi Ltd | Disk cartridge |
JP2008099603A (en) * | 2006-10-19 | 2008-05-01 | Adeka Corp | Method for producing plastic oil and fat composition |
JP2015007161A (en) * | 2013-06-25 | 2015-01-15 | 理研ビタミン株式会社 | Oil and fat solidifying agent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5151290A (en) | Water-in-oil dispersion and process for preparing such dispersion | |
EP0463688B2 (en) | Water-and-oil emulsion and process for preparing such emulsion | |
JP2995855B2 (en) | Water-in-oil emulsion and water retention improver | |
US4568556A (en) | Margarine product and process | |
Rønholt et al. | Effect of churning temperature on water content, rheology, microstructure and stability of butter during four weeks of storage | |
US4217372A (en) | Method for improving the structural properties of fats | |
US5352475A (en) | Process for the production of low-calorie spreads | |
JPH0157935B2 (en) | ||
JPH0550252B2 (en) | ||
CN112219907A (en) | High-melting-point base material oil and preparation method thereof, baking grease and preparation method thereof | |
YUKI et al. | Effect of sucrose polyesters on crystallization behavior of vegetable shortening and margarine fat | |
Pérez‐Martínez et al. | Physical properties of cocoa butter/vegetable oil blends crystallized in a scraped surface heat exchanger | |
EP0398411B1 (en) | Water-in-oil dispersion and process for preparing such dispersion | |
JPH01252246A (en) | Beatable oil and fat composition | |
Miskandar et al. | Effect of emulsion temperature on physical properties of palm oil‐based margarine | |
US5194285A (en) | Process for preparing a water-in-oil dispersion having a dispersed gelled aqueous phase | |
US2592224A (en) | Method of making margarine and the resulting product | |
EP0398412A2 (en) | Water-in-oil dispersion and process for preparing such dispersion | |
Su et al. | Effect of flaxseed gum on the brittleness of oleogels based on candelilla wax | |
US5409727A (en) | Process for the production of low-calorie spreads | |
Wilton et al. | Influence of temperature‐induced phase transitions on fat emulsions | |
JP5077438B2 (en) | Method for producing plastic fat composition | |
JPS63146750A (en) | Preparation of fat and oil composition | |
German et al. | Phase Transitions of Edible Fats and Triglycerides: Theory and Appliations | |
JPS5942843A (en) | Preparation of fat and oil in fluid state |