JPH0125209B2 - - Google Patents

Info

Publication number
JPH0125209B2
JPH0125209B2 JP57151076A JP15107682A JPH0125209B2 JP H0125209 B2 JPH0125209 B2 JP H0125209B2 JP 57151076 A JP57151076 A JP 57151076A JP 15107682 A JP15107682 A JP 15107682A JP H0125209 B2 JPH0125209 B2 JP H0125209B2
Authority
JP
Japan
Prior art keywords
smco
magnet
roll
thin
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57151076A
Other languages
Japanese (ja)
Other versions
JPS5941805A (en
Inventor
Tetsuo Yamaguchi
Akira Mochizuki
Koichiro Morimoto
Masaaki Yagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP57151076A priority Critical patent/JPS5941805A/en
Publication of JPS5941805A publication Critical patent/JPS5941805A/en
Publication of JPH0125209B2 publication Critical patent/JPH0125209B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた磁石特性を有するととも
に、良好な可撓性をも有するSmCo極薄永久磁石
に関するものである。 近年、高保磁力を有する材料としてSm−Co二
元磁石合金が注目され、各所に使用されるように
なつてきており、工業的に完全に定着しつつある
観がある。 ところで、このSm−Co二元磁石合金は、
SmCo5化合物の極めて大きな結晶磁気異方性を
利用し、SmCo5を主体とした微粒子を加圧成形
して焼結するという粉末冶金法で製造されるのが
普通であつた。 従つて、この材料においては、粉末のプレス成
形で形状が与えられない薄板状の製品を製造する
場合、所定の厚みを有する焼結体から、フライス
加工などの機械加工によつて製品の切り出しを行
うという方法がとられていたが、この焼結
SmCo5型磁石は硬くて脆いという性質を有して
おり、そのため、製品は厚さがおよそ150μm以
上でなければならないという制約を受け、しかも
それでもなお破損しやすく取扱いが困難であると
いう問題点を有していた。 その上、焼結SmCo5型磁石は、SmCo5化合物
の化学量論組成(34重量%Sm)を境にして、そ
の高Sm側の組成範囲では高保磁力が得られるも
のの、低Sm側ではSm含有量の減少に伴つて極端
に保磁力が低下するということも明らかにされて
いる。そして、このようなことから、粉末冶金法
で製造される従来のSmCo5二元磁石合金におい
ては、SmCo5の化学量論組成よりも低Sm側の組
成範囲は実用に供されることがなかつたのであ
る。 本発明者は、上述のような観点から、従来の
SmCo二元磁石合金の欠点や制約を解消し、Sm
含有量の広い組成範囲を有し、すぐれた磁石特性
を有するとともに、機械切削等による歩留り低
下・コス上昇を伴うことなく、薄肉で、しかも良
好な可撓性をも備えたSmCo永久磁石を得るべく
研究を行つた結果、 (a) 溶融状態のSmCo二元合金磁石材料を急冷し
て得られる磁石は、従来の粉末冶金法で製造さ
れる磁石と同等のすぐれた磁石特性を有する
上、従来の焼結体では保磁力が低下してしまう
ようなSm含有量の低い組成範囲のものであつ
ても良好な磁石特性を保持していること、 (b) 例えば、後述の第1図及び第2図に示すよう
なロール法等によれば、溶融状態のSmCo二元
合金磁石材料から、急冷組織を有する極薄板素
材を容易に製造し得ること、 (c) このような液体急冷凝固法によつて得られた
SmCo薄肉磁石は、従来の粉末冶金法による
SmCo磁石では思いも寄らない良好な可撓性を
備えていること、 以上(a)〜(c)に示す如き知見を得るに至つたので
ある。 この発明は、上記知見に基づいてなされたもの
であつて、SmCo永久磁石を、 Sm:20.0〜33.5重量%、 Co及び不可避不純物:残り、 から成る成分組成とするとともに、急冷組織を有
せしめ、しかも厚さを10〜150μmに調整するこ
とによつて、良好な可撓性とすぐれた磁石特性と
を具備せしめたことに特徴を有するものである。 なお、この発明の永久磁石において、Smの含
有量を20.0〜33.5重量%と限定したのは、Sm含
有量が20.0重量%未満では保磁力が低くなつて磁
石材料としての実用性がなくなり、一方33.5%を
越えると飽和磁化の低下を招いて磁石のエネルギ
ー積が低下し、やはり磁石材料としての実用性が
失われるからである。 また、磁石の厚さを10〜150μmと限定したの
は、現在、工業的規模で溶融金属から最も薄い金
属板素材を製造できるとされているロール法によ
る液体急冷法でも、厚さが10μm未満のSmCo薄
板を作ることは、得られる板材が連続薄板となら
ないことかから不可能であり、一方、厚さが
150μmを越えると得られる磁石の可撓性が失わ
れるからである。 さらに、前述のように、この発明の薄肉永久磁
石は急冷組織を有していることが必要であるが、
ここで言う急冷組織とは、溶融SmCo合金磁石材
料を冷却速度:104〜105℃/secで冷却・凝固せ
しめることによつて得られるものであり、粒径
1μm以下の微細結晶より成るものである。(な
お、焼結品の結晶粒の粒径は、通常、数+ミクロ
ンである。) 第3図は、Sm:23重量%を含有したSmCo合
金を、冷却速度:104℃/secで冷却・凝固したと
きに得られた急冷組織を示すす、倍率:1000倍の
顕微鏡組織写真の1例である。 つぎに、この発明のSmCo薄肉永久磁石の製造
方法について説明する。 この発明のSmCo薄肉永久磁石の製造には、第
1図に示した単ロール、あるいは第2図に示した
双ロールによる液体急冷装置を使用するのが良
い。 第1図及び第2図において、アーク溶解法で作
製したSmCo母材(Sm:20.0〜33.5重量%、Co:
残り)1は、先端に直径:0.3〜1.0mmの小孔を有
する石英管2に装填され、高周波コイル3にて加
熱されて溶解する。母材1が完全に溶解したとこ
ろで、エアーピストン4を操作してアルゴンガス
を注入し、石英管2内の圧力を0.2〜1.5Kg/cm2
度に高めて、溶融母材を石英管先端から噴出させ
る。 以上のような操作によつて、溶融母材噴流は、
6〜60m/secの周速度で回転しているロール
(Cu又はFe製、あるいはその表面にCrメツキを
施したもので、流体冷却されている)5によつて
急冷・圧延されるのである。そして、これらの一
連の操作は、アルゴン又は窒素等の不活性ガス雰
囲気中で行われるものである。 得られるSmCo薄板の形状、寸法、並びに機械
的性質は、ロール材質、ロール直径、ロール回転
数、石英管先端の小孔の径、噴出圧力等の条件に
影響を受け、これらの条件を適切に選ぶことによ
り、極薄で、良好な可撓性を有する本発明の
SmCo薄肉永久磁石が得られるのである。 ついで、この発明を実施例により具体的に説明
する。 実施例 1 まず、Sm含有量が重量%で、15%、17%、19
%、21%、22%、23%、26%、28%、29%、31
%、34%、37%、及び38%であり、残りがCo及
び不可避不純物から成る成分組成のSmCo母材:
5gを、第1図に概略図で示したような装置の、
直径:10mmの石英管にとり、以下の条件のもとに
液体急冷を行つた。 急冷法:単ロール法、 ロール材質:Cu、ロール直径:240mm、 ロール回転数:1500rpm、 石英管小孔の径:0.5mm、 噴出圧力:0.30Kg/cm2、 溶解法:100KHz高周波溶解。 このようにして得られた薄板の厚さは20〜
150μmであり、直径15mm以下の丸棒に切損なく
巻きつけられるほどの良好な可撓性を有してい
た。 なお、この薄板を化学分析したところ出発母材
との組成差は全く認められなかつた。 つぎに、得られた薄板の磁石特性を振動試料型
磁力計で測定したところ、第4図に示されるよう
な結果が得られた。第4図において、△印は残留
磁束密度(Br)、○印は保磁力(iHc)、そして×
印は最大エネルギー積〔(BH)max〕を示す。
また第5図には、従来の等方性焼結体のiHc、
(BH)maxをも、それぞれ一点鎖線及び破損で
示した。 第4図からも、本発明のSmCo磁石は、従来の
焼結SmCo磁石に比してSm含有量の広い範囲に
わたつてすぐれた磁石特性を有していることが明
らかである。 実施例 2 第1表に示される成分組成のSmCo母材を用意
し、その4gを、第2図に概略図で示すような装
置の直径:8mmの石英管にとり、以下の条件のも
とに液体急冷を行つた。 急冷法:双ロール法、 ロール材質:Cu(但し、ロール面にCrメツキを
施したもの)、 ロール直径:50mm、 ロール回転数:1800rpm、 石英管小孔の径:0.5mm、 噴出圧力:0.35Kg/cm2、 溶解法:100KHz高周波溶解。 このようにして得られた薄板の厚さは25〜
100μmであり、直径15mm以下の棒に切損なく巻
きつけられるほど良好な可撓性を有していた。
The present invention relates to an ultra-thin SmCo permanent magnet that has excellent magnetic properties and good flexibility. In recent years, Sm--Co binary magnet alloys have attracted attention as materials with high coercive force, are being used in various places, and appear to be completely established industrially. By the way, this Sm-Co binary magnet alloy is
Utilizing the extremely large magnetocrystalline anisotropy of the SmCo 5 compound, it was usually manufactured using a powder metallurgy method in which fine particles mainly composed of SmCo 5 were pressure-molded and sintered. Therefore, when using this material to manufacture a thin plate-like product whose shape cannot be given by powder press molding, it is necessary to cut out the product from a sintered body with a predetermined thickness by mechanical processing such as milling. However, this sintering method
SmCo type 5 magnets are hard and brittle, and as a result, the product must be at least 150 μm thick, and even then, it is easily damaged and difficult to handle. had. Moreover, sintered SmCo 5 type magnets have a high coercive force in the composition range on the high Sm side, bordering on the stoichiometric composition of the SmCo 5 compound (34 wt% Sm), but on the low Sm side, Sm It has also been revealed that the coercive force decreases extremely as the content decreases. For this reason, in the conventional SmCo 5 binary magnet alloy manufactured by powder metallurgy, the composition range on the lower Sm side than the stoichiometric composition of SmCo 5 has never been put to practical use. It was. From the above-mentioned viewpoint, the present inventor has discovered that the conventional
Eliminating the drawbacks and limitations of SmCo binary magnet alloy, Sm
To obtain a SmCo permanent magnet that has a wide composition range of content, has excellent magnetic properties, is thin-walled, and has good flexibility without decreasing yield or increasing cost due to mechanical cutting etc. As a result of our research, we found that (a) magnets obtained by rapidly cooling molten SmCo binary alloy magnet materials have excellent magnetic properties equivalent to those of magnets manufactured using conventional powder metallurgy; (b) Even if the composition has a low Sm content, where the coercive force would decrease in a sintered body of According to the roll method etc. shown in Figure 2, it is possible to easily produce an ultra-thin sheet material with a rapidly solidified structure from a molten SmCo binary alloy magnet material; obtained by twisting
SmCo thin-walled magnets are produced by traditional powder metallurgy
We have come to the knowledge shown in (a) to (c) above that SmCo magnets have unexpectedly good flexibility. The present invention has been made based on the above findings, and includes making a SmCo permanent magnet have a component composition consisting of Sm: 20.0 to 33.5% by weight, Co and unavoidable impurities: the remainder, and having a quenched structure, Moreover, by adjusting the thickness to 10 to 150 μm, it is characterized by good flexibility and excellent magnetic properties. In the permanent magnet of this invention, the Sm content is limited to 20.0 to 33.5% by weight because if the Sm content is less than 20.0% by weight, the coercive force will be low and it will not be practical as a magnet material. This is because if it exceeds 33.5%, the saturation magnetization decreases, the energy product of the magnet decreases, and the practicality as a magnet material is lost. In addition, the reason why the thickness of the magnet is limited to 10 to 150 μm is that even with the liquid quenching method using the roll method, which is currently considered to be able to produce the thinnest metal sheet material from molten metal on an industrial scale, the thickness of the magnet is less than 10 μm. It is impossible to make a thin SmCo plate with a thickness of
This is because if the thickness exceeds 150 μm, the resulting magnet loses its flexibility. Furthermore, as mentioned above, the thin-walled permanent magnet of the present invention needs to have a quenched structure;
The quenched structure mentioned here is obtained by cooling and solidifying the molten SmCo alloy magnet material at a cooling rate of 10 4 to 10 5 °C/sec, and the grain size
It consists of fine crystals of 1 μm or less. (The grain size of sintered products is usually several microns.) Figure 3 shows an SmCo alloy containing 23% by weight of Sm, cooled at a cooling rate of 10 4 °C/sec.・This is an example of a microscopic micrograph at 1000x magnification showing the rapidly cooled structure obtained during solidification. Next, a method for manufacturing the SmCo thin-walled permanent magnet of the present invention will be explained. For manufacturing the SmCo thin-walled permanent magnet of the present invention, it is preferable to use a liquid quenching device using a single roll shown in FIG. 1 or a twin roll shown in FIG. In Figures 1 and 2, the SmCo base material (Sm: 20.0-33.5% by weight, Co:
The remainder) 1 is loaded into a quartz tube 2 having a small hole with a diameter of 0.3 to 1.0 mm at the tip, and is heated and melted by a high frequency coil 3. When the base material 1 is completely melted, operate the air piston 4 to inject argon gas to increase the pressure inside the quartz tube 2 to approximately 0.2 to 1.5 Kg/cm 2 and pour the molten base material from the tip of the quartz tube. Make it squirt. Through the above operations, the molten base material jet becomes
It is rapidly cooled and rolled by a roll (made of Cu or Fe, or whose surface is Cr-plated and fluid-cooled) rotating at a circumferential speed of 6 to 60 m/sec. These series of operations are performed in an atmosphere of an inert gas such as argon or nitrogen. The shape, dimensions, and mechanical properties of the resulting SmCo thin plate are influenced by conditions such as roll material, roll diameter, roll rotation speed, diameter of the small hole at the tip of the quartz tube, and ejection pressure, and these conditions must be adjusted appropriately. By selecting the inventive material that is ultra-thin and has good flexibility.
A thin-walled SmCo permanent magnet can be obtained. Next, the present invention will be specifically explained with reference to Examples. Example 1 First, the Sm content is 15%, 17%, 19% by weight.
%, 21%, 22%, 23%, 26%, 28%, 29%, 31
%, 34%, 37%, and 38%, with the remainder consisting of Co and unavoidable impurities:
5g in an apparatus such as that schematically shown in FIG.
A quartz tube with a diameter of 10 mm was used to rapidly cool the liquid under the following conditions. Rapid cooling method: Single roll method, Roll material: Cu, Roll diameter: 240mm, Roll rotation speed: 1500rpm, Quartz tube small hole diameter: 0.5mm, Ejection pressure: 0.30Kg/cm 2 , Melting method: 100KHz high frequency melting. The thickness of the thin plate thus obtained is 20~
It had a diameter of 150 μm and had such good flexibility that it could be wrapped around a round bar with a diameter of 15 mm or less without any damage. In addition, when this thin plate was chemically analyzed, no difference in composition from the starting base material was observed. Next, the magnetic properties of the obtained thin plate were measured using a vibrating sample magnetometer, and the results shown in FIG. 4 were obtained. In Figure 4, the △ mark is the residual magnetic flux density (Br), the ○ mark is the coercive force (iHc), and the ×
The mark indicates the maximum energy product [(BH)max].
Figure 5 also shows the iHc of the conventional isotropic sintered body,
(BH)max is also shown by a dashed line and a broken line, respectively. It is clear from FIG. 4 that the SmCo magnet of the present invention has superior magnetic properties over a wide range of Sm content compared to conventional sintered SmCo magnets. Example 2 A SmCo base material having the composition shown in Table 1 was prepared, and 4 g of it was placed in a quartz tube with a diameter of 8 mm in a device as schematically shown in Fig. 2, and was heated under the following conditions. Liquid quenching was performed. Rapid cooling method: Twin roll method, Roll material: Cu (the roll surface is plated with Cr), Roll diameter: 50mm, Roll rotation speed: 1800rpm, Diameter of quartz tube small hole: 0.5mm, Ejection pressure: 0.35 Kg/cm 2 , Melting method: 100KHz high frequency melting. The thickness of the thin plate thus obtained is 25~
It had a diameter of 100 μm and had such good flexibility that it could be wrapped around a rod with a diameter of 15 mm or less without damage.

【表】 なお、本実施例においても、母材と得られた薄
板との間に組成差は全く無かつた。 得られた薄板の磁石特性を振動試料型磁力計で
測定したところ、同じく第1表に示されるような
結果が得られた。 第1表に示される結果からも、本発明のSmCo
磁石がすぐれた磁石特性を有しているのに対し
て、Sm含有量が本発明の範囲から外れたSmCo
磁石はその磁石特性が劣つていることがわかる。 上述のように、この発明によれば、Sm含有量
が広い組成範囲にもかかわらずすぐれた磁石特性
を有し、しかも良好な可撓性を有する低コストの
SmCo薄肉永久磁石を得ることができ、新しい磁
石利用製品の開発が可能となるなど、工業上有用
な効果がもたされるのである。
[Table] Also in this example, there was no difference in composition between the base material and the obtained thin plate. When the magnetic properties of the obtained thin plate were measured using a vibrating sample magnetometer, the same results as shown in Table 1 were obtained. The results shown in Table 1 also indicate that the SmCo of the present invention
While the magnet has excellent magnetic properties, SmCo whose Sm content is outside the range of the present invention
It can be seen that the magnet has poor magnetic properties. As described above, the present invention provides a low-cost magnet that has excellent magnetic properties despite a wide composition range of Sm content, and also has good flexibility.
It is possible to obtain SmCo thin-walled permanent magnets, and it brings about industrially useful effects such as the development of new products using magnets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁石合金の製造に用いる単ロ
ール法による液体急冷装置の概略構成図、第2図
は同じく双ロール法による液体急冷装置の概略構
成図、第3図は本発明の磁石合金の急冷組織の例
を示す顕微鏡組織図、第4図は磁石特性とSm含
有量との開係を示した線図である。 図面において、1……母材、2……石英管、3
……高周波コイル、4……エアピストン、5……
ロール。
Fig. 1 is a schematic diagram of a liquid quenching device using a single roll method used to manufacture the magnet alloy of the present invention, Fig. 2 is a schematic diagram of a liquid quenching device also using a twin roll method, and Fig. 3 is a schematic diagram of a liquid quenching device using a twin roll method. FIG. 4 is a microscopic structure diagram showing an example of a rapidly solidified structure of an alloy. FIG. 4 is a diagram showing the relationship between magnetic properties and Sm content. In the drawings, 1...Base material, 2...Quartz tube, 3
...High frequency coil, 4...Air piston, 5...
roll.

Claims (1)

【特許請求の範囲】 1 Sm:20〜33.5重量%、 を含有し、残りがCoと不可避不純物からなる成
分組成、並びに粒径1μm以下の微細結晶組織を
有し、かつ10〜150μmの厚さを有することを特
徴とする良好な可撓性を備えたSmCo薄肉永久磁
石。
[Claims] 1 Sm: 20 to 33.5% by weight, with the remainder being Co and unavoidable impurities, and having a fine crystal structure with a grain size of 1 μm or less, and a thickness of 10 to 150 μm. A thin-walled SmCo permanent magnet with good flexibility.
JP57151076A 1982-08-31 1982-08-31 Flexible permanent magnet Granted JPS5941805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57151076A JPS5941805A (en) 1982-08-31 1982-08-31 Flexible permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57151076A JPS5941805A (en) 1982-08-31 1982-08-31 Flexible permanent magnet

Publications (2)

Publication Number Publication Date
JPS5941805A JPS5941805A (en) 1984-03-08
JPH0125209B2 true JPH0125209B2 (en) 1989-05-16

Family

ID=15510782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57151076A Granted JPS5941805A (en) 1982-08-31 1982-08-31 Flexible permanent magnet

Country Status (1)

Country Link
JP (1) JPS5941805A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210934A (en) * 1981-06-16 1982-12-24 Gen Motors Corp Highly magnetic rare earth-transition metal magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210934A (en) * 1981-06-16 1982-12-24 Gen Motors Corp Highly magnetic rare earth-transition metal magnet

Also Published As

Publication number Publication date
JPS5941805A (en) 1984-03-08

Similar Documents

Publication Publication Date Title
EP1187147B1 (en) Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
KR100770818B1 (en) Isotropic powdery magnet material, process for preparing and resin-bonded magnet
US20090000701A1 (en) Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-tb type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
JPH0553853B2 (en)
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
KR100310647B1 (en) Sheet magnet having microcrystalline structure and method of manufacturing the same, and method of manufacturing isotropic permanent magnet powder
JPH05222488A (en) Alloy ingot for permanent magnet and its manufacture
WO2003020993A1 (en) Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-t-b type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JP3720489B2 (en) Method for producing iron-based alloy for fine crystal permanent magnet
JPH0416923B2 (en)
JPH0125209B2 (en)
JP3101798B2 (en) Manufacturing method of anisotropic sintered magnet
JP2631514B2 (en) Manufacturing method of permanent magnet
JP3815983B2 (en) Rare earth magnet and manufacturing method thereof
JP3455552B2 (en) Method for producing rare earth metal-iron binary alloy ingot for permanent magnet
JP3526493B2 (en) Manufacturing method of anisotropic sintered magnet
JP2580067B2 (en) Manufacturing method of rare earth permanent magnet
JP3548568B2 (en) Method for producing rare earth metal-iron based permanent magnet alloy containing nitrogen atom
JP4574820B2 (en) Method for producing magnet powder for rare earth bonded magnet
JPH0582319A (en) Permanent magnet
JPH0920954A (en) Slab for r-fe-b-c magnet alloy excellent in corrosion resistance and its production
JP2002083728A (en) Method of manufacturing rare earth permanent magnet
JPH0584043B2 (en)
JP2005206909A (en) Compacting method in magnetic field, and method for producing rare earth sintered magnet